mct-nightly 2.1.0.20240806.441__py3-none-any.whl → 2.1.0.20240807.445__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (21) hide show
  1. {mct_nightly-2.1.0.20240806.441.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/METADATA +2 -2
  2. {mct_nightly-2.1.0.20240806.441.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/RECORD +21 -21
  3. model_compression_toolkit/__init__.py +1 -1
  4. model_compression_toolkit/core/common/quantization/node_quantization_config.py +1 -1
  5. model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +3 -4
  6. model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +2 -1
  7. model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +18 -4
  8. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +5 -3
  9. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +5 -3
  10. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +5 -3
  11. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +5 -3
  12. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +5 -3
  13. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +5 -3
  14. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +5 -3
  15. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +6 -4
  16. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +3 -3
  17. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +5 -4
  18. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +5 -4
  19. {mct_nightly-2.1.0.20240806.441.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/LICENSE.md +0 -0
  20. {mct_nightly-2.1.0.20240806.441.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/WHEEL +0 -0
  21. {mct_nightly-2.1.0.20240806.441.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240806.441
3
+ Version: 2.1.0.20240807.445
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -23,7 +23,7 @@ Requires-Dist: PuLP
23
23
  Requires-Dist: matplotlib
24
24
  Requires-Dist: scipy
25
25
  Requires-Dist: protobuf
26
- Requires-Dist: mct-quantizers==1.5
26
+ Requires-Dist: mct-quantizers==1.5.2
27
27
 
28
28
  # Model Compression Toolkit (MCT)
29
29
 
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=rU1tOFhHM1lFkee6GDBMpxhWkM2W0nBvl3CSYpmhCl8,1573
1
+ model_compression_toolkit/__init__.py,sha256=5v5QMZsuecZeSiFdHfgNeoHe13N79F9En_BxUoMzw7E,1573
2
2
  model_compression_toolkit/constants.py,sha256=dexmfFCQ6VgoWuFBeM6MZykfgiVVdVxgkiSnpfjN8Dw,4005
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -101,7 +101,7 @@ model_compression_toolkit/core/common/quantization/candidate_node_quantization_c
101
101
  model_compression_toolkit/core/common/quantization/core_config.py,sha256=KYdyfSmjSL4ye24nKlC_c4_AxYb14qoqaeMnZj4-8kE,2257
102
102
  model_compression_toolkit/core/common/quantization/debug_config.py,sha256=HtkMmneN-EmAzgZK4Vp4M8Sqm5QKdrvNyyZMpaVqYzY,1482
103
103
  model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py,sha256=fwF4VILaX-u3ZaFd81xjbJuhg8Ef-JX_KfMXW0TPV-I,7136
104
- model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=Vk37nN4owenWJVZO-ycPQknwXUqp7v5HKKfdBhlDu1A,26393
104
+ model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=YycYN8_JMzvSR3pTVm5dT5x4zP3yBHn0Z9agnwrvOKI,26395
105
105
  model_compression_toolkit/core/common/quantization/quantization_config.py,sha256=du0VdsxfkOSYaP1EU9gHA5qbXpfQNZL0jXrjk1wBA0U,7106
106
106
  model_compression_toolkit/core/common/quantization/quantization_fn_selection.py,sha256=eyosbVdnCwed7oMQ19tqnh0VoyGZ_UAuD_UnNoXyBpo,2210
107
107
  model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py,sha256=MwIOBZ4BlZSTIOG75PDvlI3JmZ6t8YjPc1VP9Adei60,3847
@@ -113,7 +113,7 @@ model_compression_toolkit/core/common/quantization/quantization_params_generatio
113
113
  model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py,sha256=RL-PklAjGyC-26anSt8fU07a6pB_LBQFQy9o4e9giN0,8739
114
114
  model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py,sha256=9gnfJV89jpGwAx8ImJ5E9NjCv3lDtbyulP4OtgWb62M,1772
115
115
  model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py,sha256=y-mEST-0fVbyLiprQu7elOQawSc70TkVdpPsL7o1BmM,11197
116
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=I-2CT8KtQr6KSJ11D94nPma8tIedm5mP1jEqA0xjdao,4594
116
+ model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=pKmaeu7jrxqSI-SHmY8SFwPCRV6FrqiqJS9EAYQLbK4,4606
117
117
  model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py,sha256=oME8T6Slgl1SJNpXV4oY3UhuX0YmKYbcWDsLiCYq7oE,8651
118
118
  model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py,sha256=Nv_b3DECVjQnlrUet2kbuSvSKVnxcc-gf2zhFb2jSZk,43482
119
119
  model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py,sha256=UI-NW9K-yA6qxtk3Uin1wKmo59FNy0LUnySpxodgeEs,3796
@@ -418,10 +418,10 @@ model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py,sha2
418
418
  model_compression_toolkit/target_platform_capabilities/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
419
419
  model_compression_toolkit/target_platform_capabilities/constants.py,sha256=iJXGy5um7vhC84Me4ld6EHMhy7jPks0T9ItZX23si6s,1519
420
420
  model_compression_toolkit/target_platform_capabilities/immutable.py,sha256=YhROBiXEIB3TU-bAFrnL3qbAsb1yuWPBAQ_CLOJbYUU,1827
421
- model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=bD2xE101rRw7pGarGiBzYraeFF7FUnzyWtAVzwu5JT4,1724
421
+ model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=hKqORfqMfzGNFHvPnhypO_dTSjTdz1lr4Rkqkoa0vY4,1742
422
422
  model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py,sha256=1Glr4qKDJfdk5TwM5fzZ12XzgbpQFioDOxb475905gk,2013
423
423
  model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py,sha256=f3xBAI6ivPvEj4lw8cAvTKdIbs7CRdLAa_0LvhGw3Dg,3924
424
- model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py,sha256=w7VBBgvhiOcHjn_OcrWnER8LPa1uhIIYaMEROLFF1xA,16441
424
+ model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py,sha256=j70nFZ9U75p0R25D1QBKGov1ooizEZl3ikM-zHzmUkI,16742
425
425
  model_compression_toolkit/target_platform_capabilities/target_platform/operators.py,sha256=rRmrmPBY4rxCWVpEc6FxeOPUFh8MkfwgQsqD82U9a7w,3108
426
426
  model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py,sha256=mU4djXodftvTqJnFH6-9ISuY1uECjj1xi6SijJWpiRg,9477
427
427
  model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py,sha256=TDbNQwmF7Id-FoIQZlR7ZOcz_nRb4XKBmDihAgKT0u8,1392
@@ -438,49 +438,49 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__i
438
438
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py,sha256=KOSrFJAheWk360kU4UKQRVOaM0xIUaVdEdnU6b3t7Ww,5046
439
439
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=F5RG4MnuAwKcNXbfVbPFLQu30-lNax-7knqu20B6udQ,1522
440
440
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py,sha256=1mMOREEMoNHu_KTMGDp4crN61opKWX6aFn1DrDLvqcc,717
441
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=XF5djXt1kOz6pAKStNlcRfSESLZZAjKikF0Pdoq3MUY,10973
441
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=6mbv-fNVz559j5XCSX5e8aENUJACYuJzQcZBLPh12gU,11057
442
442
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=bPBWxopMUHFgiaJjaAfoompwShvfH2wHAouN56PQn0A,6484
443
443
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py,sha256=iCBfBmIRozoeGVPC3MjZpVyp-Nx4fC94_PKILC82K-Y,5731
444
444
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py,sha256=vFDyiMymNZSRCdTgAyWn4A-tZD3vzze_PTLBSF2OYe8,721
445
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=ptqH5KGE5XJ35rYXb7zWyfP9Zbfq-Qa35IKyq0E1hrw,10709
445
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=bx5lPJCsC5KsIg4noYycWTvbZwyPOepHDpkS6MLnX7E,10793
446
446
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py,sha256=bU74t-ZIkIptXuNaPI_YIC5w9TX6nDgJUpJwxHAPOSI,6493
447
447
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py,sha256=09fbd5vEnSQDWfCkMRtYZYy7kIYiWkXDcH_dT1cAmoY,5739
448
448
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py,sha256=NUuczImqUxzdfflqSdqkeAN8aCU6Tuiu6U0Fnj9Tzmw,721
449
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=zx39TEVxMwBYWa7CaUVi3kPxIIC_ID8pnamibkCQer4,10459
449
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=ypbOiVR0ZVHw78g6z9YIoPH0BZut6mPzqgrl6EOpIDI,10543
450
450
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py,sha256=NkAGCZbSgXYeRAiJRzt19h2cxkrVQJaHu8-2jHZLOYg,6505
451
451
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py,sha256=X853xDEF-3rcPoqxbrlYN28vvW3buSdM36c_eN_LKx8,5758
452
452
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py,sha256=vKWAoQ2KkhuptS5HZB50zHG6KY8wHpHTxPugw_nGCRo,717
453
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=0-_lLUqQAvl19ySSeDp40hLmD7GYuQmmnAHHoE_e1Us,11048
453
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=NI-QPOmg7YqPCQg8X5P1doP_mFIZ2kXm8NxcvzAg7aA,11132
454
454
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py,sha256=U5lYwk6vJkRt5fo5v_1_h5POTwf9zfia1XQ_cDoOZAI,6587
455
455
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py,sha256=jAyTXhcChO124odtWC3bYKRH4ZyqLPkKQluJFOoyPIM,5726
456
456
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py,sha256=wUk4Xsg7jpxOWYjq2K3WUwLcI185p_sVPK-ttG0ydhA,721
457
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=VTK3dC5-_Ps2AsoQwfAg9ATVTlz6yUvrXYX02jc7X0U,10781
457
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=T8o20d-Kerr91l4RR09MFbqoTWAXgqjVUyW-nE43zDg,10865
458
458
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py,sha256=6PVKQKGpJpM2B1qvmf6fID_-MACaSQZkaL_9J_fj2SQ,6595
459
459
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py,sha256=dFQjzFlLDwoUqKNP1at1fS1N1WJadSSasRyzHl6vaB8,5733
460
460
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py,sha256=gAeebYCKyIXH9-Qwze7FwvTihudzAHk_Qsg94fQbkjQ,717
461
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=ku_hfhd_VaqyC3yjQEiG6dJN-V6ADSBGF-YBpB5I54w,11934
461
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=ChprWTT6hLoKBM7iTVhQWQZYAXM_XOMHaK8PC8GEu30,12018
462
462
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py,sha256=T5YMv-RzgYlzBaagnMO7WnKgbZ7PrOvm29Nn4vUhCHI,6587
463
463
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py,sha256=HRo0W5l4IJesr_np4ZhXoMk_xfdiV53LgamquQIryJA,5800
464
464
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py,sha256=C2kwyDE1-rtukkbNSoKRv9q8Nt2GOCaBbl0BdOr3goA,721
465
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=8SHk1Ws9nLU9mDq6YV4pxDgeIH3n6NfKrRZk_Zv-JIk,11667
465
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=YANvT38YiwO9jE3dC04wHDZBGJQ34hGTvKygHwwbI_U,11751
466
466
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py,sha256=LvqUkvpJKXBb9QETcHsmp9OGDwl9KWr457deag8GVuM,6595
467
467
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py,sha256=nP05jqvh6uaj30a3W7zEkJfKtqfP0Nz5bobwRqbYrdM,5807
468
468
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py,sha256=tHTUvsaerSfbe22pU0kIDauPpFD7Pq5EmZytVIDkHz4,717
469
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=Wi_pLHFcY3p_HlooT7e0uLE1wUpp4LsbfI2DN445tu8,12731
469
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=wPJGMYZ3RNcY42lOFgGNOOy7IsKVk1DfxoQmVYV1K_k,12829
470
470
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py,sha256=VSPTv6pt6OX8Zpjdit5GK9WattHpKAi4sVByBzTwsgw,6626
471
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=HRU8CRkmzfsvzw9AwhiB33HyRnR5oXxw__hD2OqfmN8,5800
471
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=j4xvBfGdw-wEctv_mlZ_ottxc656uJH9uXRVrZBtNjk,5840
472
472
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
473
473
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py,sha256=7KVcuz0LfngRKOsfcvBysxGVb9fqgoAO6MVTl1CmB5c,2082
474
474
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py,sha256=UUvUCcTots_sehdRnDfgkaE8WPQ7dPbeuhDF4Qy2nzw,1510
475
475
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
476
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=czKvlJaa1tRllQSlzFBeyJF4u3ktwJG3LT0NUDK9yVg,8196
476
+ model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=k1cYUXpVNAvuBVUinSZGu_wDZQvUGAp8e4x9xHBUAOE,8275
477
477
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py,sha256=h_hePXCggG2qktLuoNAOE1XNtc0qEwMyky7om1c8eC8,4483
478
478
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py,sha256=65WJPRCjliXEUL4AjZRxcyVS3y7KHTMDdkqy6D95kRw,3814
479
479
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
480
480
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py,sha256=Go0RJ1KcKoynCUSwGhxA1nsYsMmZEFSrxiL59iyE6LA,2077
481
481
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py,sha256=sK9PnyB2R9g0rqHr_9vyUFX7wSyrZe7x9yqYUlbaiqo,1505
482
482
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
483
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=7Qn5PPAMm9-NNQq2SDJqXABW0dqOzjyGYB1LZFf4l3k,9954
483
+ model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=rxDkISGCxTB2RaVm59zJWxaJKxGgt4uceDgQ_9E_RmI,10033
484
484
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py,sha256=-4vNf2Q6c_rgaac19AFO8hG4ANaPfgNPf0kN44mL6TQ,6830
485
485
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py,sha256=YVJJvqGPBdkKnug99p9bjqtbfecDXZKIB2iWVCe7RUY,5960
486
486
  model_compression_toolkit/trainable_infrastructure/__init__.py,sha256=DwWh0lXiLNNzqHHNEy-Py6_5OtseNGJDGNV3SYm8rYQ,1224
@@ -525,8 +525,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
525
525
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=yrZNVRm2IRU7r7R-hjS2lOQ6wvEEvbeunvf2jKoWjXk,3277
526
526
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
527
527
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=eyMoXt5o5EnMr6d-rpCwQdX5mAiYiymvbgKv4tf7-a0,4576
528
- mct_nightly-2.1.0.20240806.441.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
529
- mct_nightly-2.1.0.20240806.441.dist-info/METADATA,sha256=TivqCm0Aw18xUklI-HatwukuJhscSfL01AnCjvUP9UQ,19716
530
- mct_nightly-2.1.0.20240806.441.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
531
- mct_nightly-2.1.0.20240806.441.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
532
- mct_nightly-2.1.0.20240806.441.dist-info/RECORD,,
528
+ mct_nightly-2.1.0.20240807.445.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
529
+ mct_nightly-2.1.0.20240807.445.dist-info/METADATA,sha256=bMkhTL4ymQUwdgNfwOSYLZK8Mt63mh1f5VaKqLqOMuQ,19718
530
+ mct_nightly-2.1.0.20240807.445.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
531
+ mct_nightly-2.1.0.20240807.445.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
532
+ mct_nightly-2.1.0.20240807.445.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.1.0.20240806.000441"
30
+ __version__ = "2.1.0.20240807.000445"
@@ -96,7 +96,7 @@ class NodeActivationQuantizationConfig(BaseNodeQuantizationConfig):
96
96
  self.activation_n_bits = op_cfg.activation_n_bits
97
97
  self.relu_bound_to_power_of_2 = qc.relu_bound_to_power_of_2
98
98
  self.enable_activation_quantization = op_cfg.enable_activation_quantization
99
- self.is_signed = op_cfg.is_signed
99
+ self.signedness = op_cfg.signedness
100
100
  self.activation_channel_equalization = qc.activation_channel_equalization
101
101
  self.input_scaling = qc.input_scaling
102
102
  self.min_threshold = qc.min_threshold
@@ -15,9 +15,8 @@
15
15
  import numpy as np
16
16
  from typing import Dict, Union
17
17
 
18
- from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
18
+ from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod, Signedness
19
19
  from model_compression_toolkit.core.common.collectors.statistics_collector import BaseStatsCollector
20
- from model_compression_toolkit.constants import SIGNED
21
20
  from model_compression_toolkit.core.common.quantization import quantization_params_generation
22
21
  from model_compression_toolkit.core.common.node_prior_info import NodePriorInfo
23
22
  from model_compression_toolkit.core.common.quantization.node_quantization_config import NodeActivationQuantizationConfig
@@ -49,8 +48,8 @@ def get_activations_qparams(activation_quant_cfg: NodeActivationQuantizationConf
49
48
  bins_counts)
50
49
  min_value, max_value = out_stats_container.get_min_max_values()
51
50
 
52
- if activation_quant_cfg.is_signed is not None:
53
- signed = activation_quant_cfg.is_signed
51
+ if activation_quant_cfg.signedness in [Signedness.SIGNED, Signedness.UNSIGNED]:
52
+ signed = activation_quant_cfg.signedness == Signedness.SIGNED
54
53
  elif nodes_prior_info.is_output_bounded():
55
54
  signed = min_value < 0
56
55
  else:
@@ -17,7 +17,8 @@ from model_compression_toolkit.target_platform_capabilities.target_platform.fusi
17
17
  from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework.attribute_filter import AttributeFilter
18
18
  from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import TargetPlatformCapabilities, OperationsSetToLayers, Smaller, SmallerEq, NotEq, Eq, GreaterEq, Greater, LayerFilterParams, OperationsToLayers, get_current_tpc
19
19
  from model_compression_toolkit.target_platform_capabilities.target_platform.target_platform_model import get_default_quantization_config_options, TargetPlatformModel
20
- from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import OpQuantizationConfig, QuantizationConfigOptions, AttributeQuantizationConfig
20
+ from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
21
+ OpQuantizationConfig, QuantizationConfigOptions, AttributeQuantizationConfig, Signedness
21
22
  from model_compression_toolkit.target_platform_capabilities.target_platform.operators import OperatorsSet, OperatorSetConcat
22
23
 
23
24
  from mct_quantizers import QuantizationMethod
@@ -15,12 +15,26 @@
15
15
 
16
16
  import copy
17
17
  from typing import List, Dict, Union, Any, Tuple
18
+ from enum import Enum
18
19
 
19
20
  from mct_quantizers import QuantizationMethod
20
21
  from model_compression_toolkit.constants import FLOAT_BITWIDTH
21
22
  from model_compression_toolkit.logger import Logger
22
23
 
23
24
 
25
+ class Signedness(Enum):
26
+ """
27
+ An enum for choosing the signedness of the quantization method:
28
+
29
+ AUTO - Signedness decided automatically by quantization.
30
+ SIGNED - Force signed quantization.
31
+ UNSIGNED - Force unsigned quantization.
32
+ """
33
+ AUTO = 0
34
+ SIGNED = 1
35
+ UNSIGNED = 2
36
+
37
+
24
38
  def clone_and_edit_object_params(obj: Any, **kwargs: Dict) -> Any:
25
39
  """
26
40
  Clones the given object and edit some of its parameters.
@@ -120,7 +134,7 @@ class OpQuantizationConfig:
120
134
  fixed_scale: float,
121
135
  fixed_zero_point: int,
122
136
  simd_size: int,
123
- is_signed: bool = None
137
+ signedness: Signedness
124
138
  ):
125
139
  """
126
140
 
@@ -134,8 +148,8 @@ class OpQuantizationConfig:
134
148
  quantization_preserving (bool): Whether quantization parameters should be the same for an operator's input and output.
135
149
  fixed_scale (float): Scale to use for an operator quantization parameters.
136
150
  fixed_zero_point (int): Zero-point to use for an operator quantization parameters.
137
- is_signed (bool): Force activation quantization signedness (None means don't force).
138
151
  simd_size (int): Per op integer representing the Single Instruction, Multiple Data (SIMD) width of an operator. It indicates the number of data elements that can be fetched and processed simultaneously in a single instruction.
152
+ signedness (bool): Set activation quantization signedness.
139
153
 
140
154
  """
141
155
 
@@ -154,7 +168,7 @@ class OpQuantizationConfig:
154
168
  self.quantization_preserving = quantization_preserving
155
169
  self.fixed_scale = fixed_scale
156
170
  self.fixed_zero_point = fixed_zero_point
157
- self.is_signed = is_signed
171
+ self.signedness = signedness
158
172
  self.simd_size = simd_size
159
173
 
160
174
  def get_info(self):
@@ -206,7 +220,7 @@ class OpQuantizationConfig:
206
220
  self.activation_n_bits == other.activation_n_bits and \
207
221
  self.supported_input_activation_n_bits == other.supported_input_activation_n_bits and \
208
222
  self.enable_activation_quantization == other.enable_activation_quantization and \
209
- self.is_signed == other.is_signed and \
223
+ self.signedness == other.signedness and \
210
224
  self.simd_size == other.simd_size
211
225
 
212
226
  @property
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
18
18
  from model_compression_toolkit.constants import FLOAT_BITWIDTH
19
19
  from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS
20
20
  from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
21
- TargetPlatformModel
21
+ TargetPlatformModel, Signedness
22
22
  from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
23
23
  AttributeQuantizationConfig
24
24
 
@@ -98,7 +98,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
98
98
  quantization_preserving=False,
99
99
  fixed_scale=None,
100
100
  fixed_zero_point=None,
101
- simd_size=32)
101
+ simd_size=32,
102
+ signedness=Signedness.AUTO)
102
103
 
103
104
  # We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
104
105
  linear_eight_bits = tp.OpQuantizationConfig(
@@ -111,7 +112,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
111
112
  quantization_preserving=False,
112
113
  fixed_scale=None,
113
114
  fixed_zero_point=None,
114
- simd_size=32)
115
+ simd_size=32,
116
+ signedness=Signedness.AUTO)
115
117
 
116
118
  # To quantize a model using mixed-precision, create
117
119
  # a list with more than one OpQuantizationConfig.
@@ -19,7 +19,7 @@ from model_compression_toolkit.constants import FLOAT_BITWIDTH
19
19
  from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS, \
20
20
  WEIGHTS_QUANTIZATION_METHOD
21
21
  from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
22
- TargetPlatformModel
22
+ TargetPlatformModel, Signedness
23
23
  from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
24
24
  AttributeQuantizationConfig
25
25
 
@@ -94,7 +94,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
94
94
  quantization_preserving=False,
95
95
  fixed_scale=None,
96
96
  fixed_zero_point=None,
97
- simd_size=32)
97
+ simd_size=32,
98
+ signedness=Signedness.AUTO)
98
99
 
99
100
  # We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
100
101
  linear_eight_bits = tp.OpQuantizationConfig(
@@ -107,7 +108,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
107
108
  quantization_preserving=False,
108
109
  fixed_scale=None,
109
110
  fixed_zero_point=None,
110
- simd_size=32)
111
+ simd_size=32,
112
+ signedness=Signedness.AUTO)
111
113
 
112
114
  # To quantize a model using mixed-precision, create
113
115
  # a list with more than one OpQuantizationConfig.
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
18
18
  from model_compression_toolkit.constants import FLOAT_BITWIDTH
19
19
  from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS
20
20
  from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
21
- TargetPlatformModel
21
+ TargetPlatformModel, Signedness
22
22
  from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
23
23
  AttributeQuantizationConfig
24
24
 
@@ -94,7 +94,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
94
94
  quantization_preserving=False,
95
95
  fixed_scale=None,
96
96
  fixed_zero_point=None,
97
- simd_size=32)
97
+ simd_size=32,
98
+ signedness=Signedness.AUTO)
98
99
 
99
100
  # We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
100
101
  linear_eight_bits = tp.OpQuantizationConfig(
@@ -107,7 +108,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
107
108
  quantization_preserving=False,
108
109
  fixed_scale=None,
109
110
  fixed_zero_point=None,
110
- simd_size=32)
111
+ simd_size=32,
112
+ signedness=Signedness.AUTO)
111
113
 
112
114
  # To quantize a model using mixed-precision, create
113
115
  # a list with more than one OpQuantizationConfig.
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
18
18
  from model_compression_toolkit.constants import FLOAT_BITWIDTH
19
19
  from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS
20
20
  from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
21
- TargetPlatformModel
21
+ TargetPlatformModel, Signedness
22
22
  from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
23
23
  AttributeQuantizationConfig
24
24
 
@@ -100,7 +100,8 @@ def get_op_quantization_configs() -> \
100
100
  quantization_preserving=False,
101
101
  fixed_scale=None,
102
102
  fixed_zero_point=None,
103
- simd_size=32)
103
+ simd_size=32,
104
+ signedness=Signedness.AUTO)
104
105
 
105
106
  # We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
106
107
  linear_eight_bits = tp.OpQuantizationConfig(
@@ -113,7 +114,8 @@ def get_op_quantization_configs() -> \
113
114
  quantization_preserving=False,
114
115
  fixed_scale=None,
115
116
  fixed_zero_point=None,
116
- simd_size=32)
117
+ simd_size=32,
118
+ signedness=Signedness.AUTO)
117
119
 
118
120
  # To quantize a model using mixed-precision, create
119
121
  # a list with more than one OpQuantizationConfig.
@@ -19,7 +19,7 @@ from model_compression_toolkit.constants import FLOAT_BITWIDTH
19
19
  from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS, \
20
20
  WEIGHTS_QUANTIZATION_METHOD
21
21
  from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
22
- TargetPlatformModel
22
+ TargetPlatformModel, Signedness
23
23
  from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
24
24
  AttributeQuantizationConfig
25
25
 
@@ -96,7 +96,8 @@ def get_op_quantization_configs() -> \
96
96
  quantization_preserving=False,
97
97
  fixed_scale=None,
98
98
  fixed_zero_point=None,
99
- simd_size=32)
99
+ simd_size=32,
100
+ signedness=Signedness.AUTO)
100
101
 
101
102
  # We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
102
103
  linear_eight_bits = tp.OpQuantizationConfig(
@@ -109,7 +110,8 @@ def get_op_quantization_configs() -> \
109
110
  quantization_preserving=False,
110
111
  fixed_scale=None,
111
112
  fixed_zero_point=None,
112
- simd_size=32)
113
+ simd_size=32,
114
+ signedness=Signedness.AUTO)
113
115
 
114
116
  # To quantize a model using mixed-precision, create
115
117
  # a list with more than one OpQuantizationConfig.
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
18
18
  from model_compression_toolkit.constants import FLOAT_BITWIDTH
19
19
  from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS
20
20
  from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
21
- TargetPlatformModel
21
+ TargetPlatformModel, Signedness
22
22
  from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
23
23
  AttributeQuantizationConfig
24
24
 
@@ -100,7 +100,8 @@ def get_op_quantization_configs() -> \
100
100
  quantization_preserving=False,
101
101
  fixed_scale=None,
102
102
  fixed_zero_point=None,
103
- simd_size=32)
103
+ simd_size=32,
104
+ signedness=Signedness.AUTO)
104
105
 
105
106
  # We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
106
107
  linear_eight_bits = tp.OpQuantizationConfig(
@@ -113,7 +114,8 @@ def get_op_quantization_configs() -> \
113
114
  quantization_preserving=False,
114
115
  fixed_scale=None,
115
116
  fixed_zero_point=None,
116
- simd_size=32)
117
+ simd_size=32,
118
+ signedness=Signedness.AUTO)
117
119
 
118
120
  # To quantize a model using mixed-precision, create
119
121
  # a list with more than one OpQuantizationConfig.
@@ -19,7 +19,7 @@ from model_compression_toolkit.constants import FLOAT_BITWIDTH
19
19
  from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS, \
20
20
  WEIGHTS_QUANTIZATION_METHOD
21
21
  from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
22
- TargetPlatformModel
22
+ TargetPlatformModel, Signedness
23
23
  from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
24
24
  AttributeQuantizationConfig
25
25
 
@@ -96,7 +96,8 @@ def get_op_quantization_configs() -> \
96
96
  quantization_preserving=False,
97
97
  fixed_scale=None,
98
98
  fixed_zero_point=None,
99
- simd_size=32)
99
+ simd_size=32,
100
+ signedness=Signedness.AUTO)
100
101
 
101
102
  # We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
102
103
  linear_eight_bits = tp.OpQuantizationConfig(
@@ -109,7 +110,8 @@ def get_op_quantization_configs() -> \
109
110
  quantization_preserving=False,
110
111
  fixed_scale=None,
111
112
  fixed_zero_point=None,
112
- simd_size=32)
113
+ simd_size=32,
114
+ signedness=Signedness.AUTO)
113
115
 
114
116
  # To quantize a model using mixed-precision, create
115
117
  # a list with more than one OpQuantizationConfig.
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
18
18
  from model_compression_toolkit.constants import FLOAT_BITWIDTH
19
19
  from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS
20
20
  from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
21
- TargetPlatformModel
21
+ TargetPlatformModel, Signedness
22
22
  from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
23
23
  AttributeQuantizationConfig
24
24
 
@@ -100,7 +100,8 @@ def get_op_quantization_configs() -> \
100
100
  quantization_preserving=False,
101
101
  fixed_scale=None,
102
102
  fixed_zero_point=None,
103
- simd_size=32)
103
+ simd_size=32,
104
+ signedness=Signedness.AUTO)
104
105
 
105
106
  # We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
106
107
  linear_eight_bits = tp.OpQuantizationConfig(
@@ -113,7 +114,8 @@ def get_op_quantization_configs() -> \
113
114
  quantization_preserving=False,
114
115
  fixed_scale=None,
115
116
  fixed_zero_point=None,
116
- simd_size=32)
117
+ simd_size=32,
118
+ signedness=Signedness.AUTO)
117
119
 
118
120
  # To quantize a model using mixed-precision, create
119
121
  # a list with more than one OpQuantizationConfig.
@@ -170,7 +172,7 @@ def generate_tp_model(default_config: OpQuantizationConfig,
170
172
  const_config_input16 = const_config.clone_and_edit(
171
173
  supported_input_activation_n_bits=(8, 16))
172
174
  const_config_input16_output16 = const_config_input16.clone_and_edit(
173
- activation_n_bits=16, is_signed=True)
175
+ activation_n_bits=16, signedness=Signedness.SIGNED)
174
176
  const_configuration_options_inout16 = tp.QuantizationConfigOptions([const_config_input16_output16,
175
177
  const_config_input16],
176
178
  base_config=const_config_input16)
@@ -17,7 +17,7 @@ import operator
17
17
 
18
18
  import torch
19
19
  from torch import add, sub, mul, div, flatten, reshape, split, unsqueeze, dropout, sigmoid, tanh, chunk, unbind, topk, \
20
- gather, equal, transpose, permute, argmax, squeeze
20
+ gather, equal, transpose, permute, argmax, squeeze, multiply, subtract
21
21
  from torch.nn import Conv2d, Linear, ConvTranspose2d, MaxPool2d
22
22
  from torch.nn import Dropout, Flatten, Hardtanh, Identity
23
23
  from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, LeakyReLU
@@ -101,8 +101,8 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
101
101
  tp.LayerFilterParams(hardtanh, min_val=0)])
102
102
 
103
103
  tp.OperationsSetToLayers("Add", [operator.add, add])
104
- tp.OperationsSetToLayers("Sub", [operator.sub, sub])
105
- tp.OperationsSetToLayers("Mul", [operator.mul, mul])
104
+ tp.OperationsSetToLayers("Sub", [operator.sub, sub, subtract])
105
+ tp.OperationsSetToLayers("Mul", [operator.mul, mul, multiply])
106
106
  tp.OperationsSetToLayers("Div", [operator.truediv, div])
107
107
  tp.OperationsSetToLayers("PReLU", [PReLU, prelu])
108
108
  tp.OperationsSetToLayers("Swish", [SiLU, silu, Hardswish, hardswish])
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
18
18
  from model_compression_toolkit.constants import FLOAT_BITWIDTH
19
19
  from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR
20
20
  from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
21
- TargetPlatformModel
21
+ TargetPlatformModel, Signedness
22
22
  from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
23
23
  AttributeQuantizationConfig
24
24
 
@@ -95,7 +95,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
95
95
  quantization_preserving=False,
96
96
  fixed_scale=None,
97
97
  fixed_zero_point=None,
98
- simd_size=32)
98
+ simd_size=32,
99
+ signedness=Signedness.AUTO)
99
100
 
100
101
  # We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
101
102
  linear_eight_bits = tp.OpQuantizationConfig(
@@ -108,8 +109,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
108
109
  quantization_preserving=False,
109
110
  fixed_scale=None,
110
111
  fixed_zero_point=None,
111
- simd_size=None
112
- )
112
+ simd_size=None,
113
+ signedness=Signedness.AUTO)
113
114
 
114
115
  mixed_precision_cfg_list = [] # No mixed precision
115
116
 
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
18
18
  from model_compression_toolkit.constants import FLOAT_BITWIDTH
19
19
  from model_compression_toolkit.target_platform_capabilities.constants import BIAS_ATTR, KERNEL_ATTR
20
20
  from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
21
- TargetPlatformModel
21
+ TargetPlatformModel, Signedness
22
22
  from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
23
23
  QuantizationMethod, AttributeQuantizationConfig
24
24
 
@@ -93,7 +93,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
93
93
  quantization_preserving=False,
94
94
  fixed_scale=None,
95
95
  fixed_zero_point=None,
96
- simd_size=32)
96
+ simd_size=32,
97
+ signedness=Signedness.AUTO)
97
98
 
98
99
  # We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
99
100
  linear_eight_bits = tp.OpQuantizationConfig(
@@ -106,8 +107,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
106
107
  quantization_preserving=False,
107
108
  fixed_scale=None,
108
109
  fixed_zero_point=None,
109
- simd_size=None
110
- )
110
+ simd_size=None,
111
+ signedness=Signedness.AUTO)
111
112
 
112
113
  mixed_precision_cfg_list = [] # No mixed precision
113
114