mct-nightly 2.1.0.20240811.503__py3-none-any.whl → 2.1.0.20240813.442__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. {mct_nightly-2.1.0.20240811.503.dist-info → mct_nightly-2.1.0.20240813.442.dist-info}/METADATA +1 -1
  2. {mct_nightly-2.1.0.20240811.503.dist-info → mct_nightly-2.1.0.20240813.442.dist-info}/RECORD +64 -62
  3. model_compression_toolkit/__init__.py +1 -1
  4. model_compression_toolkit/constants.py +0 -7
  5. model_compression_toolkit/core/__init__.py +1 -0
  6. model_compression_toolkit/core/common/graph/functional_node.py +1 -1
  7. model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +2 -0
  8. model_compression_toolkit/core/common/quantization/bit_width_config.py +91 -0
  9. model_compression_toolkit/core/common/quantization/core_config.py +8 -4
  10. model_compression_toolkit/core/common/quantization/quantization_config.py +1 -1
  11. model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +88 -22
  12. model_compression_toolkit/core/graph_prep_runner.py +16 -9
  13. model_compression_toolkit/core/keras/resource_utilization_data_facade.py +4 -3
  14. model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +1 -1
  15. model_compression_toolkit/core/runner.py +1 -0
  16. model_compression_toolkit/data_generation/__init__.py +1 -1
  17. model_compression_toolkit/data_generation/keras/keras_data_generation.py +7 -3
  18. model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +1 -1
  19. model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +4 -3
  20. model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +1 -1
  21. model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +1 -1
  22. model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +4 -3
  23. model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +4 -3
  24. model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +1 -1
  25. model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +1 -2
  26. model_compression_toolkit/gptq/keras/quantization_facade.py +8 -5
  27. model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +4 -3
  28. model_compression_toolkit/gptq/pytorch/quantization_facade.py +2 -1
  29. model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +1 -1
  30. model_compression_toolkit/pruning/keras/pruning_facade.py +6 -3
  31. model_compression_toolkit/pruning/pytorch/pruning_facade.py +3 -1
  32. model_compression_toolkit/ptq/keras/quantization_facade.py +5 -3
  33. model_compression_toolkit/ptq/pytorch/quantization_facade.py +2 -1
  34. model_compression_toolkit/qat/keras/quantization_facade.py +7 -5
  35. model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +4 -3
  36. model_compression_toolkit/qat/pytorch/quantization_facade.py +2 -1
  37. model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +1 -1
  38. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +1 -1
  39. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +2 -1
  40. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +1 -1
  41. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +1 -1
  42. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +1 -1
  43. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +1 -1
  44. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +1 -1
  45. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +1 -1
  46. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +1 -1
  47. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +1 -0
  48. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +5 -3
  49. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +2 -0
  50. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +1 -1
  51. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +2 -1
  52. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +1 -1
  53. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +2 -1
  54. model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +4 -3
  55. model_compression_toolkit/trainable_infrastructure/keras/load_model.py +4 -3
  56. model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +4 -3
  57. model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +1 -1
  58. model_compression_toolkit/verify_packages.py +33 -0
  59. model_compression_toolkit/xquant/common/model_folding_utils.py +1 -0
  60. model_compression_toolkit/xquant/keras/facade_xquant_report.py +4 -3
  61. model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +1 -1
  62. {mct_nightly-2.1.0.20240811.503.dist-info → mct_nightly-2.1.0.20240813.442.dist-info}/LICENSE.md +0 -0
  63. {mct_nightly-2.1.0.20240811.503.dist-info → mct_nightly-2.1.0.20240813.442.dist-info}/WHEEL +0 -0
  64. {mct_nightly-2.1.0.20240811.503.dist-info → mct_nightly-2.1.0.20240813.442.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240811.503
3
+ Version: 2.1.0.20240813.442
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,13 +1,14 @@
1
- model_compression_toolkit/__init__.py,sha256=28oZ77PKcaaEtbwP3jR4kM5WSpNYQXslUm933JqpuUw,1573
2
- model_compression_toolkit/constants.py,sha256=0qrEGjX36Oo7Lt8mR0LD2aSe2xA7gKrhkzBGp7g5eiA,4345
1
+ model_compression_toolkit/__init__.py,sha256=TfJUGlJPIuxH63h0s2ppXvyeiTCGanUIGaxWyU1e6XE,1573
2
+ model_compression_toolkit/constants.py,sha256=i4wYheBkIdQmsQA-axIpcT3YiSO1USNc-jaNiNE8w6E,3920
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
5
5
  model_compression_toolkit/metadata.py,sha256=UtXS5ClK-qPoxGRuytlDGZSzgLo911dMni2EFRcg6io,3623
6
- model_compression_toolkit/core/__init__.py,sha256=TrRgkWpT1AN2Faw1M_1HXyJkJnbxfn9p-RigDZl7pg0,1982
6
+ model_compression_toolkit/verify_packages.py,sha256=TlS-K1EP-QsghqWUW7SDPkAJiUf7ryw4tvhFDe6rCUk,1405
7
+ model_compression_toolkit/core/__init__.py,sha256=tnDtL9KmT0vsOU27SsJ19TKDEbIH-tXYeGxTo5YnNUM,2077
7
8
  model_compression_toolkit/core/analyzer.py,sha256=X-2ZpkH1xdXnISnw1yJvXnvV-ssoUh-9LkLISSWNqiY,3691
8
- model_compression_toolkit/core/graph_prep_runner.py,sha256=kM70wmNG3yMFiGQc0uO0wn9j4ZbSWxUEykpxDK55doc,10567
9
+ model_compression_toolkit/core/graph_prep_runner.py,sha256=7-b7Jd5jBVaXOWg5nSqbEyzBtdaGDbCxs8aqMV6GZ6I,11287
9
10
  model_compression_toolkit/core/quantization_prep_runner.py,sha256=K9eJ7VbB_rpeyxX4yEnorOmSxFW3DkvofzxS6QI8Hp8,6454
10
- model_compression_toolkit/core/runner.py,sha256=uXpyYaX1uFNhKituGmSfKb3ZkguXG2V_Cg6XCnprplg,13569
11
+ model_compression_toolkit/core/runner.py,sha256=XQDNJirZkVJ_FXP72d7tbVc_Tr3Jw0Eqm_kxNHW8kPs,13636
11
12
  model_compression_toolkit/core/common/__init__.py,sha256=Wh127PbXcETZX_d1PQqZ71ETK3J9XO5A-HpadGUbj6o,1447
12
13
  model_compression_toolkit/core/common/base_substitutions.py,sha256=xDFSmVVs_iFSZfajytI0cuQaNRNcwHX3uqOoHgVUvxQ,1666
13
14
  model_compression_toolkit/core/common/framework_implementation.py,sha256=kSg2f7wS7e2EyvX6y0eKfNTTFvVFVrB8lvldJvcPvN8,20724
@@ -34,7 +35,7 @@ model_compression_toolkit/core/common/graph/__init__.py,sha256=Xr-Lt_qXMdrCnnOaU
34
35
  model_compression_toolkit/core/common/graph/base_graph.py,sha256=lg5QaBkRbmvM3tGZ0Q34S3m0CbFql3LUv5BaXLe5TG8,37824
35
36
  model_compression_toolkit/core/common/graph/base_node.py,sha256=Tv_whLIy-Da0DWZIycnvZ2cf2Qa1rCwpcH8kTkkhv2s,31415
36
37
  model_compression_toolkit/core/common/graph/edge.py,sha256=buoSEUZwilWBK3WeBKpJ-GeDaUA1SDdOHxDpxU_bGpk,3784
37
- model_compression_toolkit/core/common/graph/functional_node.py,sha256=XvzydBSRxgpYdKS-aYVaWtH3FDzJPKGad3bai9wF3BI,3956
38
+ model_compression_toolkit/core/common/graph/functional_node.py,sha256=J804e0gK_cykxkUZDI0dAB3rZYkhlacORGSoVVVw4No,3962
38
39
  model_compression_toolkit/core/common/graph/graph_matchers.py,sha256=CrDoHYq4iPaflgJWmoJ1K4ziLrRogJvFTVWg8P0UcDU,4744
39
40
  model_compression_toolkit/core/common/graph/graph_searches.py,sha256=2oKuW6L8hP-oL0lFO9PhQFt9fEFgVJwpc1u4fHExAtE,5128
40
41
  model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py,sha256=3el-A7j1oyoo1_9zq3faQp7IeRsFXFCvnrb3zZFXpU0,9803
@@ -70,7 +71,7 @@ model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py,s
70
71
  model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py,sha256=KifDMbm7qkSfvSl6pcZzQ82naIXzeKL6aT-VsvWZYyc,7901
71
72
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
72
73
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py,sha256=HILF7CIn-GYPvPmTFyvjWLhuLDwSGwdBcAaKFgVYrwk,4745
73
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py,sha256=az0XfBPVm1kAfxNCPb0Z-Q05-F-vqnmyRpKm6SBLa6c,13826
74
+ model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py,sha256=3ZOI-RNp5faT-U2Og7rLW9EKwBB6ooa7-RwSsWJmquo,14022
74
75
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py,sha256=ttc8wPa_9LZansutQ2f1ss-RTzgTv739wy3qsdLzyyk,4217
75
76
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py,sha256=QhuqaECEGLnYC08iD6-2XXcU7NXbPzYf1sQcjYlGak8,1682
76
77
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py,sha256=WC1EHoNuo_lrzy4NRhGJ1cgmJ2IsFsbmP86mrVO3AVA,21506
@@ -98,17 +99,18 @@ model_compression_toolkit/core/common/pruning/mask/__init__.py,sha256=huHoBUcKNB
98
99
  model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py,sha256=APY8BsM9B7ZxVCH6n1xs9fSCTB_A9ou9gHrCQl1DOdI,5131
99
100
  model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py,sha256=4ohJrJHNzZk5uMnZEYkwLx2TDGzkh5kRhLGNVYNC6dc,5978
100
101
  model_compression_toolkit/core/common/quantization/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
102
+ model_compression_toolkit/core/common/quantization/bit_width_config.py,sha256=r6VQXgyJxX_AM1JTzv-sTcrvCTnktBfOkVP20RllNmk,4586
101
103
  model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py,sha256=yU-Cr6S4wOSkDk57iH2NVe-WII0whOhLryejkomCOt4,4940
102
- model_compression_toolkit/core/common/quantization/core_config.py,sha256=KYdyfSmjSL4ye24nKlC_c4_AxYb14qoqaeMnZj4-8kE,2257
104
+ model_compression_toolkit/core/common/quantization/core_config.py,sha256=f0uSuY9mX-vLX_1s2DemPARQlAXmLPKJKPtCArz3pZI,2670
103
105
  model_compression_toolkit/core/common/quantization/debug_config.py,sha256=8G8SpE_4rb8xBp8d6mMq8R_OnXJ_1oxB2g-Lxk9EJCM,1691
104
106
  model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py,sha256=fwF4VILaX-u3ZaFd81xjbJuhg8Ef-JX_KfMXW0TPV-I,7136
105
107
  model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=YycYN8_JMzvSR3pTVm5dT5x4zP3yBHn0Z9agnwrvOKI,26395
106
- model_compression_toolkit/core/common/quantization/quantization_config.py,sha256=du0VdsxfkOSYaP1EU9gHA5qbXpfQNZL0jXrjk1wBA0U,7106
108
+ model_compression_toolkit/core/common/quantization/quantization_config.py,sha256=7dDs9pq9dM9ADVeIi7wyMpW9ZbAI9GLujgxt7nxvnng,7105
107
109
  model_compression_toolkit/core/common/quantization/quantization_fn_selection.py,sha256=eyosbVdnCwed7oMQ19tqnh0VoyGZ_UAuD_UnNoXyBpo,2210
108
110
  model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py,sha256=MwIOBZ4BlZSTIOG75PDvlI3JmZ6t8YjPc1VP9Adei60,3847
109
111
  model_compression_toolkit/core/common/quantization/quantize_graph_weights.py,sha256=N005MSvx8UypVpa7XrxNrB2G732n2wHj3RmLyjTgd3I,2728
110
112
  model_compression_toolkit/core/common/quantization/quantize_node.py,sha256=cdzGNWfT4MRogIU8ehs0tr3lVjnzAI-jeoS9b4TwVBo,2854
111
- model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=9Y4eVDWCXFvCaXy2gbb-1880sp52M8wqH0M3KgAw8rM,12834
113
+ model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=0pZVO4wsNP815R9ZOd5ojC_OdNEeKkxYKdjggsqsZKg,17750
112
114
  model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py,sha256=eCDGwsWYLU6z7qbEVb4TozMW_nd5VEP_iCJ6PcvyEPw,1486
113
115
  model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py,sha256=Fd_gxr5js-mqEwucaRR1CQAZ1W_wna19L1gAPeOzxRQ,23610
114
116
  model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py,sha256=RL-PklAjGyC-26anSt8fU07a6pB_LBQFQy9o4e9giN0,8739
@@ -154,7 +156,7 @@ model_compression_toolkit/core/keras/default_framework_info.py,sha256=HcHplb7Icn
154
156
  model_compression_toolkit/core/keras/keras_implementation.py,sha256=hzNC6wz1gtL2EqmRCMCQYl8AqIDJPu6rdOX6nvPgjCM,30193
155
157
  model_compression_toolkit/core/keras/keras_model_validation.py,sha256=1wNV2clFdC9BzIELRLSO2uKf0xqjLqlkTJudwtCeaJk,1722
156
158
  model_compression_toolkit/core/keras/keras_node_prior_info.py,sha256=HUmzEXDQ8LGX7uOYSRiLZ2TNbYxLX9J9IeAa6QYlifg,3927
157
- model_compression_toolkit/core/keras/resource_utilization_data_facade.py,sha256=Xmk2ZL5CaYdb7iG62HdtZ1F64vap7ffnrsuR3e3G5hc,4851
159
+ model_compression_toolkit/core/keras/resource_utilization_data_facade.py,sha256=s56UIgiPipUQRNd2sd1xW6GFfYNMBmrocRCNtvpYLbY,4977
158
160
  model_compression_toolkit/core/keras/tf_tensor_numpy.py,sha256=AJMPD_cAwf7nzTlLMf_Y1kofXkh_xm8Ji7J6yDpbAKc,2691
159
161
  model_compression_toolkit/core/keras/back2framework/__init__.py,sha256=rhIiXg_nBgUZ-baE3M6SzCuQbcnq4iebY1jtJBvKHOM,808
160
162
  model_compression_toolkit/core/keras/back2framework/factory_model_builder.py,sha256=UIQgOOdexycrSKombTMJVvTthR7MlrCihoqM8Kg-rnE,2293
@@ -216,7 +218,7 @@ model_compression_toolkit/core/pytorch/default_framework_info.py,sha256=r1XyzUFv
216
218
  model_compression_toolkit/core/pytorch/pytorch_device_config.py,sha256=S25cuw10AW3SEN_fRAGRcG_I3wdvvQx1ehSJzPnn-UI,4404
217
219
  model_compression_toolkit/core/pytorch/pytorch_implementation.py,sha256=xmcJyU-rkIDX1a_X9LILzf2Ko2z_4I4xnlHkezKH-2w,27669
218
220
  model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py,sha256=2LDQ7qupglHQ7o1Am7LWdfYVacfQnl-aW2N6l9det1w,3264
219
- model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py,sha256=E6ifk1HdO60k4IRH2EFBzAYWtwUlrGqJoQ66nknpHoQ,4983
221
+ model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py,sha256=xpKj99OZKT9NT0vKIl_cOe8d89d2gef1gKoNT6PFElE,4989
220
222
  model_compression_toolkit/core/pytorch/utils.py,sha256=GE7T8q93I5C4As0iOias_dk9HpOvXM1N6---dJlyD60,3863
221
223
  model_compression_toolkit/core/pytorch/back2framework/__init__.py,sha256=H_WixgN0elVWf3exgGYsi58imPoYDj5eYPeh6x4yfug,813
222
224
  model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py,sha256=bwppTPRs6gL96nm7qPiKrNcBj4Krr0yEsOWjRF0aXmQ,2339
@@ -267,7 +269,7 @@ model_compression_toolkit/core/pytorch/reader/node_holders.py,sha256=7XNc7-l1MZP
267
269
  model_compression_toolkit/core/pytorch/reader/reader.py,sha256=GEJE0QX8XJFWbYCkbRBtzttZtmmuoACLx8gw9KyAQCE,6015
268
270
  model_compression_toolkit/core/pytorch/statistics_correction/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
269
271
  model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py,sha256=VgU24J3jf7QComHH7jonOXSkg6mO4TOch3uFkOthZvM,3261
270
- model_compression_toolkit/data_generation/__init__.py,sha256=S8pRUqlRvpM5AFHpFWs3zb0H0rtY5nUwmeCQij01oi4,1507
272
+ model_compression_toolkit/data_generation/__init__.py,sha256=9xLN7VE3lnYVjoroYfJ24dxK_-kGEbMmMVeS1PPkPEY,1513
271
273
  model_compression_toolkit/data_generation/common/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
272
274
  model_compression_toolkit/data_generation/common/constants.py,sha256=21e3ZX9WVYojexG2acTgklrBk8ZO9DjJnKpP4KHZC44,1018
273
275
  model_compression_toolkit/data_generation/common/data_generation.py,sha256=W8PeOcL1fBVB1WgXSCrEw-G7AWa6MNzjTqcFbmMhrGE,6687
@@ -280,7 +282,7 @@ model_compression_toolkit/data_generation/keras/__init__.py,sha256=lNJ29DYxaLUPD
280
282
  model_compression_toolkit/data_generation/keras/constants.py,sha256=sxhhGHC-INBs1nVXhyokbFi9ob4jPkSRviuc83JRsgQ,1152
281
283
  model_compression_toolkit/data_generation/keras/image_operations.py,sha256=OtJ5Yz8BZVOnGqyTHwlseRe4EmoLDYxz3bblGtw6HnY,6233
282
284
  model_compression_toolkit/data_generation/keras/image_pipeline.py,sha256=E-HVverorhq33xzteuwUPtOrGDIYoEEs4fZJgiqOAzQ,7043
283
- model_compression_toolkit/data_generation/keras/keras_data_generation.py,sha256=IMnmUn7fUsMcJ980FZWuX36iUYXAEYxdYk8oXwz-Xd8,21207
285
+ model_compression_toolkit/data_generation/keras/keras_data_generation.py,sha256=udPoA_bRt1IP5uPSZpGX7oFAxoJN_6zcUNc4yTh0HJk,21457
284
286
  model_compression_toolkit/data_generation/keras/model_info_exctractors.py,sha256=1E5xbn0P3py4EYjdpPD9JwGr4jlc3qe1ml1py0t40b8,8026
285
287
  model_compression_toolkit/data_generation/keras/optimization_utils.py,sha256=cHv2tl-_9_D14mWqzNYtKFY8q7sJfW_V__dpZqzRvIo,20546
286
288
  model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
@@ -296,7 +298,7 @@ model_compression_toolkit/data_generation/pytorch/image_operations.py,sha256=KUQ
296
298
  model_compression_toolkit/data_generation/pytorch/image_pipeline.py,sha256=dcQr-67u9-ggGuS39YAvR7z-Y0NOdJintcVQ5vy1bM8,7478
297
299
  model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py,sha256=y6vMed6lQQj67-BXZKrAcWUNTkH8YjiUhknOV4wSpRA,9399
298
300
  model_compression_toolkit/data_generation/pytorch/optimization_utils.py,sha256=vRMeUEdInPuJisiO-SKo_9miWZV90sz8GCg5MY0AqiU,18098
299
- model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py,sha256=OjdAG0uGdbN0ATMrkRskhEttkUgSXN8KCVd8JXKiwxk,21620
301
+ model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py,sha256=cUkFg-9LWwRKy11tlASJwp1FbDx6a7sZWpJNMz01hWA,21626
300
302
  model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
301
303
  model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py,sha256=dMc4zz9XfYfAT4Cxns57VgvGZWPAMfaGlWLFyCyl8TA,1968
302
304
  model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py,sha256=We0fVMQ4oU7Y0IWQ8fKy8KpqkIiLyKoQeF9XKAQ6TH0,3317
@@ -315,26 +317,26 @@ model_compression_toolkit/exporter/model_exporter/keras/export_serialization_for
315
317
  model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py,sha256=n_iXPwMomMVJTZH9M1WV7OJo11ppXOWkANu41fIlsjY,11702
316
318
  model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py,sha256=XoFGkVBikKh1BuxObrMLjfVLDIgy3X0rhmEl08CdJls,3727
317
319
  model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py,sha256=iTUXaia8XLJmmWdk4iiCah9sxeIyBJy42s9_EpuPhnw,8261
318
- model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py,sha256=Q2hVl0dpH7hcVSVD9Y5BihtEGlHWrLk-_Y2RNPbfQTg,5750
320
+ model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py,sha256=NzcX7rxLk__Kpuim_VXaOHS4tyiRtRBoERPE00GbdfA,5862
319
321
  model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py,sha256=qXXkv3X_wb7t622EOHwXIxfGLGaDqh0T0y4UxREi4Bo,1976
320
322
  model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py,sha256=uZ2RigbY9O2PJ0Il8wPpS_s7frgg9WUGd_SHeKGyl1A,699
321
323
  model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py,sha256=UPVkEUQCMZ4Lld6CRnEOPEmlfe5vcQZG0Q3FwRBodD4,4021
322
324
  model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py,sha256=bPevy6OBqng41PqytBR55e6cBEuyrUS0H8dWX4zgjQ4,967
323
- model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py,sha256=GFIhqo7g7QHASjOgg_Cd4yBcCGfsx8sgJuIpZqdy8hY,6686
325
+ model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py,sha256=647EM7a_at-bGB81ES_6qBjValMnRF5-1TP7Uz6kWQg,6692
324
326
  model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py,sha256=ksWV2A-Njo-wAxQ_Ye2sLIZXBWJ_WNyjT7-qFFwvV2o,2897
325
- model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py,sha256=KQg8Ci1UtxZzMrC7FfIOxsasIW8vipLIri_qDzazCxs,6230
327
+ model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py,sha256=8vYGKa58BkasvoHejYaPwubOJPcW0s-RY79_Kkw0Hy8,6236
326
328
  model_compression_toolkit/exporter/model_wrapper/__init__.py,sha256=7CF2zvpTrIEm8qnbuHnLZyTZkwBBxV24V8QA0oxGbh0,1187
327
329
  model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
328
330
  model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py,sha256=Bd3QhAR__YC9Xmobd5qHv9ofh_rPn_eTFV0sXizcBnY,2297
329
331
  model_compression_toolkit/exporter/model_wrapper/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
330
- model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py,sha256=llQJ8yY4buSMNue_UnEhGhT5lHpXU7iMqWwCrUt6L08,3816
332
+ model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py,sha256=SvSGpU0IEUcy6zwChtPm_9lOSNXf4bPN0pwqvVZToik,3929
331
333
  model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
332
- model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py,sha256=T2wgd7b86cpA5Ffq5eVCb8YlmnJ7vDxtmFeRkZtpLZc,5422
334
+ model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py,sha256=Ov28M0uJ_xZdvl9gk39psoqnBiv9i2irScKUNrEaGug,5536
333
335
  model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py,sha256=uL6tJWC4s2IWUy8GJVwtMWpwZZioRRztfKyPJHo14xI,9442
334
336
  model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
335
- model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py,sha256=uTQcnzvP44CgPO0twsUdiMmTBE_Td6ZdQtz5U0GZuPI,3464
337
+ model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py,sha256=vQUGbCi8_pGoN8DwQ0IblSeN6L9t6Cr0reZNuCbBpkM,3469
336
338
  model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
337
- model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py,sha256=YT9IVdpKaJbAW3msYRoQNIgqRSEVwSarRy6qlWCrBfk,5389
339
+ model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py,sha256=qlPYvgpIEfvwxjjkxUB-lwsGOs7GA5eWoY5xznq7tFg,5395
338
340
  model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py,sha256=4sN5z-6BXrTE5Dp2FX_jKO9ty5iZ2r4RM7XvXtDVLSI,9348
339
341
  model_compression_toolkit/gptq/__init__.py,sha256=YKg-tMj9D4Yd0xW9VRD5EN1J5JrmlRbNEF2fOSgodqA,1228
340
342
  model_compression_toolkit/gptq/runner.py,sha256=La12JTYjWyJW0YW4Al4TP1_Xi4JWBCEKw6FR_JQsxe0,5982
@@ -349,9 +351,9 @@ model_compression_toolkit/gptq/keras/gptq_keras_implementation.py,sha256=axBwnCS
349
351
  model_compression_toolkit/gptq/keras/gptq_loss.py,sha256=rbRkF15MYd6nq4G49kcjb_dPTa-XNq9cTkrb93mXawo,6241
350
352
  model_compression_toolkit/gptq/keras/gptq_training.py,sha256=NXTNsVrO9DTh0uvc8V7rFaM0fYg2OA18ZrYd-cKZ7Z4,19159
351
353
  model_compression_toolkit/gptq/keras/graph_info.py,sha256=MKIfrRTRH3zCuxCR1g9ZVIFyuSSr0e0sDybqh4LDM7E,4672
352
- model_compression_toolkit/gptq/keras/quantization_facade.py,sha256=K2G9RTBDs9yNCDKyPI6-MbIMduRBGNGepEi2UKpgGbw,15444
354
+ model_compression_toolkit/gptq/keras/quantization_facade.py,sha256=t4Jxtu8qyGbIftI5l2sb79Ydd85XM6GyDpkCqiotVF8,15711
353
355
  model_compression_toolkit/gptq/keras/quantizer/__init__.py,sha256=-DK1CDXvlsnEbki4lukZLpl6Xrbo91_jcqxXlG5Eg6Q,963
354
- model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py,sha256=2YU-x4-Q5f6hkUJf0tw6vcwdNwRMHdefrFjhhyHYsvA,4782
356
+ model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py,sha256=Rbl9urzkmACvVxICSEyJ02qFOBxWK0UQWtysFJzBVZw,4899
355
357
  model_compression_toolkit/gptq/keras/quantizer/quant_utils.py,sha256=Vt7Qb8i4JsE4sFtcjpfM4FTXTtfV1t6SwfoNH8a_Iaw,5055
356
358
  model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py,sha256=FmK5cPwgLAzrDjHTWf_vbRO5s70S7iwpnjnlqEQTuGE,4408
357
359
  model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py,sha256=guf7ygnLsZeWnTDz4yJdE2iTkd1oE0uQAZwKnGV3OAk,1957
@@ -366,9 +368,9 @@ model_compression_toolkit/gptq/pytorch/gptq_loss.py,sha256=kDuWw-6zh17wZpYWh4Xa9
366
368
  model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py,sha256=tECPTavxn8EEwgLaP2zvxdJH6Vg9jC0YOIMJ7857Sdc,1268
367
369
  model_compression_toolkit/gptq/pytorch/gptq_training.py,sha256=-daninmlPGfKsBNPB2C3gT6rK0G5YeyJsuOLA0JlfBU,16633
368
370
  model_compression_toolkit/gptq/pytorch/graph_info.py,sha256=4mVM-VvnBaA64ACVdOe6wTGHdMSa2UTLIUe7nACLcdo,4008
369
- model_compression_toolkit/gptq/pytorch/quantization_facade.py,sha256=gzg2QUzb3BO5rCtIONjBQr8TXb3qolFxHIkylSv8gMY,13896
371
+ model_compression_toolkit/gptq/pytorch/quantization_facade.py,sha256=TMus5LYJnTngLKot7coVax8gsIzPDYVU9m6orFPvWSY,13949
370
372
  model_compression_toolkit/gptq/pytorch/quantizer/__init__.py,sha256=ZHNHo1yzye44m9_ht4UUZfTpK01RiVR3Tr74-vtnOGI,968
371
- model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py,sha256=TCA1hAc7raPnrjl06sjFtVM4XUtLtuwAhCGX4U3KGZo,4137
373
+ model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py,sha256=fKg-PNOhGBiL-4eySS9Fyw0GkA76Pq8jT_HbJuJ8iZU,4143
372
374
  model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py,sha256=OocYYRqvl7rZ37QT0hTzfJnWGiNCPskg7cziTlR7TRk,3893
373
375
  model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py,sha256=uT9N_aBj965hvQfKd67fS1B0SXGnOLVcqa3wW4b2iZE,4566
374
376
  model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py,sha256=mDWZERLwtDzqWeJUwHMVyGdlS8wPLjJ3NvZiKBP6BNA,1959
@@ -380,22 +382,22 @@ model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py,sha256
380
382
  model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py,sha256=6uxq_w62jn8DDOt9T7VtA6jZ8jTAPcbTufKFOYpVUm4,8768
381
383
  model_compression_toolkit/pruning/__init__.py,sha256=lQMZS8G0pvR1LVi53nnJHNXgLNTan_MWMdwsVxhjrow,1106
382
384
  model_compression_toolkit/pruning/keras/__init__.py,sha256=3Lkr37Exk9u8811hw8hVqkGcbTQGcLjd3LLuLC3fa_E,698
383
- model_compression_toolkit/pruning/keras/pruning_facade.py,sha256=Vt9ipysniwQw4erWhwMO4oMCpIFUMKIGq67ugieMZd8,8612
385
+ model_compression_toolkit/pruning/keras/pruning_facade.py,sha256=0XmUqYMrCOXfNJac-k-baegBY7G0Tg3V2HOwGknUubI,8867
384
386
  model_compression_toolkit/pruning/pytorch/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
385
- model_compression_toolkit/pruning/pytorch/pruning_facade.py,sha256=cSuvHHCqgr7k9FdYOxFqe2njLcJ7IkzCrWSb26S0TK8,9398
387
+ model_compression_toolkit/pruning/pytorch/pruning_facade.py,sha256=oStXze__7XCm0RJ_N8iRGWhMKo4JQQYSNEUq_pOVUZI,9546
386
388
  model_compression_toolkit/ptq/__init__.py,sha256=Z_hkmTh7aLFei1DJKV0oNVUbrv_Q_0CTw-qD85Xf8UM,904
387
389
  model_compression_toolkit/ptq/runner.py,sha256=_c1dSjlPPpsx59Vbg1buhG9bZq__OORz1VlPkwjJzoc,2552
388
390
  model_compression_toolkit/ptq/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
389
- model_compression_toolkit/ptq/keras/quantization_facade.py,sha256=4sl28g4zw90hVfhbhboP8Vv1b3jySd5SPH7Euib4Ko0,10808
391
+ model_compression_toolkit/ptq/keras/quantization_facade.py,sha256=DAAJPd6pKLgiwoJT-_u2dvVOO4Ox6IgJgfiUbnNRBwQ,10968
390
392
  model_compression_toolkit/ptq/pytorch/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
391
- model_compression_toolkit/ptq/pytorch/quantization_facade.py,sha256=g3Fnk7MjZY9YSSJ5BcXgM0wvMT52IudDobu4eyM2uvc,9252
393
+ model_compression_toolkit/ptq/pytorch/quantization_facade.py,sha256=xHVTrm9Fyk_j4j8G1Pb97qacN_gn9cGYpsT1HXdTc1A,9305
392
394
  model_compression_toolkit/qat/__init__.py,sha256=kj2qsZh_Ca7PncsHKcaL5EVT2H8g4hYtvaQ3KFxOkwE,1143
393
395
  model_compression_toolkit/qat/common/__init__.py,sha256=6tLZ4R4pYP6QVztLVQC_jik2nES3l4uhML0qUxZrezk,829
394
396
  model_compression_toolkit/qat/common/qat_config.py,sha256=zoq0Vb74vCY7WlWD8JH_KPrHDoUHSvMc3gcO53u7L2U,3394
395
397
  model_compression_toolkit/qat/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
396
- model_compression_toolkit/qat/keras/quantization_facade.py,sha256=4yixHJ5j_RP0C6rTyPkMi-hoBmYKOBFunpUL5GnTdK4,17050
398
+ model_compression_toolkit/qat/keras/quantization_facade.py,sha256=i5uRwOWLxsAcLGFAdTGEe-nLaCdcDYz6ojfhByRtIJg,17270
397
399
  model_compression_toolkit/qat/keras/quantizer/__init__.py,sha256=zmYyCa25_KLCSUCGUDRslh3RCIjcRMxc_oXa54Aui-4,996
398
- model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py,sha256=0CB5M68zjPXv4yJZ-DzaYP9yYYWX_8J2gJLunxupOAM,2085
400
+ model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py,sha256=hoY3AETaLSRP7YfecZ32tyUUj-X_DHRWkV8nALYeRlY,2202
399
401
  model_compression_toolkit/qat/keras/quantizer/quant_utils.py,sha256=cBULOgWUodcBO1lHevZggdTevuDYI6tQceV86U2x6DA,2543
400
402
  model_compression_toolkit/qat/keras/quantizer/quantization_builder.py,sha256=HD0JIOiqnrpqj5qk6RyzuCsSGZsDUVohdCYSePmJBNQ,5872
401
403
  model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
@@ -405,9 +407,9 @@ model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py,sha256=cc
405
407
  model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py,sha256=I4KlaGv17k71IyjuSG9M0OlXlD5P0pfvKa6oCyRQ5FE,13517
406
408
  model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py,sha256=EED6LfqhX_OhDRJ9e4GwbpgNC9vq7hoXyJS2VPvG2qc,10789
407
409
  model_compression_toolkit/qat/pytorch/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
408
- model_compression_toolkit/qat/pytorch/quantization_facade.py,sha256=EJ4SPfyD30gyN_HithfITW1NWZ9pOwRvQ2cvDOJP5rQ,13399
410
+ model_compression_toolkit/qat/pytorch/quantization_facade.py,sha256=1eg0jMgFzRLYIFnG9GJnJ8U3W4IOM-4Z27s9Wq-JeOQ,13452
409
411
  model_compression_toolkit/qat/pytorch/quantizer/__init__.py,sha256=xYa4C8pr9cG1f3mQQcBXO_u3IdJN-zl7leZxuXDs86w,1003
410
- model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py,sha256=2I_WcINn63lpT3mN_skXNL4Rfbm955_wzhYHaiwH2q4,2207
412
+ model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py,sha256=WQSrtoWmRhyJnABrO6lwUtJruwLFZjBzLxbYh3banYI,2213
411
413
  model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py,sha256=sFWGu76PZ9dSRf3L0uZI6YwLIs0biBND1tl76I1piBQ,5721
412
414
  model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py,sha256=nO7IrDRo5b9Asf21WJacE4vf5voD3UzF_oGjBoGusD4,5335
413
415
  model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
@@ -436,50 +438,50 @@ model_compression_toolkit/target_platform_capabilities/target_platform/targetpla
436
438
  model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
437
439
  model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py,sha256=CWind2Kd91lzBTRAh1A9sHuNw17xXhMb3gV436RpK8c,3033
438
440
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
439
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py,sha256=Bfj4ek6-Aii_1FC7814cg-TNAG1nRAzQt7_3-jTlbXs,6028
440
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=F5RG4MnuAwKcNXbfVbPFLQu30-lNax-7knqu20B6udQ,1522
441
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py,sha256=yIWwvfTpiT0wRf7GwPgK9elKbGh46jxCrkcLVEjvesU,6081
442
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=eVIRpx5O0JQI7TSdw5JAWtwrG3MQ8-7hYThQvB9da5c,1528
441
443
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py,sha256=1mMOREEMoNHu_KTMGDp4crN61opKWX6aFn1DrDLvqcc,717
442
444
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=6mbv-fNVz559j5XCSX5e8aENUJACYuJzQcZBLPh12gU,11057
443
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=bPBWxopMUHFgiaJjaAfoompwShvfH2wHAouN56PQn0A,6484
445
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=Ffsr6g_E_3GzrmZ2PKl2D4bC0Czo0OtQPxlGHg1fdew,6490
444
446
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py,sha256=iCBfBmIRozoeGVPC3MjZpVyp-Nx4fC94_PKILC82K-Y,5731
445
447
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py,sha256=vFDyiMymNZSRCdTgAyWn4A-tZD3vzze_PTLBSF2OYe8,721
446
448
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=bx5lPJCsC5KsIg4noYycWTvbZwyPOepHDpkS6MLnX7E,10793
447
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py,sha256=bU74t-ZIkIptXuNaPI_YIC5w9TX6nDgJUpJwxHAPOSI,6493
449
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py,sha256=Ucan5bShJPGzxEI2r8aG1ArRS2cIdc5FF6KluRVDjtI,6499
448
450
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py,sha256=09fbd5vEnSQDWfCkMRtYZYy7kIYiWkXDcH_dT1cAmoY,5739
449
451
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py,sha256=NUuczImqUxzdfflqSdqkeAN8aCU6Tuiu6U0Fnj9Tzmw,721
450
452
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=ypbOiVR0ZVHw78g6z9YIoPH0BZut6mPzqgrl6EOpIDI,10543
451
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py,sha256=NkAGCZbSgXYeRAiJRzt19h2cxkrVQJaHu8-2jHZLOYg,6505
453
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py,sha256=XyMjVY9APnzqf1A-tzSy-OcNyhoIQsAQKxOiUCx5DFE,6511
452
454
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py,sha256=X853xDEF-3rcPoqxbrlYN28vvW3buSdM36c_eN_LKx8,5758
453
455
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py,sha256=vKWAoQ2KkhuptS5HZB50zHG6KY8wHpHTxPugw_nGCRo,717
454
456
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=NI-QPOmg7YqPCQg8X5P1doP_mFIZ2kXm8NxcvzAg7aA,11132
455
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py,sha256=U5lYwk6vJkRt5fo5v_1_h5POTwf9zfia1XQ_cDoOZAI,6587
457
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py,sha256=J2lkRjmb-BXXpaHZ_OZDS9bbDKGY-Q1Inx_1asXElwo,6593
456
458
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py,sha256=jAyTXhcChO124odtWC3bYKRH4ZyqLPkKQluJFOoyPIM,5726
457
459
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py,sha256=wUk4Xsg7jpxOWYjq2K3WUwLcI185p_sVPK-ttG0ydhA,721
458
460
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=T8o20d-Kerr91l4RR09MFbqoTWAXgqjVUyW-nE43zDg,10865
459
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py,sha256=6PVKQKGpJpM2B1qvmf6fID_-MACaSQZkaL_9J_fj2SQ,6595
461
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py,sha256=EgDKcY-ba9cBmQmh0-sv45GLm-HP6Cc4Rgf-KxZXTgM,6601
460
462
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py,sha256=dFQjzFlLDwoUqKNP1at1fS1N1WJadSSasRyzHl6vaB8,5733
461
463
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py,sha256=gAeebYCKyIXH9-Qwze7FwvTihudzAHk_Qsg94fQbkjQ,717
462
464
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=ChprWTT6hLoKBM7iTVhQWQZYAXM_XOMHaK8PC8GEu30,12018
463
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py,sha256=T5YMv-RzgYlzBaagnMO7WnKgbZ7PrOvm29Nn4vUhCHI,6587
465
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py,sha256=gMQ2qNm7T5FukkR_3DwVB1B41CMEW-KnrT-mPDMfCL8,6593
464
466
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py,sha256=HRo0W5l4IJesr_np4ZhXoMk_xfdiV53LgamquQIryJA,5800
465
467
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py,sha256=C2kwyDE1-rtukkbNSoKRv9q8Nt2GOCaBbl0BdOr3goA,721
466
468
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=YANvT38YiwO9jE3dC04wHDZBGJQ34hGTvKygHwwbI_U,11751
467
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py,sha256=LvqUkvpJKXBb9QETcHsmp9OGDwl9KWr457deag8GVuM,6595
469
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py,sha256=XM6qBLIvzsmdFf-AZq5WOlORK2GXC_X-gulReNxHb9E,6601
468
470
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py,sha256=nP05jqvh6uaj30a3W7zEkJfKtqfP0Nz5bobwRqbYrdM,5807
469
471
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py,sha256=tHTUvsaerSfbe22pU0kIDauPpFD7Pq5EmZytVIDkHz4,717
470
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=wPJGMYZ3RNcY42lOFgGNOOy7IsKVk1DfxoQmVYV1K_k,12829
471
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py,sha256=VSPTv6pt6OX8Zpjdit5GK9WattHpKAi4sVByBzTwsgw,6626
472
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=j4xvBfGdw-wEctv_mlZ_ottxc656uJH9uXRVrZBtNjk,5840
472
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=purcM7kLdh2HyJaxzROAoVSwz1Xlo6GPEe8JQKfMcuM,12911
473
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py,sha256=j57CrY5w4Bxpwx35yi3pYJtLyDgq3YOq_crTmSKarUY,6803
474
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=DVBWc_97B0s9PHHPYRoT5FFYs8tcGY7LC3GU1TqP88c,5986
473
475
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
474
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py,sha256=uDsmbGZSPuTXjWGmHhhvXhIC3LmUBwuIDJC_-fuDLfA,2753
475
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py,sha256=UUvUCcTots_sehdRnDfgkaE8WPQ7dPbeuhDF4Qy2nzw,1510
476
+ model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py,sha256=is00rNrDmmirYsyMtMkWz0DwOA92-x7hAJwpd6z1n2E,2806
477
+ model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py,sha256=CXC-HQolSDu7j8V-Xm-SWGCd74gXB3XnAkEhI_TVbIQ,1516
476
478
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
477
479
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=k1cYUXpVNAvuBVUinSZGu_wDZQvUGAp8e4x9xHBUAOE,8275
478
480
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py,sha256=h_hePXCggG2qktLuoNAOE1XNtc0qEwMyky7om1c8eC8,4483
479
481
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py,sha256=65WJPRCjliXEUL4AjZRxcyVS3y7KHTMDdkqy6D95kRw,3814
480
482
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
481
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py,sha256=xWA9GNqJrLZfGNAfWQtMQc64z1wUUvDIX3ozprxgwuQ,2749
482
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py,sha256=sK9PnyB2R9g0rqHr_9vyUFX7wSyrZe7x9yqYUlbaiqo,1505
483
+ model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py,sha256=_tf41m40fbax27y5A5JoGHw4p5NY-Kb3c8oxSTnRD_E,2802
484
+ model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py,sha256=LIUUQn42YU7oD2YfnEgP0gfqm7Hq9e0fD_8418aKzKI,1511
483
485
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
484
486
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=rxDkISGCxTB2RaVm59zJWxaJKxGgt4uceDgQ_9E_RmI,10033
485
487
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py,sha256=-4vNf2Q6c_rgaac19AFO8hG4ANaPfgNPf0kN44mL6TQ,6830
@@ -493,13 +495,13 @@ model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py,sha2
493
495
  model_compression_toolkit/trainable_infrastructure/common/quant_utils.py,sha256=zdiew1jwR7tUKm9XWlHnAPxIZsAdKqbzzC2vH02j5wA,1505
494
496
  model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py,sha256=My5Wz34jPOyh8z33OTpKnOobRB0cpO_Qgmtsd5lizHo,4791
495
497
  model_compression_toolkit/trainable_infrastructure/keras/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
496
- model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py,sha256=HYJxTS_z1xBL5GzA3vQzYWMSPZW29cR3hvhvoBi-BaE,3996
498
+ model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py,sha256=9_6ztYvXOBB7_PNf1Syi5zPTwLi5xfbYiKd_UYJ6hwo,4113
497
499
  model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py,sha256=txdWXdZoHazg-3MDPb9P-oXRM92LRn2G_8woEplwKaI,4360
498
- model_compression_toolkit/trainable_infrastructure/keras/load_model.py,sha256=-g-php71ezRZg1viD1MjMQ-GEyBua-PVd5XoSBvwzpc,3656
499
- model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py,sha256=ZdYRQaBtKbckwodcN2yfVx4Bc6LrcoUG-kDKc7mW12U,5468
500
+ model_compression_toolkit/trainable_infrastructure/keras/load_model.py,sha256=DJHibcLo-UCuHV6UPLeVd7dKmPfkGXEiLqCCqvQrISM,3769
501
+ model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py,sha256=aBtXxCAbnqn4PUa3wP55M0W5gKIQVGppLtfgFQ48T6s,5585
500
502
  model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py,sha256=MVwXNymmFRB2NXIBx4e2mdJ1RfoHxRPYRgjb1MQP5kY,1797
501
503
  model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
502
- model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py,sha256=MxylaVFPgN7zBiRBy6WV610EA4scLgRJFbMucKvvNDU,2896
504
+ model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py,sha256=hbE_KV3IrBl4XZPgat5gMM0j1Nkv6iwPXzYhonmXBAE,2902
503
505
  model_compression_toolkit/xquant/__init__.py,sha256=vdmr8sQw3jIBLF9ck7qrskPoXzDKtksHWlMOkU1JUnQ,1003
504
506
  model_compression_toolkit/xquant/common/__init__.py,sha256=ycb1Xt7PtixY2Uabr94JGSwBMcct66O8ZMVf3Qa3ud8,719
505
507
  model_compression_toolkit/xquant/common/constants.py,sha256=k-9LOEv1n_m8dV4chX0dNOTWyhhF7S00E0lkUxtO84E,1592
@@ -507,27 +509,27 @@ model_compression_toolkit/xquant/common/core_report_generator.py,sha256=GHnJJpK6
507
509
  model_compression_toolkit/xquant/common/dataset_utils.py,sha256=91uXF9UwxdY7BvUT0FNkFm8a69c8oK8Xdl-y7lbuJxk,1649
508
510
  model_compression_toolkit/xquant/common/framework_report_utils.py,sha256=YE49232ESflW6ZaUABF1pk_GGHBxa_F1X5oRN2Jogys,3734
509
511
  model_compression_toolkit/xquant/common/model_analyzer.py,sha256=T_8OetIQNqR0nkfSatWsEceXSPYpHfYjboBPIyR03-w,3953
510
- model_compression_toolkit/xquant/common/model_folding_utils.py,sha256=y5Vmc-hJ2rJhzWdM53HdY-PrT5LlspejTUNlXaCrq9Q,4720
512
+ model_compression_toolkit/xquant/common/model_folding_utils.py,sha256=7XMNmsngJgCPVjsuMNt6g4hzhkviB45qUmNRe9jQE7g,4815
511
513
  model_compression_toolkit/xquant/common/similarity_calculator.py,sha256=yCs_vlOThLzq7z-u2PkcEErLj7N7qCBPpRa6_5h34J8,10460
512
514
  model_compression_toolkit/xquant/common/similarity_functions.py,sha256=Atah1otdX9oUUch2JK-p-e291QHtkP_c4DfLG9WWo1Y,2935
513
515
  model_compression_toolkit/xquant/common/tensorboard_utils.py,sha256=85ABGQGKPZzctyZCHLazK0GxZ2ZUtQA3hZ_9fPiuMs0,6533
514
516
  model_compression_toolkit/xquant/common/xquant_config.py,sha256=Qt56cra2tU1PeHlLx_Cqztf5q-ED8MPelhb8coSumFw,1675
515
517
  model_compression_toolkit/xquant/keras/__init__.py,sha256=zbtceCVRsi-Gvl_pOmq5laqVqu55vAU1ie2FR2RK1Po,709
516
518
  model_compression_toolkit/xquant/keras/dataset_utils.py,sha256=quvVymhvpcPIOneCu5J6K_QAqBHOCIj8IxZxSN2fItA,2258
517
- model_compression_toolkit/xquant/keras/facade_xquant_report.py,sha256=uf5szQE2QY86It_3VsBrKxYN5fuQddCCpiUBa6u5gFo,3402
519
+ model_compression_toolkit/xquant/keras/facade_xquant_report.py,sha256=7pf3PUMAj7BCsbRc6Up6KOWk1g_9wVXwoGUbtrSgX7Y,3502
518
520
  model_compression_toolkit/xquant/keras/keras_report_utils.py,sha256=zUvhqehKKRHEkk6y8g1xQH47b6fTMuPy6stGEZ6mI24,3081
519
521
  model_compression_toolkit/xquant/keras/model_analyzer.py,sha256=WXi9BPI9_TzRWn50lM1i-6cwPPRW0p43Shg_xpHFclU,6521
520
522
  model_compression_toolkit/xquant/keras/similarity_functions.py,sha256=P2qMJAo94Sz_BCao-bnhEeewKtjeLLDDH2r9luDXJ04,2710
521
523
  model_compression_toolkit/xquant/keras/tensorboard_utils.py,sha256=635ZcK6_5jdpa7G6Tjq0hkveEYLJQyYRXCFCKL0EioM,9163
522
524
  model_compression_toolkit/xquant/pytorch/__init__.py,sha256=ycb1Xt7PtixY2Uabr94JGSwBMcct66O8ZMVf3Qa3ud8,719
523
525
  model_compression_toolkit/xquant/pytorch/dataset_utils.py,sha256=KFKiFkhIPpEr1ZH5jekZFrgs20VzzKVxSV9YMgH68yI,2894
524
- model_compression_toolkit/xquant/pytorch/facade_xquant_report.py,sha256=GGx0YTw_Z22x0IJ_WJmF5W6jWjf10fuy8bwDIaq7KC4,3173
526
+ model_compression_toolkit/xquant/pytorch/facade_xquant_report.py,sha256=sr_7TkmkRE0FhdJ7BwXGLFELmR4l_nK7IlTys6oYgoU,3179
525
527
  model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-ihJBLy5Cic-MQiUM_ZGV6SCXoNdscE,5549
526
528
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=bOc-hFL3gdoSM1Th_S2N_-9JJSlPGpZCTx_QLJHS6lg,3388
527
529
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
528
530
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=yjghWXxqOtT-QXoXBOuJyh45yUpFI0pKjdDegum2i68,9705
529
- mct_nightly-2.1.0.20240811.503.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
530
- mct_nightly-2.1.0.20240811.503.dist-info/METADATA,sha256=81BoRwx_nWGmZpRxLoEtAEKfBgJAIqvJ5ReNvEMB6Xg,19718
531
- mct_nightly-2.1.0.20240811.503.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
532
- mct_nightly-2.1.0.20240811.503.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
533
- mct_nightly-2.1.0.20240811.503.dist-info/RECORD,,
531
+ mct_nightly-2.1.0.20240813.442.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
532
+ mct_nightly-2.1.0.20240813.442.dist-info/METADATA,sha256=BuAU5P_gzUVjd4HUhpx1TKL9kRd878YqLWwXvz8pglY,19718
533
+ mct_nightly-2.1.0.20240813.442.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
534
+ mct_nightly-2.1.0.20240813.442.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
535
+ mct_nightly-2.1.0.20240813.442.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.1.0.20240811.000503"
30
+ __version__ = "2.1.0.20240813.000442"
@@ -13,17 +13,10 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
- import importlib
17
16
 
18
17
  # Supported frameworks in MCT:
19
18
  TENSORFLOW = 'tensorflow'
20
19
  PYTORCH = 'pytorch'
21
- FOUND_TF = importlib.util.find_spec(TENSORFLOW) is not None
22
- FOUND_TORCH = importlib.util.find_spec("torch") is not None
23
- FOUND_TORCHVISION = importlib.util.find_spec("torchvision") is not None
24
- FOUND_ONNX = importlib.util.find_spec("onnx") is not None
25
- FOUND_ONNXRUNTIME = importlib.util.find_spec("onnxruntime") is not None
26
- FOUND_SONY_CUSTOM_LAYERS = importlib.util.find_spec('sony_custom_layers') is not None
27
20
 
28
21
  # Metadata fields
29
22
  MCT_VERSION = 'mct_version'
@@ -19,6 +19,7 @@ from model_compression_toolkit.core.common.quantization.debug_config import Debu
19
19
  from model_compression_toolkit.core.common.quantization import quantization_config
20
20
  from model_compression_toolkit.core.common.mixed_precision import mixed_precision_quantization_config
21
21
  from model_compression_toolkit.core.common.quantization.quantization_config import QuantizationConfig, QuantizationErrorMethod, DEFAULTCONFIG
22
+ from model_compression_toolkit.core.common.quantization.bit_width_config import BitWidthConfig
22
23
  from model_compression_toolkit.core.common.quantization.core_config import CoreConfig
23
24
  from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import ResourceUtilization
24
25
  from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import MixedPrecisionQuantizationConfig
@@ -1,6 +1,6 @@
1
1
  from typing import Dict, Any, Tuple, Type, List, Union
2
2
 
3
- from model_compression_toolkit.constants import FOUND_TF
3
+ from model_compression_toolkit.verify_packages import FOUND_TF
4
4
  from model_compression_toolkit.core.common.graph.base_node import BaseNode
5
5
  import numpy as np
6
6
 
@@ -67,6 +67,7 @@ def compute_resource_utilization_data(in_model: Any,
67
67
  fw_info,
68
68
  fw_impl,
69
69
  tpc,
70
+ bit_width_config=core_config.bit_width_config,
70
71
  mixed_precision_enable=mixed_precision_enable)
71
72
 
72
73
  # Compute parameters sum
@@ -227,6 +228,7 @@ def requires_mixed_precision(in_model: Any,
227
228
  fw_info,
228
229
  fw_impl,
229
230
  tpc,
231
+ bit_width_config=core_config.bit_width_config,
230
232
  mixed_precision_enable=False)
231
233
  # Compute max weights memory in bytes
232
234
  weights_memory_by_layer_bytes, _ = compute_nodes_weights_params(transformed_graph, fw_info)
@@ -0,0 +1,91 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ from typing import List, Union, Dict
16
+
17
+ from model_compression_toolkit.core.common import Graph
18
+ from model_compression_toolkit.core.common.matchers.node_matcher import BaseNodeMatcher
19
+ from model_compression_toolkit.logger import Logger
20
+
21
+
22
+ class ManualBitWidthSelection:
23
+ """
24
+ Class to encapsulate the manual bit width selection configuration for a specific filter.
25
+
26
+ Attributes:
27
+ filter (BaseNodeMatcher): The filter used to select nodes for bit width manipulation.
28
+ bit_width (int): The bit width to be applied to the selected nodes.
29
+ """
30
+ def __init__(self,
31
+ filter: BaseNodeMatcher,
32
+ bit_width: int):
33
+ self.filter = filter
34
+ self.bit_width = bit_width
35
+
36
+
37
+ class BitWidthConfig:
38
+ """
39
+ Class to manage manual bit-width configurations.
40
+
41
+ Attributes:
42
+ manual_activation_bit_width_selection_list (List[ManualBitWidthSelection]): A list of ManualBitWidthSelection objects defining manual bit-width configurations.
43
+ """
44
+ def __init__(self,
45
+ manual_activation_bit_width_selection_list: List[ManualBitWidthSelection] = None):
46
+ self.manual_activation_bit_width_selection_list = [] if manual_activation_bit_width_selection_list is None else manual_activation_bit_width_selection_list
47
+
48
+ def __repr__(self):
49
+ # Used for debugging, thus no cover.
50
+ return str(self.__dict__) # pragma: no cover
51
+
52
+ def set_manual_activation_bit_width(self,
53
+ filters: Union[List[BaseNodeMatcher], BaseNodeMatcher],
54
+ bit_widths: Union[List[int], int]):
55
+ """
56
+ Add a manual bit-width selection to the configuration.
57
+
58
+ Args:
59
+ filter (Union[List[BaseNodeMatcher], BaseNodeMatcher]): The filters used to select nodes for bit-width manipulation.
60
+ bit_width (Union[List[int], int]): The bit widths to be applied to the selected nodes.
61
+ If a single value is given it will be applied to all the filters
62
+ """
63
+ filters = [filters] if not isinstance(filters, list) else filters
64
+ bit_widths = [bit_widths] if not isinstance(bit_widths, list) else bit_widths
65
+ if len(bit_widths) > 1 and len(bit_widths) != len(filters):
66
+ Logger.critical(f"Configuration Error: The number of provided bit_width values {len(bit_widths)} "
67
+ f"must match the number of filters {len(filters)}, or a single bit_width value "
68
+ f"should be provided for all filters.")
69
+ elif len(bit_widths) == 1 and len(filters) > 1:
70
+ bit_widths = [bit_widths[0] for f in filters]
71
+ for bit_width, filter in zip (bit_widths, filters):
72
+ self.manual_activation_bit_width_selection_list += [ManualBitWidthSelection(filter, bit_width)]
73
+
74
+ def get_nodes_to_manipulate_bit_widths(self, graph: Graph) -> Dict:
75
+ """
76
+ Retrieve nodes from the graph that need their bit-widths changed according to the manual bit-width selections.
77
+
78
+ Args:
79
+ graph (Graph): The graph containing the nodes to be filtered and manipulated.
80
+
81
+ Returns:
82
+ Dict: A dictionary mapping nodes to their new bit-widths.
83
+ """
84
+ nodes_to_change_bit_width = {}
85
+ for manual_bit_width_selection in self.manual_activation_bit_width_selection_list:
86
+ filtered_nodes = graph.filter(manual_bit_width_selection.filter)
87
+ if len(filtered_nodes) == 0:
88
+ Logger.critical(f"Node Filtering Error: No nodes found in the graph for filter {manual_bit_width_selection.filter.__dict__} "
89
+ f"to change their bit width to {manual_bit_width_selection.bit_width}.")
90
+ nodes_to_change_bit_width.update({n: manual_bit_width_selection.bit_width for n in filtered_nodes})
91
+ return nodes_to_change_bit_width
@@ -12,6 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
+ from model_compression_toolkit.core.common.quantization.bit_width_config import BitWidthConfig
15
16
  from model_compression_toolkit.core.common.quantization.quantization_config import QuantizationConfig
16
17
  from model_compression_toolkit.core.common.quantization.debug_config import DebugConfig
17
18
  from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import MixedPrecisionQuantizationConfig
@@ -22,9 +23,10 @@ class CoreConfig:
22
23
  A class to hold the configurations classes of the MCT-core.
23
24
  """
24
25
  def __init__(self,
25
- quantization_config: QuantizationConfig = QuantizationConfig(),
26
+ quantization_config: QuantizationConfig = None,
26
27
  mixed_precision_config: MixedPrecisionQuantizationConfig = None,
27
- debug_config: DebugConfig = DebugConfig()
28
+ bit_width_config: BitWidthConfig = None,
29
+ debug_config: DebugConfig = None
28
30
  ):
29
31
  """
30
32
 
@@ -32,10 +34,12 @@ class CoreConfig:
32
34
  quantization_config (QuantizationConfig): Config for quantization.
33
35
  mixed_precision_config (MixedPrecisionQuantizationConfig): Config for mixed precision quantization.
34
36
  If None, a default MixedPrecisionQuantizationConfig is used.
37
+ bit_width_config (BitWidthConfig): Config for manual bit-width selection.
35
38
  debug_config (DebugConfig): Config for debugging and editing the network quantization process.
36
39
  """
37
- self.quantization_config = quantization_config
38
- self.debug_config = debug_config
40
+ self.quantization_config = QuantizationConfig() if quantization_config is None else quantization_config
41
+ self.bit_width_config = BitWidthConfig() if bit_width_config is None else bit_width_config
42
+ self.debug_config = DebugConfig() if debug_config is None else debug_config
39
43
 
40
44
  if mixed_precision_config is None:
41
45
  self.mixed_precision_config = MixedPrecisionQuantizationConfig()
@@ -56,7 +56,7 @@ class QuantizationConfig:
56
56
  weights_second_moment_correction: bool = False,
57
57
  input_scaling: bool = False,
58
58
  softmax_shift: bool = False,
59
- shift_negative_activation_correction: bool = False,
59
+ shift_negative_activation_correction: bool = True,
60
60
  activation_channel_equalization: bool = False,
61
61
  z_threshold: float = math.inf,
62
62
  min_threshold: float = MIN_THRESHOLD,