mct-nightly 2.1.0.20240610.442__py3-none-any.whl → 2.1.0.20240611.428__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240610.442
3
+ Version: 2.1.0.20240611.428
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=8uKLxbPGI4bXEsOnz8snYp5aOCbWS0nIiBxD9ic580Y,1573
1
+ model_compression_toolkit/__init__.py,sha256=5M9R9fdugPJI-PxHjoaEsOrBcYF-462_1w91qDTEZZ4,1573
2
2
  model_compression_toolkit/constants.py,sha256=9pVleMwnhlM4QwIL2HcEq42I1uF4rlSw63RUjkxOF4w,3923
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -45,7 +45,7 @@ model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py,sha256
45
45
  model_compression_toolkit/core/common/graph/memory_graph/memory_element.py,sha256=gRmBEFRmyJsNKezQfiwDwQu1cmbGd2wgKCRTH6iw8mw,3961
46
46
  model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py,sha256=gw4av_rzn_3oEAPpD3B7PHZDqnxHMjIESevl6ppPnkk,7175
47
47
  model_compression_toolkit/core/common/hessian/__init__.py,sha256=bxPVbkIlHFJMiOgTdWMVCqcD9JKV5kb2bVdWUTeLpj8,1021
48
- model_compression_toolkit/core/common/hessian/hessian_info_service.py,sha256=i6wwcsNlTb7JGaxJOosWFPe4t9FdIvF0cyIlwXol3qI,20715
48
+ model_compression_toolkit/core/common/hessian/hessian_info_service.py,sha256=yG3TznPlQgRGZ0Hb8O4ViJLt-xvWrOkbpfHiOypYgqU,20722
49
49
  model_compression_toolkit/core/common/hessian/hessian_info_utils.py,sha256=JepOjcyX1XyiC1UblqM3zdKv2xuUvU3HKWjlE1Bnq_U,1490
50
50
  model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py,sha256=EIV4NVUfvkefqMAFrrjNhQq7cvT3hljHpGz_gpVaFtY,4135
51
51
  model_compression_toolkit/core/common/hessian/trace_hessian_request.py,sha256=uvnaYtJRRmj_CfnYAO6oehnhDqdalW0NgETWJvSzCxc,3245
@@ -92,7 +92,7 @@ model_compression_toolkit/core/common/pruning/pruning_section.py,sha256=I4vxh5iP
92
92
  model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py,sha256=3Lkr37Exk9u8811hw8hVqkGcbTQGcLjd3LLuLC3fa_E,698
93
93
  model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py,sha256=qMAtLWs5fjbSco8nhbig5TkuacdhnDW7cy3avMHRGX4,1988
94
94
  model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py,sha256=E-fKuRfrNYlN3nNcRAbnkJkFNwClvyrL_Js1qDPxIKA,1999
95
- model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py,sha256=PmiczyM0bA3u6NG7ZDEZ18EmivF6W3ij6vntRkGf9-4,14037
95
+ model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py,sha256=SA1lqFNWhyXAnEyT_ROd3a-9gDYAgoCusk13US2l_QE,14047
96
96
  model_compression_toolkit/core/common/pruning/mask/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
97
97
  model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py,sha256=APY8BsM9B7ZxVCH6n1xs9fSCTB_A9ou9gHrCQl1DOdI,5131
98
98
  model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py,sha256=4ohJrJHNzZk5uMnZEYkwLx2TDGzkh5kRhLGNVYNC6dc,5978
@@ -491,8 +491,8 @@ model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py,sha
491
491
  model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py,sha256=MVwXNymmFRB2NXIBx4e2mdJ1RfoHxRPYRgjb1MQP5kY,1797
492
492
  model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
493
493
  model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py,sha256=MxylaVFPgN7zBiRBy6WV610EA4scLgRJFbMucKvvNDU,2896
494
- mct_nightly-2.1.0.20240610.442.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
495
- mct_nightly-2.1.0.20240610.442.dist-info/METADATA,sha256=Juo23o8F4ndhmb8TksZ99xKWtks0DK59daxJqx_9RmI,19721
496
- mct_nightly-2.1.0.20240610.442.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
497
- mct_nightly-2.1.0.20240610.442.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
498
- mct_nightly-2.1.0.20240610.442.dist-info/RECORD,,
494
+ mct_nightly-2.1.0.20240611.428.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
495
+ mct_nightly-2.1.0.20240611.428.dist-info/METADATA,sha256=_zZydkna6pZ0N8jYoSOBa1CsxxyMh-2AAd08VPvLuOQ,19721
496
+ mct_nightly-2.1.0.20240611.428.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
497
+ mct_nightly-2.1.0.20240611.428.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
498
+ mct_nightly-2.1.0.20240611.428.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.1.0.20240610.000442"
30
+ __version__ = "2.1.0.20240611.000428"
@@ -388,4 +388,4 @@ class HessianInfoService:
388
388
  Returns: A list with split batch into individual results.
389
389
 
390
390
  """
391
- return [t[i] for i in range(t.shape[0])]
391
+ return [t[i:i+1, :] for i in range(t.shape[0])]
@@ -135,7 +135,7 @@ class LFHImportanceMetric(BaseImportanceMetric):
135
135
  nodes_scores.append(_scores_for_node)
136
136
 
137
137
  # Average and map scores to nodes.
138
- self._entry_node_to_hessian_score = {node: np.mean(scores[0], axis=0) for node, scores in zip(entry_nodes, nodes_scores)}
138
+ self._entry_node_to_hessian_score = {node: np.mean(scores[0], axis=0).flatten() for node, scores in zip(entry_nodes, nodes_scores)}
139
139
 
140
140
  self._entry_node_count_oc_nparams = self._count_oc_nparams(entry_nodes=entry_nodes)
141
141
  _entry_node_l2_oc_norm = self._get_squaredl2norm(entry_nodes=entry_nodes)