mct-nightly 2.1.0.20240617.451__py3-none-any.whl → 2.1.0.20240619.429__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.1.0.20240617.451.dist-info → mct_nightly-2.1.0.20240619.429.dist-info}/METADATA +2 -2
- {mct_nightly-2.1.0.20240617.451.dist-info → mct_nightly-2.1.0.20240619.429.dist-info}/RECORD +38 -12
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/gptq/keras/gptq_training.py +1 -1
- model_compression_toolkit/gptq/keras/graph_info.py +1 -1
- model_compression_toolkit/gptq/pytorch/gptq_training.py +5 -2
- model_compression_toolkit/gptq/pytorch/graph_info.py +2 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +3 -2
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +3 -2
- model_compression_toolkit/xquant/__init__.py +19 -0
- model_compression_toolkit/xquant/common/__init__.py +15 -0
- model_compression_toolkit/xquant/common/constants.py +38 -0
- model_compression_toolkit/xquant/common/core_report_generator.py +83 -0
- model_compression_toolkit/xquant/common/dataset_utils.py +43 -0
- model_compression_toolkit/xquant/common/framework_report_utils.py +89 -0
- model_compression_toolkit/xquant/common/model_analyzer.py +99 -0
- model_compression_toolkit/xquant/common/model_folding_utils.py +104 -0
- model_compression_toolkit/xquant/common/similarity_calculator.py +194 -0
- model_compression_toolkit/xquant/common/similarity_functions.py +81 -0
- model_compression_toolkit/xquant/common/tensorboard_utils.py +101 -0
- model_compression_toolkit/xquant/common/xquant_config.py +39 -0
- model_compression_toolkit/xquant/keras/__init__.py +15 -0
- model_compression_toolkit/xquant/keras/dataset_utils.py +57 -0
- model_compression_toolkit/xquant/keras/facade_xquant_report.py +63 -0
- model_compression_toolkit/xquant/keras/keras_report_utils.py +60 -0
- model_compression_toolkit/xquant/keras/model_analyzer.py +136 -0
- model_compression_toolkit/xquant/keras/similarity_functions.py +75 -0
- model_compression_toolkit/xquant/keras/tensorboard_utils.py +84 -0
- model_compression_toolkit/xquant/pytorch/__init__.py +15 -0
- model_compression_toolkit/xquant/pytorch/dataset_utils.py +76 -0
- model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +62 -0
- model_compression_toolkit/xquant/pytorch/model_analyzer.py +132 -0
- model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +61 -0
- model_compression_toolkit/xquant/pytorch/similarity_functions.py +68 -0
- model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +87 -0
- {mct_nightly-2.1.0.20240617.451.dist-info → mct_nightly-2.1.0.20240619.429.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.1.0.20240617.451.dist-info → mct_nightly-2.1.0.20240619.429.dist-info}/WHEEL +0 -0
- {mct_nightly-2.1.0.20240617.451.dist-info → mct_nightly-2.1.0.20240619.429.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,61 @@
|
|
1
|
+
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from model_compression_toolkit.core.pytorch.utils import get_working_device
|
16
|
+
|
17
|
+
from model_compression_toolkit.ptq.pytorch.quantization_facade import DEFAULT_PYTORCH_TPC
|
18
|
+
from model_compression_toolkit.xquant.common.framework_report_utils import FrameworkReportUtils
|
19
|
+
from model_compression_toolkit.core.pytorch.default_framework_info import DEFAULT_PYTORCH_INFO
|
20
|
+
from model_compression_toolkit.core.pytorch.pytorch_implementation import PytorchImplementation
|
21
|
+
from model_compression_toolkit.xquant.common.model_folding_utils import ModelFoldingUtils
|
22
|
+
from model_compression_toolkit.xquant.common.similarity_calculator import SimilarityCalculator
|
23
|
+
from model_compression_toolkit.xquant.pytorch.dataset_utils import PytorchDatasetUtils
|
24
|
+
from model_compression_toolkit.xquant.pytorch.model_analyzer import PytorchModelAnalyzer
|
25
|
+
from model_compression_toolkit.xquant.pytorch.similarity_functions import PytorchSimilarityFunctions
|
26
|
+
from model_compression_toolkit.xquant.pytorch.tensorboard_utils import PytorchTensorboardUtils
|
27
|
+
|
28
|
+
|
29
|
+
class PytorchReportUtils(FrameworkReportUtils):
|
30
|
+
"""
|
31
|
+
Class with various utility components required for generating the report for a Pytorch model.
|
32
|
+
"""
|
33
|
+
def __init__(self, report_dir: str):
|
34
|
+
"""
|
35
|
+
Args:
|
36
|
+
report_dir: Logging dir path.
|
37
|
+
"""
|
38
|
+
fw_info = DEFAULT_PYTORCH_INFO
|
39
|
+
fw_impl = PytorchImplementation()
|
40
|
+
|
41
|
+
dataset_utils = PytorchDatasetUtils()
|
42
|
+
model_folding = ModelFoldingUtils(fw_info=fw_info,
|
43
|
+
fw_impl=fw_impl,
|
44
|
+
fw_default_tpc=DEFAULT_PYTORCH_TPC)
|
45
|
+
|
46
|
+
similarity_calculator = SimilarityCalculator(dataset_utils=dataset_utils,
|
47
|
+
model_folding=model_folding,
|
48
|
+
similarity_functions=PytorchSimilarityFunctions(),
|
49
|
+
model_analyzer_utils=PytorchModelAnalyzer(),
|
50
|
+
device=get_working_device())
|
51
|
+
|
52
|
+
tb_utils = PytorchTensorboardUtils(report_dir=report_dir,
|
53
|
+
fw_impl=fw_impl,
|
54
|
+
fw_info=fw_info)
|
55
|
+
|
56
|
+
super().__init__(fw_info=fw_info,
|
57
|
+
fw_impl=fw_impl,
|
58
|
+
tb_utils=tb_utils,
|
59
|
+
dataset_utils=dataset_utils,
|
60
|
+
similarity_calculator=similarity_calculator,
|
61
|
+
model_folding_utils=model_folding)
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
|
17
|
+
from model_compression_toolkit.xquant.common.similarity_functions import SimilarityFunctions
|
18
|
+
import torch
|
19
|
+
|
20
|
+
class PytorchSimilarityFunctions(SimilarityFunctions):
|
21
|
+
|
22
|
+
@staticmethod
|
23
|
+
def compute_mse(x: torch.Tensor, y: torch.Tensor) -> float:
|
24
|
+
"""
|
25
|
+
Computes Mean Squared Error between between two tensors (usually, the float and quantized tensors).
|
26
|
+
|
27
|
+
Args:
|
28
|
+
x: Float model predictions.
|
29
|
+
y: Quantized model predictions.
|
30
|
+
|
31
|
+
Returns:
|
32
|
+
Mean Squared Error as a float.
|
33
|
+
"""
|
34
|
+
mse = torch.nn.functional.mse_loss(x, y)
|
35
|
+
return mse.item()
|
36
|
+
|
37
|
+
@staticmethod
|
38
|
+
def compute_cs(x: torch.Tensor, y: torch.Tensor) -> float:
|
39
|
+
"""
|
40
|
+
Computes Cosine Similarity between two tensors (usually, the float and quantized tensors).
|
41
|
+
|
42
|
+
Args:
|
43
|
+
x: Float model predictions.
|
44
|
+
y: Quantized model predictions.
|
45
|
+
|
46
|
+
Returns:
|
47
|
+
Cosine Similarity as a float.
|
48
|
+
"""
|
49
|
+
cs = torch.nn.functional.cosine_similarity(x.flatten(), y.flatten(), dim=0)
|
50
|
+
return cs.item()
|
51
|
+
|
52
|
+
@staticmethod
|
53
|
+
def compute_sqnr(x: torch.Tensor, y: torch.Tensor) -> float:
|
54
|
+
"""
|
55
|
+
Computes Signal-to-Quantization-Noise Ratio between two tensors (usually, the float and quantized tensors).
|
56
|
+
|
57
|
+
Args:
|
58
|
+
x: Float model predictions.
|
59
|
+
y: Quantized model predictions.
|
60
|
+
|
61
|
+
Returns:
|
62
|
+
Signal-to-Quantization-Noise Ratio as a float.
|
63
|
+
"""
|
64
|
+
signal_power = torch.mean(x ** 2)
|
65
|
+
noise_power = torch.mean((x - y) ** 2)
|
66
|
+
sqnr = signal_power / noise_power
|
67
|
+
return sqnr.item()
|
68
|
+
|
@@ -0,0 +1,87 @@
|
|
1
|
+
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from model_compression_toolkit.core.common.framework_info import FrameworkInfo
|
17
|
+
from typing import Dict, Any, Callable
|
18
|
+
|
19
|
+
import torch
|
20
|
+
|
21
|
+
from model_compression_toolkit.core.common.framework_implementation import FrameworkImplementation
|
22
|
+
from model_compression_toolkit.core.pytorch.reader.reader import model_reader
|
23
|
+
from model_compression_toolkit.xquant.common.constants import XQUANT_REPR, INTERMEDIATE_SIMILARITY_METRICS_REPR, XQUANT_VAL, INTERMEDIATE_SIMILARITY_METRICS_VAL
|
24
|
+
from model_compression_toolkit.xquant.common.model_folding_utils import ModelFoldingUtils
|
25
|
+
from model_compression_toolkit.xquant.common.tensorboard_utils import TensorboardUtils
|
26
|
+
|
27
|
+
class PytorchTensorboardUtils(TensorboardUtils):
|
28
|
+
"""
|
29
|
+
Utility class for handling PyTorch models with TensorBoard. Inherits from TensorboardUtils.
|
30
|
+
This class provides functionalities to display quantized model graphs on TensorBoard.
|
31
|
+
"""
|
32
|
+
|
33
|
+
def __init__(self,
|
34
|
+
report_dir: str,
|
35
|
+
fw_info: FrameworkInfo,
|
36
|
+
fw_impl: FrameworkImplementation):
|
37
|
+
"""
|
38
|
+
Initialize the PytorchTensorboardUtils instance.
|
39
|
+
|
40
|
+
Args:
|
41
|
+
report_dir: Directory where the reports are stored.
|
42
|
+
fw_info: Information about the framework being used.
|
43
|
+
fw_impl: Implementation methods for the framework.
|
44
|
+
"""
|
45
|
+
super().__init__(report_dir,
|
46
|
+
fw_info,
|
47
|
+
fw_impl)
|
48
|
+
|
49
|
+
def get_graph_for_tensorboard_display(self,
|
50
|
+
quantized_model: torch.nn.Module,
|
51
|
+
similarity_metrics: Dict[str, Any],
|
52
|
+
repr_dataset: Callable):
|
53
|
+
"""
|
54
|
+
Get the graph to display on TensorBoard. The graph represents the quantized model
|
55
|
+
with the similarity metrics that were measured.
|
56
|
+
|
57
|
+
Args:
|
58
|
+
quantized_model: The quantized model to be displayed on TensorBoard.
|
59
|
+
similarity_metrics: Dictionary containing the collected similarity metrics values.
|
60
|
+
repr_dataset: Callable that generates the representative dataset used during graph building.
|
61
|
+
|
62
|
+
Returns:
|
63
|
+
The updated quantized model graph with similarity metrics embedded.
|
64
|
+
"""
|
65
|
+
# Read the model and generate a graph representation
|
66
|
+
quant_graph = model_reader(quantized_model,
|
67
|
+
representative_data_gen=repr_dataset,
|
68
|
+
to_tensor=self.fw_impl.to_tensor,
|
69
|
+
to_numpy=self.fw_impl.to_numpy)
|
70
|
+
|
71
|
+
# Iterate through each node in the graph
|
72
|
+
for node in quant_graph.nodes:
|
73
|
+
# Check and add similarity metrics for each node in the graph
|
74
|
+
if node.name in similarity_metrics[INTERMEDIATE_SIMILARITY_METRICS_REPR].keys():
|
75
|
+
node.framework_attr[XQUANT_REPR] = similarity_metrics[INTERMEDIATE_SIMILARITY_METRICS_REPR][f"{node.name}"]
|
76
|
+
elif node.name.removesuffix("_layer") in similarity_metrics[INTERMEDIATE_SIMILARITY_METRICS_REPR].keys():
|
77
|
+
node.framework_attr[XQUANT_REPR] = similarity_metrics[INTERMEDIATE_SIMILARITY_METRICS_REPR][
|
78
|
+
node.name.removesuffix("_layer")]
|
79
|
+
|
80
|
+
# Check and add validation similarity metrics for each node in the graph
|
81
|
+
if node.name in similarity_metrics[INTERMEDIATE_SIMILARITY_METRICS_VAL].keys():
|
82
|
+
node.framework_attr[XQUANT_VAL] = similarity_metrics[INTERMEDIATE_SIMILARITY_METRICS_VAL][f"{node.name}"]
|
83
|
+
elif node.name.removesuffix("_layer") in similarity_metrics[INTERMEDIATE_SIMILARITY_METRICS_VAL].keys():
|
84
|
+
node.framework_attr[XQUANT_VAL] = similarity_metrics[INTERMEDIATE_SIMILARITY_METRICS_VAL][
|
85
|
+
node.name.removesuffix("_layer")]
|
86
|
+
|
87
|
+
return quant_graph
|
{mct_nightly-2.1.0.20240617.451.dist-info → mct_nightly-2.1.0.20240619.429.dist-info}/LICENSE.md
RENAMED
File without changes
|
File without changes
|
{mct_nightly-2.1.0.20240617.451.dist-info → mct_nightly-2.1.0.20240619.429.dist-info}/top_level.txt
RENAMED
File without changes
|