mct-nightly 2.0.0.20240521.140523__py3-none-any.whl → 2.0.0.20240521.145957__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240521.140523
3
+ Version: 2.0.0.20240521.145957
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -33,7 +33,7 @@ This project provides researchers, developers, and engineers tools for optimizin
33
33
 
34
34
  Specifically, this project aims to apply quantization to compress neural networks.
35
35
 
36
- <img src="docsrc/images/mct_block_diagram.svg" width="10000">
36
+ <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
37
37
 
38
38
  MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
39
39
 
@@ -41,12 +41,12 @@ MCT is developed by researchers and engineers working at Sony Semiconductor Isra
41
41
 
42
42
  ## Table of Contents
43
43
 
44
- - [Getting Started](#getting-started)
45
- - [Supported features](#supported-features)
46
- - [Results](#results)
47
- - [Troubleshooting](#trouble-shooting)
48
- - [Contributions](#contributions)
49
- - [License](#license)
44
+ - [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
45
+ - [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
46
+ - [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
47
+ - [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
48
+ - [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
49
+ - [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
50
50
 
51
51
 
52
52
  ## Getting Started
@@ -66,11 +66,11 @@ For installing the nightly version or installing from source, refer to the [inst
66
66
  ### Quick start & tutorials
67
67
 
68
68
  Explore the Model Compression Toolkit (MCT) through our tutorials,
69
- covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](tutorials/README.md)
69
+ covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
70
70
  for hands-on learning. For example:
71
- * [Keras MobileNetV2 post training quantization](tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
72
- * [Post training quantization with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
73
- * [Data Generation for ResNet18 with PyTorch](tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
71
+ * [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
72
+ * [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_ptq_mnist.ipynb)
73
+ * [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
74
74
 
75
75
 
76
76
  ### Supported Versions
@@ -94,15 +94,15 @@ Currently, MCT is being tested on various Python, Pytorch and TensorFlow version
94
94
  ## Supported Features
95
95
  MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
96
96
 
97
- ### Data Generation [*](#experimental-features)
97
+ ### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
98
98
  MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
99
- You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](model_compression_toolkit/data_generation/README.md)
99
+ You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
100
100
 
101
101
  ### Quantization
102
102
  MCT supports different quantization methods:
103
103
  * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
104
104
  * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
105
- * Quantization-aware training (QAT) [*](#experimental-features)
105
+ * Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
106
106
 
107
107
 
108
108
  | Quantization Method | Complexity | Computational Cost |
@@ -124,20 +124,20 @@ Main features:
124
124
  * <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
125
125
  * <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
126
126
  * <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
127
- * <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
127
+ * <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
128
128
  * <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
129
129
  * <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
130
- * <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).
130
+ * <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
131
131
 
132
132
  ### Enhanced Post-Training Quantization (EPTQ)
133
133
  As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
134
134
 
135
135
  The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
136
136
 
137
- More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](model_compression_toolkit/gptq/README.md).
137
+ More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
138
138
 
139
139
 
140
- ### Structured Pruning [*](#experimental-features)
140
+ ### Structured Pruning [*]((https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features))
141
141
  MCT introduces a structured and hardware-aware model pruning.
142
142
  This pruning technique is designed to compress models for specific hardware architectures,
143
143
  taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
@@ -159,7 +159,7 @@ For more details, we highly recommend visiting our project website where experim
159
159
  Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
160
160
  single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
161
161
 
162
- <img src="docsrc/images/mbv2_accuracy_graph.png">
162
+ <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
163
163
 
164
164
  For more results, please see [1]
165
165
 
@@ -195,11 +195,11 @@ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md)
195
195
  ## Contributions
196
196
  MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
197
197
 
198
- *You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).
198
+ *You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
199
199
 
200
200
 
201
201
  ## License
202
- [Apache License 2.0](LICENSE.md).
202
+ [Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
203
203
 
204
204
  ## References
205
205
 
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=CMMjQz0N96EorpMxifye1vXGdk2y9zy6Dms1saFtLNA,1573
1
+ model_compression_toolkit/__init__.py,sha256=NcbUULZQvxx5LO_lLdFH8ZUOUCSKVi6uQIEwaBa0A6Q,1573
2
2
  model_compression_toolkit/constants.py,sha256=b63Jk_bC7VXEX3Qn9TZ3wUvrNKD8Mkz8zIuayoyF5eU,3828
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -483,8 +483,8 @@ model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py,sha
483
483
  model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py,sha256=MVwXNymmFRB2NXIBx4e2mdJ1RfoHxRPYRgjb1MQP5kY,1797
484
484
  model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
485
485
  model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py,sha256=MxylaVFPgN7zBiRBy6WV610EA4scLgRJFbMucKvvNDU,2896
486
- mct_nightly-2.0.0.20240521.140523.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
487
- mct_nightly-2.0.0.20240521.140523.dist-info/METADATA,sha256=g8jlv5uVIWW-fCLXCpgbA9nWeH2f0kCUkbwGZI56JpI,18533
488
- mct_nightly-2.0.0.20240521.140523.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
489
- mct_nightly-2.0.0.20240521.140523.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
490
- mct_nightly-2.0.0.20240521.140523.dist-info/RECORD,,
486
+ mct_nightly-2.0.0.20240521.145957.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
487
+ mct_nightly-2.0.0.20240521.145957.dist-info/METADATA,sha256=XUTU6GmKo0wKAzupIrdoygT5xZyQEUeP_X5E2jimx3w,19726
488
+ mct_nightly-2.0.0.20240521.145957.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
489
+ mct_nightly-2.0.0.20240521.145957.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
490
+ mct_nightly-2.0.0.20240521.145957.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.0.0.20240521.140523"
30
+ __version__ = "2.0.0.20240521.145957"