mct-nightly 2.1.0.20240805.458__py3-none-any.whl → 2.1.0.20240807.445__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.1.0.20240805.458.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/METADATA +2 -2
- {mct_nightly-2.1.0.20240805.458.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/RECORD +21 -21
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/core/common/quantization/node_quantization_config.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +3 -4
- model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +2 -1
- model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +18 -4
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +5 -3
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +5 -3
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +5 -3
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +5 -3
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +5 -3
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +5 -3
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +5 -3
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +6 -4
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +3 -3
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +5 -4
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +5 -4
- {mct_nightly-2.1.0.20240805.458.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.1.0.20240805.458.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/WHEEL +0 -0
- {mct_nightly-2.1.0.20240805.458.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/top_level.txt +0 -0
{mct_nightly-2.1.0.20240805.458.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.1.0.
|
3
|
+
Version: 2.1.0.20240807.445
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Home-page: UNKNOWN
|
6
6
|
License: UNKNOWN
|
@@ -23,7 +23,7 @@ Requires-Dist: PuLP
|
|
23
23
|
Requires-Dist: matplotlib
|
24
24
|
Requires-Dist: scipy
|
25
25
|
Requires-Dist: protobuf
|
26
|
-
Requires-Dist: mct-quantizers==1.5
|
26
|
+
Requires-Dist: mct-quantizers==1.5.2
|
27
27
|
|
28
28
|
# Model Compression Toolkit (MCT)
|
29
29
|
|
{mct_nightly-2.1.0.20240805.458.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/RECORD
RENAMED
@@ -1,4 +1,4 @@
|
|
1
|
-
model_compression_toolkit/__init__.py,sha256=
|
1
|
+
model_compression_toolkit/__init__.py,sha256=5v5QMZsuecZeSiFdHfgNeoHe13N79F9En_BxUoMzw7E,1573
|
2
2
|
model_compression_toolkit/constants.py,sha256=dexmfFCQ6VgoWuFBeM6MZykfgiVVdVxgkiSnpfjN8Dw,4005
|
3
3
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
4
4
|
model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
|
@@ -101,7 +101,7 @@ model_compression_toolkit/core/common/quantization/candidate_node_quantization_c
|
|
101
101
|
model_compression_toolkit/core/common/quantization/core_config.py,sha256=KYdyfSmjSL4ye24nKlC_c4_AxYb14qoqaeMnZj4-8kE,2257
|
102
102
|
model_compression_toolkit/core/common/quantization/debug_config.py,sha256=HtkMmneN-EmAzgZK4Vp4M8Sqm5QKdrvNyyZMpaVqYzY,1482
|
103
103
|
model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py,sha256=fwF4VILaX-u3ZaFd81xjbJuhg8Ef-JX_KfMXW0TPV-I,7136
|
104
|
-
model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=
|
104
|
+
model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=YycYN8_JMzvSR3pTVm5dT5x4zP3yBHn0Z9agnwrvOKI,26395
|
105
105
|
model_compression_toolkit/core/common/quantization/quantization_config.py,sha256=du0VdsxfkOSYaP1EU9gHA5qbXpfQNZL0jXrjk1wBA0U,7106
|
106
106
|
model_compression_toolkit/core/common/quantization/quantization_fn_selection.py,sha256=eyosbVdnCwed7oMQ19tqnh0VoyGZ_UAuD_UnNoXyBpo,2210
|
107
107
|
model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py,sha256=MwIOBZ4BlZSTIOG75PDvlI3JmZ6t8YjPc1VP9Adei60,3847
|
@@ -113,7 +113,7 @@ model_compression_toolkit/core/common/quantization/quantization_params_generatio
|
|
113
113
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py,sha256=RL-PklAjGyC-26anSt8fU07a6pB_LBQFQy9o4e9giN0,8739
|
114
114
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py,sha256=9gnfJV89jpGwAx8ImJ5E9NjCv3lDtbyulP4OtgWb62M,1772
|
115
115
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py,sha256=y-mEST-0fVbyLiprQu7elOQawSc70TkVdpPsL7o1BmM,11197
|
116
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=
|
116
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=pKmaeu7jrxqSI-SHmY8SFwPCRV6FrqiqJS9EAYQLbK4,4606
|
117
117
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py,sha256=oME8T6Slgl1SJNpXV4oY3UhuX0YmKYbcWDsLiCYq7oE,8651
|
118
118
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py,sha256=Nv_b3DECVjQnlrUet2kbuSvSKVnxcc-gf2zhFb2jSZk,43482
|
119
119
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py,sha256=UI-NW9K-yA6qxtk3Uin1wKmo59FNy0LUnySpxodgeEs,3796
|
@@ -418,10 +418,10 @@ model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py,sha2
|
|
418
418
|
model_compression_toolkit/target_platform_capabilities/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
419
419
|
model_compression_toolkit/target_platform_capabilities/constants.py,sha256=iJXGy5um7vhC84Me4ld6EHMhy7jPks0T9ItZX23si6s,1519
|
420
420
|
model_compression_toolkit/target_platform_capabilities/immutable.py,sha256=YhROBiXEIB3TU-bAFrnL3qbAsb1yuWPBAQ_CLOJbYUU,1827
|
421
|
-
model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=
|
421
|
+
model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=hKqORfqMfzGNFHvPnhypO_dTSjTdz1lr4Rkqkoa0vY4,1742
|
422
422
|
model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py,sha256=1Glr4qKDJfdk5TwM5fzZ12XzgbpQFioDOxb475905gk,2013
|
423
423
|
model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py,sha256=f3xBAI6ivPvEj4lw8cAvTKdIbs7CRdLAa_0LvhGw3Dg,3924
|
424
|
-
model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py,sha256=
|
424
|
+
model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py,sha256=j70nFZ9U75p0R25D1QBKGov1ooizEZl3ikM-zHzmUkI,16742
|
425
425
|
model_compression_toolkit/target_platform_capabilities/target_platform/operators.py,sha256=rRmrmPBY4rxCWVpEc6FxeOPUFh8MkfwgQsqD82U9a7w,3108
|
426
426
|
model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py,sha256=mU4djXodftvTqJnFH6-9ISuY1uECjj1xi6SijJWpiRg,9477
|
427
427
|
model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py,sha256=TDbNQwmF7Id-FoIQZlR7ZOcz_nRb4XKBmDihAgKT0u8,1392
|
@@ -438,49 +438,49 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__i
|
|
438
438
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py,sha256=KOSrFJAheWk360kU4UKQRVOaM0xIUaVdEdnU6b3t7Ww,5046
|
439
439
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=F5RG4MnuAwKcNXbfVbPFLQu30-lNax-7knqu20B6udQ,1522
|
440
440
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py,sha256=1mMOREEMoNHu_KTMGDp4crN61opKWX6aFn1DrDLvqcc,717
|
441
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=
|
441
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=6mbv-fNVz559j5XCSX5e8aENUJACYuJzQcZBLPh12gU,11057
|
442
442
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=bPBWxopMUHFgiaJjaAfoompwShvfH2wHAouN56PQn0A,6484
|
443
443
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py,sha256=iCBfBmIRozoeGVPC3MjZpVyp-Nx4fC94_PKILC82K-Y,5731
|
444
444
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py,sha256=vFDyiMymNZSRCdTgAyWn4A-tZD3vzze_PTLBSF2OYe8,721
|
445
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=
|
445
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=bx5lPJCsC5KsIg4noYycWTvbZwyPOepHDpkS6MLnX7E,10793
|
446
446
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py,sha256=bU74t-ZIkIptXuNaPI_YIC5w9TX6nDgJUpJwxHAPOSI,6493
|
447
447
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py,sha256=09fbd5vEnSQDWfCkMRtYZYy7kIYiWkXDcH_dT1cAmoY,5739
|
448
448
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py,sha256=NUuczImqUxzdfflqSdqkeAN8aCU6Tuiu6U0Fnj9Tzmw,721
|
449
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=
|
449
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=ypbOiVR0ZVHw78g6z9YIoPH0BZut6mPzqgrl6EOpIDI,10543
|
450
450
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py,sha256=NkAGCZbSgXYeRAiJRzt19h2cxkrVQJaHu8-2jHZLOYg,6505
|
451
451
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py,sha256=X853xDEF-3rcPoqxbrlYN28vvW3buSdM36c_eN_LKx8,5758
|
452
452
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py,sha256=vKWAoQ2KkhuptS5HZB50zHG6KY8wHpHTxPugw_nGCRo,717
|
453
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=
|
453
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=NI-QPOmg7YqPCQg8X5P1doP_mFIZ2kXm8NxcvzAg7aA,11132
|
454
454
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py,sha256=U5lYwk6vJkRt5fo5v_1_h5POTwf9zfia1XQ_cDoOZAI,6587
|
455
455
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py,sha256=jAyTXhcChO124odtWC3bYKRH4ZyqLPkKQluJFOoyPIM,5726
|
456
456
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py,sha256=wUk4Xsg7jpxOWYjq2K3WUwLcI185p_sVPK-ttG0ydhA,721
|
457
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=
|
457
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=T8o20d-Kerr91l4RR09MFbqoTWAXgqjVUyW-nE43zDg,10865
|
458
458
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py,sha256=6PVKQKGpJpM2B1qvmf6fID_-MACaSQZkaL_9J_fj2SQ,6595
|
459
459
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py,sha256=dFQjzFlLDwoUqKNP1at1fS1N1WJadSSasRyzHl6vaB8,5733
|
460
460
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py,sha256=gAeebYCKyIXH9-Qwze7FwvTihudzAHk_Qsg94fQbkjQ,717
|
461
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=
|
461
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=ChprWTT6hLoKBM7iTVhQWQZYAXM_XOMHaK8PC8GEu30,12018
|
462
462
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py,sha256=T5YMv-RzgYlzBaagnMO7WnKgbZ7PrOvm29Nn4vUhCHI,6587
|
463
463
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py,sha256=HRo0W5l4IJesr_np4ZhXoMk_xfdiV53LgamquQIryJA,5800
|
464
464
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py,sha256=C2kwyDE1-rtukkbNSoKRv9q8Nt2GOCaBbl0BdOr3goA,721
|
465
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=
|
465
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=YANvT38YiwO9jE3dC04wHDZBGJQ34hGTvKygHwwbI_U,11751
|
466
466
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py,sha256=LvqUkvpJKXBb9QETcHsmp9OGDwl9KWr457deag8GVuM,6595
|
467
467
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py,sha256=nP05jqvh6uaj30a3W7zEkJfKtqfP0Nz5bobwRqbYrdM,5807
|
468
468
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py,sha256=tHTUvsaerSfbe22pU0kIDauPpFD7Pq5EmZytVIDkHz4,717
|
469
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=
|
469
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=wPJGMYZ3RNcY42lOFgGNOOy7IsKVk1DfxoQmVYV1K_k,12829
|
470
470
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py,sha256=VSPTv6pt6OX8Zpjdit5GK9WattHpKAi4sVByBzTwsgw,6626
|
471
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=
|
471
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=j4xvBfGdw-wEctv_mlZ_ottxc656uJH9uXRVrZBtNjk,5840
|
472
472
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
473
473
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py,sha256=7KVcuz0LfngRKOsfcvBysxGVb9fqgoAO6MVTl1CmB5c,2082
|
474
474
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py,sha256=UUvUCcTots_sehdRnDfgkaE8WPQ7dPbeuhDF4Qy2nzw,1510
|
475
475
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
|
476
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=
|
476
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=k1cYUXpVNAvuBVUinSZGu_wDZQvUGAp8e4x9xHBUAOE,8275
|
477
477
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py,sha256=h_hePXCggG2qktLuoNAOE1XNtc0qEwMyky7om1c8eC8,4483
|
478
478
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py,sha256=65WJPRCjliXEUL4AjZRxcyVS3y7KHTMDdkqy6D95kRw,3814
|
479
479
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
480
480
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py,sha256=Go0RJ1KcKoynCUSwGhxA1nsYsMmZEFSrxiL59iyE6LA,2077
|
481
481
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py,sha256=sK9PnyB2R9g0rqHr_9vyUFX7wSyrZe7x9yqYUlbaiqo,1505
|
482
482
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
|
483
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=
|
483
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=rxDkISGCxTB2RaVm59zJWxaJKxGgt4uceDgQ_9E_RmI,10033
|
484
484
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py,sha256=-4vNf2Q6c_rgaac19AFO8hG4ANaPfgNPf0kN44mL6TQ,6830
|
485
485
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py,sha256=YVJJvqGPBdkKnug99p9bjqtbfecDXZKIB2iWVCe7RUY,5960
|
486
486
|
model_compression_toolkit/trainable_infrastructure/__init__.py,sha256=DwWh0lXiLNNzqHHNEy-Py6_5OtseNGJDGNV3SYm8rYQ,1224
|
@@ -525,8 +525,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
525
525
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=yrZNVRm2IRU7r7R-hjS2lOQ6wvEEvbeunvf2jKoWjXk,3277
|
526
526
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
527
527
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=eyMoXt5o5EnMr6d-rpCwQdX5mAiYiymvbgKv4tf7-a0,4576
|
528
|
-
mct_nightly-2.1.0.
|
529
|
-
mct_nightly-2.1.0.
|
530
|
-
mct_nightly-2.1.0.
|
531
|
-
mct_nightly-2.1.0.
|
532
|
-
mct_nightly-2.1.0.
|
528
|
+
mct_nightly-2.1.0.20240807.445.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
529
|
+
mct_nightly-2.1.0.20240807.445.dist-info/METADATA,sha256=bMkhTL4ymQUwdgNfwOSYLZK8Mt63mh1f5VaKqLqOMuQ,19718
|
530
|
+
mct_nightly-2.1.0.20240807.445.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
531
|
+
mct_nightly-2.1.0.20240807.445.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
532
|
+
mct_nightly-2.1.0.20240807.445.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.1.0.
|
30
|
+
__version__ = "2.1.0.20240807.000445"
|
@@ -96,7 +96,7 @@ class NodeActivationQuantizationConfig(BaseNodeQuantizationConfig):
|
|
96
96
|
self.activation_n_bits = op_cfg.activation_n_bits
|
97
97
|
self.relu_bound_to_power_of_2 = qc.relu_bound_to_power_of_2
|
98
98
|
self.enable_activation_quantization = op_cfg.enable_activation_quantization
|
99
|
-
self.
|
99
|
+
self.signedness = op_cfg.signedness
|
100
100
|
self.activation_channel_equalization = qc.activation_channel_equalization
|
101
101
|
self.input_scaling = qc.input_scaling
|
102
102
|
self.min_threshold = qc.min_threshold
|
@@ -15,9 +15,8 @@
|
|
15
15
|
import numpy as np
|
16
16
|
from typing import Dict, Union
|
17
17
|
|
18
|
-
from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
|
18
|
+
from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod, Signedness
|
19
19
|
from model_compression_toolkit.core.common.collectors.statistics_collector import BaseStatsCollector
|
20
|
-
from model_compression_toolkit.constants import SIGNED
|
21
20
|
from model_compression_toolkit.core.common.quantization import quantization_params_generation
|
22
21
|
from model_compression_toolkit.core.common.node_prior_info import NodePriorInfo
|
23
22
|
from model_compression_toolkit.core.common.quantization.node_quantization_config import NodeActivationQuantizationConfig
|
@@ -49,8 +48,8 @@ def get_activations_qparams(activation_quant_cfg: NodeActivationQuantizationConf
|
|
49
48
|
bins_counts)
|
50
49
|
min_value, max_value = out_stats_container.get_min_max_values()
|
51
50
|
|
52
|
-
if activation_quant_cfg.
|
53
|
-
signed = activation_quant_cfg.
|
51
|
+
if activation_quant_cfg.signedness in [Signedness.SIGNED, Signedness.UNSIGNED]:
|
52
|
+
signed = activation_quant_cfg.signedness == Signedness.SIGNED
|
54
53
|
elif nodes_prior_info.is_output_bounded():
|
55
54
|
signed = min_value < 0
|
56
55
|
else:
|
@@ -17,7 +17,8 @@ from model_compression_toolkit.target_platform_capabilities.target_platform.fusi
|
|
17
17
|
from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework.attribute_filter import AttributeFilter
|
18
18
|
from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import TargetPlatformCapabilities, OperationsSetToLayers, Smaller, SmallerEq, NotEq, Eq, GreaterEq, Greater, LayerFilterParams, OperationsToLayers, get_current_tpc
|
19
19
|
from model_compression_toolkit.target_platform_capabilities.target_platform.target_platform_model import get_default_quantization_config_options, TargetPlatformModel
|
20
|
-
from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import
|
20
|
+
from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
|
21
|
+
OpQuantizationConfig, QuantizationConfigOptions, AttributeQuantizationConfig, Signedness
|
21
22
|
from model_compression_toolkit.target_platform_capabilities.target_platform.operators import OperatorsSet, OperatorSetConcat
|
22
23
|
|
23
24
|
from mct_quantizers import QuantizationMethod
|
model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py
CHANGED
@@ -15,12 +15,26 @@
|
|
15
15
|
|
16
16
|
import copy
|
17
17
|
from typing import List, Dict, Union, Any, Tuple
|
18
|
+
from enum import Enum
|
18
19
|
|
19
20
|
from mct_quantizers import QuantizationMethod
|
20
21
|
from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
21
22
|
from model_compression_toolkit.logger import Logger
|
22
23
|
|
23
24
|
|
25
|
+
class Signedness(Enum):
|
26
|
+
"""
|
27
|
+
An enum for choosing the signedness of the quantization method:
|
28
|
+
|
29
|
+
AUTO - Signedness decided automatically by quantization.
|
30
|
+
SIGNED - Force signed quantization.
|
31
|
+
UNSIGNED - Force unsigned quantization.
|
32
|
+
"""
|
33
|
+
AUTO = 0
|
34
|
+
SIGNED = 1
|
35
|
+
UNSIGNED = 2
|
36
|
+
|
37
|
+
|
24
38
|
def clone_and_edit_object_params(obj: Any, **kwargs: Dict) -> Any:
|
25
39
|
"""
|
26
40
|
Clones the given object and edit some of its parameters.
|
@@ -120,7 +134,7 @@ class OpQuantizationConfig:
|
|
120
134
|
fixed_scale: float,
|
121
135
|
fixed_zero_point: int,
|
122
136
|
simd_size: int,
|
123
|
-
|
137
|
+
signedness: Signedness
|
124
138
|
):
|
125
139
|
"""
|
126
140
|
|
@@ -134,8 +148,8 @@ class OpQuantizationConfig:
|
|
134
148
|
quantization_preserving (bool): Whether quantization parameters should be the same for an operator's input and output.
|
135
149
|
fixed_scale (float): Scale to use for an operator quantization parameters.
|
136
150
|
fixed_zero_point (int): Zero-point to use for an operator quantization parameters.
|
137
|
-
is_signed (bool): Force activation quantization signedness (None means don't force).
|
138
151
|
simd_size (int): Per op integer representing the Single Instruction, Multiple Data (SIMD) width of an operator. It indicates the number of data elements that can be fetched and processed simultaneously in a single instruction.
|
152
|
+
signedness (bool): Set activation quantization signedness.
|
139
153
|
|
140
154
|
"""
|
141
155
|
|
@@ -154,7 +168,7 @@ class OpQuantizationConfig:
|
|
154
168
|
self.quantization_preserving = quantization_preserving
|
155
169
|
self.fixed_scale = fixed_scale
|
156
170
|
self.fixed_zero_point = fixed_zero_point
|
157
|
-
self.
|
171
|
+
self.signedness = signedness
|
158
172
|
self.simd_size = simd_size
|
159
173
|
|
160
174
|
def get_info(self):
|
@@ -206,7 +220,7 @@ class OpQuantizationConfig:
|
|
206
220
|
self.activation_n_bits == other.activation_n_bits and \
|
207
221
|
self.supported_input_activation_n_bits == other.supported_input_activation_n_bits and \
|
208
222
|
self.enable_activation_quantization == other.enable_activation_quantization and \
|
209
|
-
self.
|
223
|
+
self.signedness == other.signedness and \
|
210
224
|
self.simd_size == other.simd_size
|
211
225
|
|
212
226
|
@property
|
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
|
|
18
18
|
from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
19
19
|
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS
|
20
20
|
from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
|
21
|
-
TargetPlatformModel
|
21
|
+
TargetPlatformModel, Signedness
|
22
22
|
from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
|
23
23
|
AttributeQuantizationConfig
|
24
24
|
|
@@ -98,7 +98,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
|
|
98
98
|
quantization_preserving=False,
|
99
99
|
fixed_scale=None,
|
100
100
|
fixed_zero_point=None,
|
101
|
-
simd_size=32
|
101
|
+
simd_size=32,
|
102
|
+
signedness=Signedness.AUTO)
|
102
103
|
|
103
104
|
# We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
|
104
105
|
linear_eight_bits = tp.OpQuantizationConfig(
|
@@ -111,7 +112,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
|
|
111
112
|
quantization_preserving=False,
|
112
113
|
fixed_scale=None,
|
113
114
|
fixed_zero_point=None,
|
114
|
-
simd_size=32
|
115
|
+
simd_size=32,
|
116
|
+
signedness=Signedness.AUTO)
|
115
117
|
|
116
118
|
# To quantize a model using mixed-precision, create
|
117
119
|
# a list with more than one OpQuantizationConfig.
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py
CHANGED
@@ -19,7 +19,7 @@ from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
|
19
19
|
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS, \
|
20
20
|
WEIGHTS_QUANTIZATION_METHOD
|
21
21
|
from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
|
22
|
-
TargetPlatformModel
|
22
|
+
TargetPlatformModel, Signedness
|
23
23
|
from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
|
24
24
|
AttributeQuantizationConfig
|
25
25
|
|
@@ -94,7 +94,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
|
|
94
94
|
quantization_preserving=False,
|
95
95
|
fixed_scale=None,
|
96
96
|
fixed_zero_point=None,
|
97
|
-
simd_size=32
|
97
|
+
simd_size=32,
|
98
|
+
signedness=Signedness.AUTO)
|
98
99
|
|
99
100
|
# We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
|
100
101
|
linear_eight_bits = tp.OpQuantizationConfig(
|
@@ -107,7 +108,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
|
|
107
108
|
quantization_preserving=False,
|
108
109
|
fixed_scale=None,
|
109
110
|
fixed_zero_point=None,
|
110
|
-
simd_size=32
|
111
|
+
simd_size=32,
|
112
|
+
signedness=Signedness.AUTO)
|
111
113
|
|
112
114
|
# To quantize a model using mixed-precision, create
|
113
115
|
# a list with more than one OpQuantizationConfig.
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py
CHANGED
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
|
|
18
18
|
from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
19
19
|
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS
|
20
20
|
from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
|
21
|
-
TargetPlatformModel
|
21
|
+
TargetPlatformModel, Signedness
|
22
22
|
from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
|
23
23
|
AttributeQuantizationConfig
|
24
24
|
|
@@ -94,7 +94,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
|
|
94
94
|
quantization_preserving=False,
|
95
95
|
fixed_scale=None,
|
96
96
|
fixed_zero_point=None,
|
97
|
-
simd_size=32
|
97
|
+
simd_size=32,
|
98
|
+
signedness=Signedness.AUTO)
|
98
99
|
|
99
100
|
# We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
|
100
101
|
linear_eight_bits = tp.OpQuantizationConfig(
|
@@ -107,7 +108,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
|
|
107
108
|
quantization_preserving=False,
|
108
109
|
fixed_scale=None,
|
109
110
|
fixed_zero_point=None,
|
110
|
-
simd_size=32
|
111
|
+
simd_size=32,
|
112
|
+
signedness=Signedness.AUTO)
|
111
113
|
|
112
114
|
# To quantize a model using mixed-precision, create
|
113
115
|
# a list with more than one OpQuantizationConfig.
|
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
|
|
18
18
|
from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
19
19
|
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS
|
20
20
|
from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
|
21
|
-
TargetPlatformModel
|
21
|
+
TargetPlatformModel, Signedness
|
22
22
|
from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
|
23
23
|
AttributeQuantizationConfig
|
24
24
|
|
@@ -100,7 +100,8 @@ def get_op_quantization_configs() -> \
|
|
100
100
|
quantization_preserving=False,
|
101
101
|
fixed_scale=None,
|
102
102
|
fixed_zero_point=None,
|
103
|
-
simd_size=32
|
103
|
+
simd_size=32,
|
104
|
+
signedness=Signedness.AUTO)
|
104
105
|
|
105
106
|
# We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
|
106
107
|
linear_eight_bits = tp.OpQuantizationConfig(
|
@@ -113,7 +114,8 @@ def get_op_quantization_configs() -> \
|
|
113
114
|
quantization_preserving=False,
|
114
115
|
fixed_scale=None,
|
115
116
|
fixed_zero_point=None,
|
116
|
-
simd_size=32
|
117
|
+
simd_size=32,
|
118
|
+
signedness=Signedness.AUTO)
|
117
119
|
|
118
120
|
# To quantize a model using mixed-precision, create
|
119
121
|
# a list with more than one OpQuantizationConfig.
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py
CHANGED
@@ -19,7 +19,7 @@ from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
|
19
19
|
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS, \
|
20
20
|
WEIGHTS_QUANTIZATION_METHOD
|
21
21
|
from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
|
22
|
-
TargetPlatformModel
|
22
|
+
TargetPlatformModel, Signedness
|
23
23
|
from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
|
24
24
|
AttributeQuantizationConfig
|
25
25
|
|
@@ -96,7 +96,8 @@ def get_op_quantization_configs() -> \
|
|
96
96
|
quantization_preserving=False,
|
97
97
|
fixed_scale=None,
|
98
98
|
fixed_zero_point=None,
|
99
|
-
simd_size=32
|
99
|
+
simd_size=32,
|
100
|
+
signedness=Signedness.AUTO)
|
100
101
|
|
101
102
|
# We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
|
102
103
|
linear_eight_bits = tp.OpQuantizationConfig(
|
@@ -109,7 +110,8 @@ def get_op_quantization_configs() -> \
|
|
109
110
|
quantization_preserving=False,
|
110
111
|
fixed_scale=None,
|
111
112
|
fixed_zero_point=None,
|
112
|
-
simd_size=32
|
113
|
+
simd_size=32,
|
114
|
+
signedness=Signedness.AUTO)
|
113
115
|
|
114
116
|
# To quantize a model using mixed-precision, create
|
115
117
|
# a list with more than one OpQuantizationConfig.
|
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
|
|
18
18
|
from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
19
19
|
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS
|
20
20
|
from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
|
21
|
-
TargetPlatformModel
|
21
|
+
TargetPlatformModel, Signedness
|
22
22
|
from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
|
23
23
|
AttributeQuantizationConfig
|
24
24
|
|
@@ -100,7 +100,8 @@ def get_op_quantization_configs() -> \
|
|
100
100
|
quantization_preserving=False,
|
101
101
|
fixed_scale=None,
|
102
102
|
fixed_zero_point=None,
|
103
|
-
simd_size=32
|
103
|
+
simd_size=32,
|
104
|
+
signedness=Signedness.AUTO)
|
104
105
|
|
105
106
|
# We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
|
106
107
|
linear_eight_bits = tp.OpQuantizationConfig(
|
@@ -113,7 +114,8 @@ def get_op_quantization_configs() -> \
|
|
113
114
|
quantization_preserving=False,
|
114
115
|
fixed_scale=None,
|
115
116
|
fixed_zero_point=None,
|
116
|
-
simd_size=32
|
117
|
+
simd_size=32,
|
118
|
+
signedness=Signedness.AUTO)
|
117
119
|
|
118
120
|
# To quantize a model using mixed-precision, create
|
119
121
|
# a list with more than one OpQuantizationConfig.
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py
CHANGED
@@ -19,7 +19,7 @@ from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
|
19
19
|
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS, \
|
20
20
|
WEIGHTS_QUANTIZATION_METHOD
|
21
21
|
from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
|
22
|
-
TargetPlatformModel
|
22
|
+
TargetPlatformModel, Signedness
|
23
23
|
from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
|
24
24
|
AttributeQuantizationConfig
|
25
25
|
|
@@ -96,7 +96,8 @@ def get_op_quantization_configs() -> \
|
|
96
96
|
quantization_preserving=False,
|
97
97
|
fixed_scale=None,
|
98
98
|
fixed_zero_point=None,
|
99
|
-
simd_size=32
|
99
|
+
simd_size=32,
|
100
|
+
signedness=Signedness.AUTO)
|
100
101
|
|
101
102
|
# We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
|
102
103
|
linear_eight_bits = tp.OpQuantizationConfig(
|
@@ -109,7 +110,8 @@ def get_op_quantization_configs() -> \
|
|
109
110
|
quantization_preserving=False,
|
110
111
|
fixed_scale=None,
|
111
112
|
fixed_zero_point=None,
|
112
|
-
simd_size=32
|
113
|
+
simd_size=32,
|
114
|
+
signedness=Signedness.AUTO)
|
113
115
|
|
114
116
|
# To quantize a model using mixed-precision, create
|
115
117
|
# a list with more than one OpQuantizationConfig.
|
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
|
|
18
18
|
from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
19
19
|
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS
|
20
20
|
from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
|
21
|
-
TargetPlatformModel
|
21
|
+
TargetPlatformModel, Signedness
|
22
22
|
from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
|
23
23
|
AttributeQuantizationConfig
|
24
24
|
|
@@ -100,7 +100,8 @@ def get_op_quantization_configs() -> \
|
|
100
100
|
quantization_preserving=False,
|
101
101
|
fixed_scale=None,
|
102
102
|
fixed_zero_point=None,
|
103
|
-
simd_size=32
|
103
|
+
simd_size=32,
|
104
|
+
signedness=Signedness.AUTO)
|
104
105
|
|
105
106
|
# We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
|
106
107
|
linear_eight_bits = tp.OpQuantizationConfig(
|
@@ -113,7 +114,8 @@ def get_op_quantization_configs() -> \
|
|
113
114
|
quantization_preserving=False,
|
114
115
|
fixed_scale=None,
|
115
116
|
fixed_zero_point=None,
|
116
|
-
simd_size=32
|
117
|
+
simd_size=32,
|
118
|
+
signedness=Signedness.AUTO)
|
117
119
|
|
118
120
|
# To quantize a model using mixed-precision, create
|
119
121
|
# a list with more than one OpQuantizationConfig.
|
@@ -170,7 +172,7 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
170
172
|
const_config_input16 = const_config.clone_and_edit(
|
171
173
|
supported_input_activation_n_bits=(8, 16))
|
172
174
|
const_config_input16_output16 = const_config_input16.clone_and_edit(
|
173
|
-
activation_n_bits=16,
|
175
|
+
activation_n_bits=16, signedness=Signedness.SIGNED)
|
174
176
|
const_configuration_options_inout16 = tp.QuantizationConfigOptions([const_config_input16_output16,
|
175
177
|
const_config_input16],
|
176
178
|
base_config=const_config_input16)
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py
CHANGED
@@ -17,7 +17,7 @@ import operator
|
|
17
17
|
|
18
18
|
import torch
|
19
19
|
from torch import add, sub, mul, div, flatten, reshape, split, unsqueeze, dropout, sigmoid, tanh, chunk, unbind, topk, \
|
20
|
-
gather, equal, transpose, permute, argmax, squeeze
|
20
|
+
gather, equal, transpose, permute, argmax, squeeze, multiply, subtract
|
21
21
|
from torch.nn import Conv2d, Linear, ConvTranspose2d, MaxPool2d
|
22
22
|
from torch.nn import Dropout, Flatten, Hardtanh, Identity
|
23
23
|
from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, LeakyReLU
|
@@ -101,8 +101,8 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
101
101
|
tp.LayerFilterParams(hardtanh, min_val=0)])
|
102
102
|
|
103
103
|
tp.OperationsSetToLayers("Add", [operator.add, add])
|
104
|
-
tp.OperationsSetToLayers("Sub", [operator.sub, sub])
|
105
|
-
tp.OperationsSetToLayers("Mul", [operator.mul, mul])
|
104
|
+
tp.OperationsSetToLayers("Sub", [operator.sub, sub, subtract])
|
105
|
+
tp.OperationsSetToLayers("Mul", [operator.mul, mul, multiply])
|
106
106
|
tp.OperationsSetToLayers("Div", [operator.truediv, div])
|
107
107
|
tp.OperationsSetToLayers("PReLU", [PReLU, prelu])
|
108
108
|
tp.OperationsSetToLayers("Swish", [SiLU, silu, Hardswish, hardswish])
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py
CHANGED
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
|
|
18
18
|
from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
19
19
|
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR
|
20
20
|
from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
|
21
|
-
TargetPlatformModel
|
21
|
+
TargetPlatformModel, Signedness
|
22
22
|
from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
|
23
23
|
AttributeQuantizationConfig
|
24
24
|
|
@@ -95,7 +95,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
|
|
95
95
|
quantization_preserving=False,
|
96
96
|
fixed_scale=None,
|
97
97
|
fixed_zero_point=None,
|
98
|
-
simd_size=32
|
98
|
+
simd_size=32,
|
99
|
+
signedness=Signedness.AUTO)
|
99
100
|
|
100
101
|
# We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
|
101
102
|
linear_eight_bits = tp.OpQuantizationConfig(
|
@@ -108,8 +109,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
|
|
108
109
|
quantization_preserving=False,
|
109
110
|
fixed_scale=None,
|
110
111
|
fixed_zero_point=None,
|
111
|
-
simd_size=None
|
112
|
-
|
112
|
+
simd_size=None,
|
113
|
+
signedness=Signedness.AUTO)
|
113
114
|
|
114
115
|
mixed_precision_cfg_list = [] # No mixed precision
|
115
116
|
|
@@ -18,7 +18,7 @@ import model_compression_toolkit as mct
|
|
18
18
|
from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
19
19
|
from model_compression_toolkit.target_platform_capabilities.constants import BIAS_ATTR, KERNEL_ATTR
|
20
20
|
from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
|
21
|
-
TargetPlatformModel
|
21
|
+
TargetPlatformModel, Signedness
|
22
22
|
from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import \
|
23
23
|
QuantizationMethod, AttributeQuantizationConfig
|
24
24
|
|
@@ -93,7 +93,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
|
|
93
93
|
quantization_preserving=False,
|
94
94
|
fixed_scale=None,
|
95
95
|
fixed_zero_point=None,
|
96
|
-
simd_size=32
|
96
|
+
simd_size=32,
|
97
|
+
signedness=Signedness.AUTO)
|
97
98
|
|
98
99
|
# We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
|
99
100
|
linear_eight_bits = tp.OpQuantizationConfig(
|
@@ -106,8 +107,8 @@ def get_op_quantization_configs() -> Tuple[OpQuantizationConfig, List[OpQuantiza
|
|
106
107
|
quantization_preserving=False,
|
107
108
|
fixed_scale=None,
|
108
109
|
fixed_zero_point=None,
|
109
|
-
simd_size=None
|
110
|
-
|
110
|
+
simd_size=None,
|
111
|
+
signedness=Signedness.AUTO)
|
111
112
|
|
112
113
|
mixed_precision_cfg_list = [] # No mixed precision
|
113
114
|
|
{mct_nightly-2.1.0.20240805.458.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/LICENSE.md
RENAMED
File without changes
|
File without changes
|
{mct_nightly-2.1.0.20240805.458.dist-info → mct_nightly-2.1.0.20240807.445.dist-info}/top_level.txt
RENAMED
File without changes
|