mct-nightly 2.0.0.20240417.406__py3-none-any.whl → 2.0.0.20240418.439__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.0.0.20240417.406.dist-info → mct_nightly-2.0.0.20240418.439.dist-info}/METADATA +1 -1
- {mct_nightly-2.0.0.20240417.406.dist-info → mct_nightly-2.0.0.20240418.439.dist-info}/RECORD +32 -29
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/constants.py +2 -0
- model_compression_toolkit/core/common/graph/base_node.py +1 -1
- model_compression_toolkit/core/common/hessian/hessian_info_service.py +2 -3
- model_compression_toolkit/core/common/hessian/trace_hessian_request.py +1 -3
- model_compression_toolkit/core/common/quantization/quantization_config.py +5 -2
- model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +67 -4
- model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +10 -3
- model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +14 -4
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +30 -3
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +17 -7
- model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +14 -3
- model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +13 -3
- model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +16 -3
- model_compression_toolkit/core/common/similarity_analyzer.py +14 -2
- model_compression_toolkit/core/common/substitutions/remove_identity.py +48 -0
- model_compression_toolkit/core/graph_prep_runner.py +10 -4
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +51 -0
- model_compression_toolkit/core/keras/keras_implementation.py +3 -1
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +50 -0
- model_compression_toolkit/core/pytorch/pytorch_implementation.py +3 -1
- model_compression_toolkit/core/quantization_prep_runner.py +6 -2
- model_compression_toolkit/core/runner.py +5 -2
- model_compression_toolkit/gptq/keras/quantization_facade.py +2 -1
- model_compression_toolkit/gptq/pytorch/quantization_facade.py +3 -1
- model_compression_toolkit/gptq/runner.py +1 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +5 -5
- {mct_nightly-2.0.0.20240417.406.dist-info → mct_nightly-2.0.0.20240418.439.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.0.0.20240417.406.dist-info → mct_nightly-2.0.0.20240418.439.dist-info}/WHEEL +0 -0
- {mct_nightly-2.0.0.20240417.406.dist-info → mct_nightly-2.0.0.20240418.439.dist-info}/top_level.txt +0 -0
{mct_nightly-2.0.0.20240417.406.dist-info → mct_nightly-2.0.0.20240418.439.dist-info}/RECORD
RENAMED
|
@@ -1,13 +1,13 @@
|
|
|
1
|
-
model_compression_toolkit/__init__.py,sha256=
|
|
2
|
-
model_compression_toolkit/constants.py,sha256=
|
|
1
|
+
model_compression_toolkit/__init__.py,sha256=aO8E_DhwQy12oAxKxqXFskaEwaq_icpSqsisZn6UyZM,1573
|
|
2
|
+
model_compression_toolkit/constants.py,sha256=yIJyJ-e1WrDeKD9kG15qkqfYnoj7J1J2CxnJDt008ik,3756
|
|
3
3
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
|
4
4
|
model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
|
|
5
5
|
model_compression_toolkit/metadata.py,sha256=IyoON37lBv3TI0rZGCP4K5t3oYI4TOmYy-LRXOwHGpE,1136
|
|
6
6
|
model_compression_toolkit/core/__init__.py,sha256=TrRgkWpT1AN2Faw1M_1HXyJkJnbxfn9p-RigDZl7pg0,1982
|
|
7
7
|
model_compression_toolkit/core/analyzer.py,sha256=X-2ZpkH1xdXnISnw1yJvXnvV-ssoUh-9LkLISSWNqiY,3691
|
|
8
|
-
model_compression_toolkit/core/graph_prep_runner.py,sha256=
|
|
9
|
-
model_compression_toolkit/core/quantization_prep_runner.py,sha256=
|
|
10
|
-
model_compression_toolkit/core/runner.py,sha256=
|
|
8
|
+
model_compression_toolkit/core/graph_prep_runner.py,sha256=kM70wmNG3yMFiGQc0uO0wn9j4ZbSWxUEykpxDK55doc,10567
|
|
9
|
+
model_compression_toolkit/core/quantization_prep_runner.py,sha256=0ga95vh_ZXO79r8FB26L5GIZKHkG98wq1hMsNH1bIeU,6453
|
|
10
|
+
model_compression_toolkit/core/runner.py,sha256=E_gXj95Az3C3swsv7v1zeKZx25keWjnD30uhI7ONZkY,12028
|
|
11
11
|
model_compression_toolkit/core/common/__init__.py,sha256=Wh127PbXcETZX_d1PQqZ71ETK3J9XO5A-HpadGUbj6o,1447
|
|
12
12
|
model_compression_toolkit/core/common/base_substitutions.py,sha256=xDFSmVVs_iFSZfajytI0cuQaNRNcwHX3uqOoHgVUvxQ,1666
|
|
13
13
|
model_compression_toolkit/core/common/framework_implementation.py,sha256=pOT9ZmRFL9FY92uUtigrO3sbWGiyVDhHAM1fbA4b5yo,20752
|
|
@@ -17,7 +17,7 @@ model_compression_toolkit/core/common/model_builder_mode.py,sha256=jll9-59OPaE3u
|
|
|
17
17
|
model_compression_toolkit/core/common/model_collector.py,sha256=ofcepKtxc3j2Ouz6BpAKXTzPgjABnpRP47ndmJCXAkk,8352
|
|
18
18
|
model_compression_toolkit/core/common/model_validation.py,sha256=LaG8wd6aZl0OJgieE3SeiVDEPxtk8IHq9-3wSnmWhY4,1214
|
|
19
19
|
model_compression_toolkit/core/common/node_prior_info.py,sha256=WXX_PrGVG9M9I_REG5ZzFBohwmV4yf356sZnrja_FLo,2832
|
|
20
|
-
model_compression_toolkit/core/common/similarity_analyzer.py,sha256=
|
|
20
|
+
model_compression_toolkit/core/common/similarity_analyzer.py,sha256=5av6qDKNDJDHg0p387oOxemxvp2xkfjzB_QNaSHN6po,9199
|
|
21
21
|
model_compression_toolkit/core/common/user_info.py,sha256=dSRMnT-oewmdOziIpEuW-s9K7vTSeyUBxT4z9neXurI,1648
|
|
22
22
|
model_compression_toolkit/core/common/back2framework/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
|
23
23
|
model_compression_toolkit/core/common/back2framework/base_model_builder.py,sha256=V1oShKzbSkdcTvREn8VnQQBzvm-tTHkWMXqMkYozF2s,2023
|
|
@@ -31,7 +31,7 @@ model_compression_toolkit/core/common/fusion/__init__.py,sha256=Rf1RcYmelmdZmBV5
|
|
|
31
31
|
model_compression_toolkit/core/common/fusion/layer_fusing.py,sha256=lOubqpc18TslhXZijWUJQAa1c3jIB2S-M-5HK78wJPQ,5548
|
|
32
32
|
model_compression_toolkit/core/common/graph/__init__.py,sha256=Xr-Lt_qXMdrCnnOaUS_OJP_3iTTGfPCLf8_vSrQgCs0,773
|
|
33
33
|
model_compression_toolkit/core/common/graph/base_graph.py,sha256=06mvCb_HHA5iIOdQ31a-nimhrpSA-jYnuV1Ir76QGa8,38259
|
|
34
|
-
model_compression_toolkit/core/common/graph/base_node.py,sha256=
|
|
34
|
+
model_compression_toolkit/core/common/graph/base_node.py,sha256=38-4iyOdiuWBD3eZtP7T74NYtLuqLaEj_cQZbAFHpG0,28499
|
|
35
35
|
model_compression_toolkit/core/common/graph/edge.py,sha256=buoSEUZwilWBK3WeBKpJ-GeDaUA1SDdOHxDpxU_bGpk,3784
|
|
36
36
|
model_compression_toolkit/core/common/graph/functional_node.py,sha256=RgwWAoMX7YV5c2gZdTBSX-ziTh3OLbebZXr3jitkxDs,3173
|
|
37
37
|
model_compression_toolkit/core/common/graph/graph_matchers.py,sha256=CrDoHYq4iPaflgJWmoJ1K4ziLrRogJvFTVWg8P0UcDU,4744
|
|
@@ -45,10 +45,10 @@ model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py,sha256
|
|
|
45
45
|
model_compression_toolkit/core/common/graph/memory_graph/memory_element.py,sha256=gRmBEFRmyJsNKezQfiwDwQu1cmbGd2wgKCRTH6iw8mw,3961
|
|
46
46
|
model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py,sha256=gw4av_rzn_3oEAPpD3B7PHZDqnxHMjIESevl6ppPnkk,7175
|
|
47
47
|
model_compression_toolkit/core/common/hessian/__init__.py,sha256=bxPVbkIlHFJMiOgTdWMVCqcD9JKV5kb2bVdWUTeLpj8,1021
|
|
48
|
-
model_compression_toolkit/core/common/hessian/hessian_info_service.py,sha256=
|
|
48
|
+
model_compression_toolkit/core/common/hessian/hessian_info_service.py,sha256=wUmyekByJIMjupAb4qttVQHsv2pJ1ydDg17U8d5azWE,9660
|
|
49
49
|
model_compression_toolkit/core/common/hessian/hessian_info_utils.py,sha256=FpXQvJmhiF6PAWX9M_0XZ2Qe8Wv8bXcv0Sj3si5YIjQ,1325
|
|
50
50
|
model_compression_toolkit/core/common/hessian/trace_hessian_calculator.py,sha256=bWxavhwDrSHTQPQclUzzW_Q3FVgKEtwrnD7a9lmHNbo,4379
|
|
51
|
-
model_compression_toolkit/core/common/hessian/trace_hessian_request.py,sha256=
|
|
51
|
+
model_compression_toolkit/core/common/hessian/trace_hessian_request.py,sha256=lgZZgkpCURkMNaipFoRqwsONU74OWmMXSZvh4Dc4aMk,3251
|
|
52
52
|
model_compression_toolkit/core/common/matchers/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
|
|
53
53
|
model_compression_toolkit/core/common/matchers/base_graph_filter.py,sha256=mTk54z0mIbFmPOb4h0xfLtLDookcFyNh8H0pIN5js_M,3091
|
|
54
54
|
model_compression_toolkit/core/common/matchers/base_matcher.py,sha256=JCj-NLAXOJa-GcSX-94PVUTWjooQUd0NemiyNg5uKGQ,2210
|
|
@@ -102,23 +102,23 @@ model_compression_toolkit/core/common/quantization/core_config.py,sha256=KYdyfSm
|
|
|
102
102
|
model_compression_toolkit/core/common/quantization/debug_config.py,sha256=HtkMmneN-EmAzgZK4Vp4M8Sqm5QKdrvNyyZMpaVqYzY,1482
|
|
103
103
|
model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py,sha256=fwF4VILaX-u3ZaFd81xjbJuhg8Ef-JX_KfMXW0TPV-I,7136
|
|
104
104
|
model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=TCgpvtfyzFUedv4sZ6sKzsTyikaVl2ixLj_aHPSC2r0,27014
|
|
105
|
-
model_compression_toolkit/core/common/quantization/quantization_config.py,sha256=
|
|
105
|
+
model_compression_toolkit/core/common/quantization/quantization_config.py,sha256=Y76BZ-X2vE_PXeM9r7D93VsFnbC_evoHhN7zYuvFdzw,7041
|
|
106
106
|
model_compression_toolkit/core/common/quantization/quantization_fn_selection.py,sha256=T1nVWdRJfBQ_iuMQYQSIkjfkR-2n3lAOKGAz_rUZZN0,2190
|
|
107
107
|
model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py,sha256=MwIOBZ4BlZSTIOG75PDvlI3JmZ6t8YjPc1VP9Adei60,3847
|
|
108
108
|
model_compression_toolkit/core/common/quantization/quantize_graph_weights.py,sha256=N005MSvx8UypVpa7XrxNrB2G732n2wHj3RmLyjTgd3I,2728
|
|
109
109
|
model_compression_toolkit/core/common/quantization/quantize_node.py,sha256=cdzGNWfT4MRogIU8ehs0tr3lVjnzAI-jeoS9b4TwVBo,2854
|
|
110
|
-
model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=
|
|
110
|
+
model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=O4qFJw3nBYUD4cGbO8haGXZ2-piSqoRpDKDD74iXSxw,12417
|
|
111
111
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py,sha256=eCDGwsWYLU6z7qbEVb4TozMW_nd5VEP_iCJ6PcvyEPw,1486
|
|
112
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py,sha256=
|
|
113
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py,sha256=
|
|
112
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py,sha256=4x6rgQ5bCz2kysVkjBXxbb2dNEC9N1S2TE46kOFXU_c,23305
|
|
113
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py,sha256=AROE8pZEHmzGNCRoxr5QH2QFYvu1kefSVk6is3fsifI,8027
|
|
114
114
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py,sha256=9gnfJV89jpGwAx8ImJ5E9NjCv3lDtbyulP4OtgWb62M,1772
|
|
115
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py,sha256=
|
|
115
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py,sha256=ejc_obamUndJsv3F1FuOGMrIibS__qDUbAia1H9vwUM,9487
|
|
116
116
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=noEdvGiyyW7acgQ2OFWLedCODibTGYJifC9qo8YIU5U,4558
|
|
117
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py,sha256=
|
|
117
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py,sha256=7ITrOw5ykncpHNghlPNTaDZExFYrPmhRck4oW0GaPe0,6213
|
|
118
118
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py,sha256=7kt0JB8PQE0SW9kg8fCwZ5mBkHNgiRrn0of4ZQYQN2A,41524
|
|
119
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py,sha256=
|
|
120
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py,sha256=
|
|
121
|
-
model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py,sha256=
|
|
119
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py,sha256=kAqVKZYu6FHWlC_PUiytsmXdTX1GzO_S5DWrTXuJBjs,4894
|
|
120
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py,sha256=_ULwlPvzVL_UcYVlUPjDIeXz_99eW26l9FwGzaUu-_M,10789
|
|
121
|
+
model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py,sha256=VG0UqFOQk_7ALdJsUl1wwwFLjE38DxN6-NRZx161XiY,8902
|
|
122
122
|
model_compression_toolkit/core/common/quantization/quantizers/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
|
|
123
123
|
model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py,sha256=P0x_y18LypBxP2tV9OWizheYfILqvaMC8RwHo04sUpQ,2761
|
|
124
124
|
model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py,sha256=CCFhi5LUIcHCCIzDyORvm0FDZLknrctdNwNlPphOQgI,14245
|
|
@@ -135,6 +135,7 @@ model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py,
|
|
|
135
135
|
model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py,sha256=YqLKiO5gFBEvI6noAWeMME1JHaYUaGFMglVFg8AqGjc,10028
|
|
136
136
|
model_compression_toolkit/core/common/substitutions/linear_collapsing.py,sha256=iEtzbWCDXP6EDkTZCtREQ0rpMxhQ2kM9zlcP_0KLq9I,12367
|
|
137
137
|
model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py,sha256=uoauhmncQqUBNvD-qCLIXsIbl_IzrbxSKdxiMig-5W4,2406
|
|
138
|
+
model_compression_toolkit/core/common/substitutions/remove_identity.py,sha256=LjkedR5fnXy4LCEQ7rnVTBI-cTkdDxXtufge5Llj2J0,2038
|
|
138
139
|
model_compression_toolkit/core/common/substitutions/residual_collapsing.py,sha256=doErjlMq-uSObYMSjA6IywSHb3Hz3QCc0HKU68ccrQ4,4767
|
|
139
140
|
model_compression_toolkit/core/common/substitutions/scale_equalization.py,sha256=p57u25qdW2pimxzGwgMXEBV4S-LzXuTVAlIM7830WfU,10966
|
|
140
141
|
model_compression_toolkit/core/common/substitutions/shift_negative_activation.py,sha256=cyy4qnlD-v1Gou62oHNDsf1hWLWkYfcjVv1otFrUltY,29865
|
|
@@ -149,7 +150,7 @@ model_compression_toolkit/core/keras/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7V
|
|
|
149
150
|
model_compression_toolkit/core/keras/constants.py,sha256=Uv3c0UdW55pIVQNW_1HQlgl-dHXREkltOLyzp8G1mTQ,3163
|
|
150
151
|
model_compression_toolkit/core/keras/custom_layer_validation.py,sha256=f-b14wuiIgitBe7d0MmofYhDCTO3IhwJgwrh-Hq_t_U,1192
|
|
151
152
|
model_compression_toolkit/core/keras/default_framework_info.py,sha256=Ha4HTHuiw_KTS5Po1Xnv6GyK9eprpDhYWf-eooS62Ys,4961
|
|
152
|
-
model_compression_toolkit/core/keras/keras_implementation.py,sha256=
|
|
153
|
+
model_compression_toolkit/core/keras/keras_implementation.py,sha256=7RBALls_V0z18WtkWhVEpjAYmaTZvhMxQaDm4J7nkDc,29457
|
|
153
154
|
model_compression_toolkit/core/keras/keras_model_validation.py,sha256=1wNV2clFdC9BzIELRLSO2uKf0xqjLqlkTJudwtCeaJk,1722
|
|
154
155
|
model_compression_toolkit/core/keras/keras_node_prior_info.py,sha256=Aqh31wOPaiZcJIOm-uJwzev0eTMdJyXaOk97rs4z7BU,3879
|
|
155
156
|
model_compression_toolkit/core/keras/resource_utilization_data_facade.py,sha256=Xmk2ZL5CaYdb7iG62HdtZ1F64vap7ffnrsuR3e3G5hc,4851
|
|
@@ -174,6 +175,7 @@ model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_co
|
|
|
174
175
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py,sha256=kjwlKtm5yhNgWVVcW6mN-hn7enwAnn_8-TUZvxZBiQs,4112
|
|
175
176
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py,sha256=l9PUREBf4aRwWILiybdteveeUbh7js-i-hLt8Ma0e4c,26771
|
|
176
177
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py,sha256=IdKOg6AWZWMcmDbOuNdxetS5_zTarXIIffdYL7JTdvk,3872
|
|
178
|
+
model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py,sha256=z2J2Xk7b_w_fEgJmK87lwwBmEoAZpGxPmsBrR24IkZs,2035
|
|
177
179
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py,sha256=gSqUYh76tP7NcZfqFSnuPIrUpyBh6UjjcPJtJxZtOZk,3181
|
|
178
180
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py,sha256=ryes9y1ie-vjBGso2TeO4EXxVk69Ew3iSAhshPz1Ou4,5542
|
|
179
181
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py,sha256=TEaHlIbXj_ZjIdT5TmAICD3WLD3u_7g0fLWQcNzTJuM,7941
|
|
@@ -211,7 +213,7 @@ model_compression_toolkit/core/pytorch/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKW
|
|
|
211
213
|
model_compression_toolkit/core/pytorch/constants.py,sha256=NI-J7REuxn06oEIHsmJ4GqtNC3TbV8xlkJjt5Ar-c4U,2626
|
|
212
214
|
model_compression_toolkit/core/pytorch/default_framework_info.py,sha256=r1XyzUFvrjGcJHQM5ETLsMZIG2yHCr9HMjqf0ti9inw,4175
|
|
213
215
|
model_compression_toolkit/core/pytorch/pytorch_device_config.py,sha256=IoMvTch5awAEPvB6Tg6ANhFGXvfSgv7JLsUBlxpMwk4,4330
|
|
214
|
-
model_compression_toolkit/core/pytorch/pytorch_implementation.py,sha256=
|
|
216
|
+
model_compression_toolkit/core/pytorch/pytorch_implementation.py,sha256=pDA2hL84XrO0zwAsFxM5a92BO_C2bBEtC9GEo4QaKyM,27267
|
|
215
217
|
model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py,sha256=n_B4a6FMwM9D2w8kzy3oenBWZgXNZuIZgTJC6JEuTy0,3250
|
|
216
218
|
model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py,sha256=E6ifk1HdO60k4IRH2EFBzAYWtwUlrGqJoQ66nknpHoQ,4983
|
|
217
219
|
model_compression_toolkit/core/pytorch/utils.py,sha256=dRPiteBg2dBNsHwZyYzXiCIAjnelSoeZZsDXlsTw5JQ,2880
|
|
@@ -238,6 +240,7 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_
|
|
|
238
240
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py,sha256=VNg-VgzCxSyqy2J3neEPl6U0SPO8UIVU_T47bGhz4FE,38459
|
|
239
241
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/permute_call_method.py,sha256=EMCviyFyJFLEKuAUz3rZHLfB9MAU1kywSBL2XQNzLlg,1953
|
|
240
242
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py,sha256=9tI14dWDQkTCgLwVZdqmHxEek5KgYPL3x5fnJWWq7bg,5667
|
|
243
|
+
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py,sha256=joHjwiUxccypMHkTy46rI91VyapLn9yJ2YRo5ISnOH4,1987
|
|
241
244
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py,sha256=jOqlelGhADEZiYUEyYj9oJZ5YLXx8jWNUlVTG6Td79Y,4919
|
|
242
245
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py,sha256=dwRy3ZZ0qShBEQLknkYUVPtgZsk6rjJ4IXf553mcch8,2902
|
|
243
246
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py,sha256=XFtU9yuBmoZlX0f0mS6otMPWMk-RcWs94XdvvTNhW8Y,3303
|
|
@@ -329,7 +332,7 @@ model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py,sha
|
|
|
329
332
|
model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py,sha256=D_mEUK1sb4kY5946oErfw3RC5mfBTVaw3LZRIKWYKcE,4918
|
|
330
333
|
model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py,sha256=4sN5z-6BXrTE5Dp2FX_jKO9ty5iZ2r4RM7XvXtDVLSI,9348
|
|
331
334
|
model_compression_toolkit/gptq/__init__.py,sha256=YKg-tMj9D4Yd0xW9VRD5EN1J5JrmlRbNEF2fOSgodqA,1228
|
|
332
|
-
model_compression_toolkit/gptq/runner.py,sha256=
|
|
335
|
+
model_compression_toolkit/gptq/runner.py,sha256=PQoLK3WhdRuUwZMd1VbtA7KZ9c-zWig_0ShmTtvJSHY,5970
|
|
333
336
|
model_compression_toolkit/gptq/common/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
|
334
337
|
model_compression_toolkit/gptq/common/gptq_config.py,sha256=6xP99B-lK1bwGv3AdqxnW1V51z2VdzQcjvoSgJOmygA,5288
|
|
335
338
|
model_compression_toolkit/gptq/common/gptq_constants.py,sha256=QSm6laLkIV0LYmU0BLtmKp3Fi3SqDfbncFQWOGA1cGU,611
|
|
@@ -341,7 +344,7 @@ model_compression_toolkit/gptq/keras/gptq_keras_implementation.py,sha256=axBwnCS
|
|
|
341
344
|
model_compression_toolkit/gptq/keras/gptq_loss.py,sha256=rbRkF15MYd6nq4G49kcjb_dPTa-XNq9cTkrb93mXawo,6241
|
|
342
345
|
model_compression_toolkit/gptq/keras/gptq_training.py,sha256=zyVcEQzdnNsrIz32U1pqqoi08hzxRdJ2CumaPFGwbDM,19123
|
|
343
346
|
model_compression_toolkit/gptq/keras/graph_info.py,sha256=5IvgGlJlgOmQYmldjdCBv7tuzAoY0HazatG5Pedrg0Q,4639
|
|
344
|
-
model_compression_toolkit/gptq/keras/quantization_facade.py,sha256=
|
|
347
|
+
model_compression_toolkit/gptq/keras/quantization_facade.py,sha256=L5yqjkzw_oszL--dV9EjGoXUYmqM9GmDP7kS7_k96xw,14748
|
|
345
348
|
model_compression_toolkit/gptq/keras/quantizer/__init__.py,sha256=-DK1CDXvlsnEbki4lukZLpl6Xrbo91_jcqxXlG5Eg6Q,963
|
|
346
349
|
model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py,sha256=2YU-x4-Q5f6hkUJf0tw6vcwdNwRMHdefrFjhhyHYsvA,4782
|
|
347
350
|
model_compression_toolkit/gptq/keras/quantizer/quant_utils.py,sha256=Vt7Qb8i4JsE4sFtcjpfM4FTXTtfV1t6SwfoNH8a_Iaw,5055
|
|
@@ -358,7 +361,7 @@ model_compression_toolkit/gptq/pytorch/gptq_loss.py,sha256=kDuWw-6zh17wZpYWh4Xa9
|
|
|
358
361
|
model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py,sha256=tECPTavxn8EEwgLaP2zvxdJH6Vg9jC0YOIMJ7857Sdc,1268
|
|
359
362
|
model_compression_toolkit/gptq/pytorch/gptq_training.py,sha256=xkDa62AdIRwv8dEshffALW9Ri66eseEpyUF9taMUKns,16509
|
|
360
363
|
model_compression_toolkit/gptq/pytorch/graph_info.py,sha256=yXJzDd24zfGs2_vfMovxD1WSh1RxXoPxN4GztOf3P5c,3967
|
|
361
|
-
model_compression_toolkit/gptq/pytorch/quantization_facade.py,sha256=
|
|
364
|
+
model_compression_toolkit/gptq/pytorch/quantization_facade.py,sha256=bZvrMKN2jFJH9fodtbCCAtKNVXIvlOAnIaxcGov320o,13154
|
|
362
365
|
model_compression_toolkit/gptq/pytorch/quantizer/__init__.py,sha256=ZHNHo1yzye44m9_ht4UUZfTpK01RiVR3Tr74-vtnOGI,968
|
|
363
366
|
model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py,sha256=TCA1hAc7raPnrjl06sjFtVM4XUtLtuwAhCGX4U3KGZo,4137
|
|
364
367
|
model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py,sha256=OocYYRqvl7rZ37QT0hTzfJnWGiNCPskg7cziTlR7TRk,3893
|
|
@@ -429,7 +432,7 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py,sh
|
|
|
429
432
|
model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py,sha256=aHoAu5Iye9YVn2HLwNb4X9cUDX1WJt20R5GsNGIAk9E,3337
|
|
430
433
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
|
|
431
434
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py,sha256=fPOzybGECCWPkAD1hmJryWZrf9vd5Od-UOH6PE0lH94,3820
|
|
432
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=
|
|
435
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=F5RG4MnuAwKcNXbfVbPFLQu30-lNax-7knqu20B6udQ,1522
|
|
433
436
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py,sha256=1mMOREEMoNHu_KTMGDp4crN61opKWX6aFn1DrDLvqcc,717
|
|
434
437
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=S-GwMI-JiuPpbtOdd6TSOEjiUFiIs6M2RAiJNJ3O950,10883
|
|
435
438
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=bPBWxopMUHFgiaJjaAfoompwShvfH2wHAouN56PQn0A,6484
|
|
@@ -480,8 +483,8 @@ model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py,sha
|
|
|
480
483
|
model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py,sha256=MVwXNymmFRB2NXIBx4e2mdJ1RfoHxRPYRgjb1MQP5kY,1797
|
|
481
484
|
model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
|
|
482
485
|
model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py,sha256=7bbzqJN8ZAycVDvZr_5xC-niTAR5df8f03Kooev_pfg,3047
|
|
483
|
-
mct_nightly-2.0.0.
|
|
484
|
-
mct_nightly-2.0.0.
|
|
485
|
-
mct_nightly-2.0.0.
|
|
486
|
-
mct_nightly-2.0.0.
|
|
487
|
-
mct_nightly-2.0.0.
|
|
486
|
+
mct_nightly-2.0.0.20240418.439.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
|
487
|
+
mct_nightly-2.0.0.20240418.439.dist-info/METADATA,sha256=ES0claumrC9y2bX7XAFj8RD6nZNBClpiLEVCOphlRxE,18795
|
|
488
|
+
mct_nightly-2.0.0.20240418.439.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
489
|
+
mct_nightly-2.0.0.20240418.439.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
|
490
|
+
mct_nightly-2.0.0.20240418.439.dist-info/RECORD,,
|
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
|
27
27
|
from model_compression_toolkit import pruning
|
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
|
29
29
|
|
|
30
|
-
__version__ = "2.0.0.
|
|
30
|
+
__version__ = "2.0.0.20240418.000439"
|
|
@@ -17,7 +17,6 @@ from functools import partial
|
|
|
17
17
|
from typing import Callable, List
|
|
18
18
|
|
|
19
19
|
from model_compression_toolkit.constants import HESSIAN_NUM_ITERATIONS
|
|
20
|
-
from model_compression_toolkit.core.common import Graph
|
|
21
20
|
from model_compression_toolkit.core.common.hessian.trace_hessian_request import TraceHessianRequest
|
|
22
21
|
from model_compression_toolkit.logger import Logger
|
|
23
22
|
|
|
@@ -38,7 +37,7 @@ class HessianInfoService:
|
|
|
38
37
|
"""
|
|
39
38
|
|
|
40
39
|
def __init__(self,
|
|
41
|
-
graph
|
|
40
|
+
graph,
|
|
42
41
|
representative_dataset: Callable,
|
|
43
42
|
fw_impl,
|
|
44
43
|
num_iterations_for_approximation: int = HESSIAN_NUM_ITERATIONS
|
|
@@ -151,7 +150,7 @@ class HessianInfoService:
|
|
|
151
150
|
if required_size==0:
|
|
152
151
|
return []
|
|
153
152
|
|
|
154
|
-
Logger.info(f"
|
|
153
|
+
Logger.info(f"\nEnsuring {required_size} Hessian-trace approximation for node {trace_hessian_request.target_node}.")
|
|
155
154
|
|
|
156
155
|
# Replace request of a reused target node with a request of the 'reuse group'.
|
|
157
156
|
if trace_hessian_request.target_node.reuse_group:
|
|
@@ -16,8 +16,6 @@ from typing import List
|
|
|
16
16
|
|
|
17
17
|
from enum import Enum
|
|
18
18
|
|
|
19
|
-
from model_compression_toolkit.core.common import BaseNode
|
|
20
|
-
|
|
21
19
|
|
|
22
20
|
class HessianMode(Enum):
|
|
23
21
|
"""
|
|
@@ -54,7 +52,7 @@ class TraceHessianRequest:
|
|
|
54
52
|
def __init__(self,
|
|
55
53
|
mode: HessianMode,
|
|
56
54
|
granularity: HessianInfoGranularity,
|
|
57
|
-
target_node
|
|
55
|
+
target_node,
|
|
58
56
|
):
|
|
59
57
|
"""
|
|
60
58
|
Attributes:
|
|
@@ -26,14 +26,16 @@ class QuantizationErrorMethod(Enum):
|
|
|
26
26
|
|
|
27
27
|
NOCLIPPING - Use min/max values as thresholds.
|
|
28
28
|
|
|
29
|
-
MSE - Use
|
|
29
|
+
MSE - Use mean square error for minimizing quantization noise.
|
|
30
30
|
|
|
31
|
-
MAE - Use
|
|
31
|
+
MAE - Use mean absolute error for minimizing quantization noise.
|
|
32
32
|
|
|
33
33
|
KL - Use KL-divergence to make signals distributions to be similar as possible.
|
|
34
34
|
|
|
35
35
|
Lp - Use Lp-norm to minimizing quantization noise.
|
|
36
36
|
|
|
37
|
+
HMSE - Use Hessian-based mean squared error for minimizing quantization noise. This method is using Hessian scores to factorize more valuable parameters when computing the error induced by quantization.
|
|
38
|
+
|
|
37
39
|
"""
|
|
38
40
|
|
|
39
41
|
NOCLIPPING = 0
|
|
@@ -41,6 +43,7 @@ class QuantizationErrorMethod(Enum):
|
|
|
41
43
|
MAE = 2
|
|
42
44
|
KL = 4
|
|
43
45
|
LP = 5
|
|
46
|
+
HMSE = 6
|
|
44
47
|
|
|
45
48
|
|
|
46
49
|
class QuantizationConfig:
|
model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py
CHANGED
|
@@ -13,13 +13,16 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
# ==============================================================================
|
|
15
15
|
from copy import deepcopy
|
|
16
|
-
from typing import Tuple, Callable
|
|
16
|
+
from typing import Tuple, Callable, List
|
|
17
17
|
import numpy as np
|
|
18
18
|
import model_compression_toolkit.core.common.quantization.quantization_config as qc
|
|
19
|
+
from model_compression_toolkit.core.common.hessian import TraceHessianRequest, HessianMode, HessianInfoGranularity, \
|
|
20
|
+
HessianInfoService
|
|
19
21
|
from model_compression_toolkit.core.common.similarity_analyzer import compute_mse, compute_mae, compute_lp_norm
|
|
20
22
|
from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
|
|
21
|
-
from model_compression_toolkit.constants import FLOAT_32
|
|
22
|
-
from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import uniform_quantize_tensor
|
|
23
|
+
from model_compression_toolkit.constants import FLOAT_32, NUM_QPARAM_HESSIAN_SAMPLES
|
|
24
|
+
from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import uniform_quantize_tensor, \
|
|
25
|
+
reshape_tensor_for_per_channel_search
|
|
23
26
|
|
|
24
27
|
|
|
25
28
|
def _mse_error_histogram(q_bins: np.ndarray,
|
|
@@ -371,13 +374,63 @@ def _get_sliced_histogram(bins: np.ndarray,
|
|
|
371
374
|
return bins_subset, counts_subset
|
|
372
375
|
|
|
373
376
|
|
|
377
|
+
def _compute_hessian_for_hmse(node,
|
|
378
|
+
hessian_info_service: HessianInfoService,
|
|
379
|
+
num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES) -> List[np.ndarray]:
|
|
380
|
+
"""
|
|
381
|
+
Compute and retrieve Hessian-based scores for using during HMSE error computation.
|
|
382
|
+
|
|
383
|
+
Args:
|
|
384
|
+
node: The node to compute Hessian-based scores for.
|
|
385
|
+
hessian_info_service: HessianInfoService object for retrieving Hessian-based scores.
|
|
386
|
+
num_hessian_samples: Number of samples to approximate Hessian-based scores on.
|
|
387
|
+
|
|
388
|
+
Returns: A list with computed Hessian-based scores tensors for the given node.
|
|
389
|
+
|
|
390
|
+
"""
|
|
391
|
+
_request = TraceHessianRequest(mode=HessianMode.WEIGHTS,
|
|
392
|
+
granularity=HessianInfoGranularity.PER_ELEMENT,
|
|
393
|
+
target_node=node)
|
|
394
|
+
_scores_for_node = hessian_info_service.fetch_hessian(_request,
|
|
395
|
+
required_size=num_hessian_samples)
|
|
396
|
+
|
|
397
|
+
return _scores_for_node
|
|
398
|
+
|
|
399
|
+
|
|
400
|
+
def _hmse_error_function_wrapper(float_tensor: np.ndarray,
|
|
401
|
+
fxp_tensor: np.ndarray,
|
|
402
|
+
axis: int,
|
|
403
|
+
norm: bool,
|
|
404
|
+
hessian_scores: np.ndarray):
|
|
405
|
+
"""
|
|
406
|
+
This function wraps the HMSE error method to enable using it during parameters selection.
|
|
407
|
+
|
|
408
|
+
Args:
|
|
409
|
+
float_tensor: Float tensor.
|
|
410
|
+
fxp_tensor: Quantized tensor.
|
|
411
|
+
axis: Axis along which the operation has been performed. If not None, then per-channel computation is expected.
|
|
412
|
+
norm: Indicates whether to normalize the result of the error function.
|
|
413
|
+
hessian_scores: A tensor with Hessian-based scores to use for Hessian-based MSE (HMSE) error computation.
|
|
414
|
+
|
|
415
|
+
Returns: The HMSE error between the float and fixed-point tensors.
|
|
416
|
+
|
|
417
|
+
"""
|
|
418
|
+
if axis is not None:
|
|
419
|
+
hessian_scores = reshape_tensor_for_per_channel_search(hessian_scores, 0)
|
|
420
|
+
|
|
421
|
+
return compute_mse(float_tensor, fxp_tensor, axis, norm, weights=hessian_scores)
|
|
422
|
+
|
|
423
|
+
|
|
374
424
|
def get_threshold_selection_tensor_error_function(quantization_method: QuantizationMethod,
|
|
375
425
|
quant_error_method: qc.QuantizationErrorMethod,
|
|
376
426
|
p: int,
|
|
377
427
|
axis: int = None,
|
|
378
428
|
norm: bool = False,
|
|
379
429
|
n_bits: int = 8,
|
|
380
|
-
signed: bool = True
|
|
430
|
+
signed: bool = True,
|
|
431
|
+
node=None,
|
|
432
|
+
hessian_info_service: HessianInfoService = None,
|
|
433
|
+
num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES) -> Callable:
|
|
381
434
|
"""
|
|
382
435
|
Returns the error function compatible to the provided threshold method,
|
|
383
436
|
to be used in the threshold optimization search for tensor quantization.
|
|
@@ -389,6 +442,9 @@ def get_threshold_selection_tensor_error_function(quantization_method: Quantizat
|
|
|
389
442
|
norm: Indicates whether to normalize the result of the error function.
|
|
390
443
|
n_bits: Number of bits used to quantize the tensor.
|
|
391
444
|
signed: Indicates whether the input is signed.
|
|
445
|
+
node: The node for which the quantization error is computed (used only with HMSE error method).
|
|
446
|
+
hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (used only with HMSE error method).
|
|
447
|
+
num_hessian_samples: Number of samples to approximate Hessian-based scores on (used only with HMSE error method).
|
|
392
448
|
|
|
393
449
|
Returns: a Callable method that calculates the error between a tensor and a quantized tensor.
|
|
394
450
|
"""
|
|
@@ -418,6 +474,13 @@ def get_threshold_selection_tensor_error_function(quantization_method: Quantizat
|
|
|
418
474
|
n_bits=n_bits,
|
|
419
475
|
per_channel=True)
|
|
420
476
|
|
|
477
|
+
if quant_error_method == qc.QuantizationErrorMethod.HMSE:
|
|
478
|
+
node_hessian_scores = _compute_hessian_for_hmse(node, hessian_info_service, num_hessian_samples)
|
|
479
|
+
node_hessian_scores = np.sqrt(np.mean(node_hessian_scores, axis=0))
|
|
480
|
+
|
|
481
|
+
return lambda x, y, threshold: _hmse_error_function_wrapper(x, y, norm=norm, axis=axis,
|
|
482
|
+
hessian_scores=node_hessian_scores)
|
|
483
|
+
|
|
421
484
|
quant_method_error_function_mapping = {
|
|
422
485
|
qc.QuantizationErrorMethod.MSE: lambda x, y, threshold: compute_mse(x, y, norm=norm, axis=axis),
|
|
423
486
|
qc.QuantizationErrorMethod.MAE: lambda x, y, threshold: compute_mae(x, y, norm=norm, axis=axis),
|
|
@@ -18,7 +18,8 @@ from sklearn.cluster import KMeans
|
|
|
18
18
|
|
|
19
19
|
import model_compression_toolkit.core.common.quantization.quantization_config as qc
|
|
20
20
|
from model_compression_toolkit.constants import LUT_VALUES, MIN_THRESHOLD, SCALE_PER_CHANNEL, \
|
|
21
|
-
LUT_VALUES_BITWIDTH, THRESHOLD
|
|
21
|
+
LUT_VALUES_BITWIDTH, THRESHOLD, NUM_QPARAM_HESSIAN_SAMPLES
|
|
22
|
+
from model_compression_toolkit.core.common.hessian import HessianInfoService
|
|
22
23
|
from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import \
|
|
23
24
|
max_power_of_two, int_quantization_with_threshold
|
|
24
25
|
from model_compression_toolkit.core.common.quantization.quantization_params_generation.symmetric_selection import \
|
|
@@ -37,7 +38,10 @@ def lut_kmeans_tensor(tensor_data: np.ndarray,
|
|
|
37
38
|
n_iter: int = 10,
|
|
38
39
|
min_threshold: float = MIN_THRESHOLD,
|
|
39
40
|
quant_error_method: qc.QuantizationErrorMethod = None,
|
|
40
|
-
is_symmetric=False
|
|
41
|
+
is_symmetric=False,
|
|
42
|
+
node=None,
|
|
43
|
+
hessian_info_service: HessianInfoService = None,
|
|
44
|
+
num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES) -> dict:
|
|
41
45
|
"""
|
|
42
46
|
The quantizer first finds the closest max value per channel of tensor_data.
|
|
43
47
|
Now, we divide tensor_data with the threshold vector per channel. In addition, we scale the result to the range
|
|
@@ -53,7 +57,10 @@ def lut_kmeans_tensor(tensor_data: np.ndarray,
|
|
|
53
57
|
n_iter: Number of iterations to search_methods for the optimal threshold.
|
|
54
58
|
min_threshold: Minimal threshold to chose when the computed one is smaller.
|
|
55
59
|
quant_error_method: an error function to optimize the parameters' selection accordingly (not used for this method).
|
|
56
|
-
is_symmetric (bool): Whether to apply symmetric weight quantization (default is False, meaning power of 2 quantization)
|
|
60
|
+
is_symmetric (bool): Whether to apply symmetric weight quantization (default is False, meaning power of 2 quantization).
|
|
61
|
+
node: The node for which the quantization error is computed (not used for this method).
|
|
62
|
+
hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (not used for this method).
|
|
63
|
+
num_hessian_samples: Number of samples to approximate Hessian-based scores on (not used for this method).
|
|
57
64
|
|
|
58
65
|
Returns:
|
|
59
66
|
A dictionary containing the cluster assignments according to the k-means algorithm,
|
|
@@ -15,7 +15,8 @@
|
|
|
15
15
|
import numpy as np
|
|
16
16
|
|
|
17
17
|
import model_compression_toolkit.core.common.quantization.quantization_config as qc
|
|
18
|
-
from model_compression_toolkit.constants import MIN_THRESHOLD, THRESHOLD
|
|
18
|
+
from model_compression_toolkit.constants import MIN_THRESHOLD, THRESHOLD, NUM_QPARAM_HESSIAN_SAMPLES
|
|
19
|
+
from model_compression_toolkit.core.common.hessian import HessianInfoService
|
|
19
20
|
from model_compression_toolkit.core.common.quantization.quantization_params_generation.qparams_search import \
|
|
20
21
|
qparams_selection_tensor_search, qparams_selection_histogram_search
|
|
21
22
|
from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import max_power_of_two, get_tensor_max
|
|
@@ -31,7 +32,11 @@ def power_of_two_selection_tensor(tensor_data: np.ndarray,
|
|
|
31
32
|
channel_axis: int = 1,
|
|
32
33
|
n_iter: int = 10,
|
|
33
34
|
min_threshold: float = MIN_THRESHOLD,
|
|
34
|
-
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE
|
|
35
|
+
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE,
|
|
36
|
+
node=None,
|
|
37
|
+
hessian_info_service: HessianInfoService = None,
|
|
38
|
+
num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES,
|
|
39
|
+
) -> dict:
|
|
35
40
|
"""
|
|
36
41
|
Compute the power of two threshold based on the provided QuantizationErrorMethod to quantize the tensor.
|
|
37
42
|
Different search is applied, depends on the value of the selected QuantizationErrorMethod.
|
|
@@ -45,6 +50,9 @@ def power_of_two_selection_tensor(tensor_data: np.ndarray,
|
|
|
45
50
|
n_iter: Number of iterations to search for the optimal threshold (not used for this method).
|
|
46
51
|
min_threshold: Minimal threshold to use if threshold is too small (not used for this method).
|
|
47
52
|
quant_error_method: an error function to optimize the parameters' selection accordingly.
|
|
53
|
+
node: The node for which the quantization error is computed (used only with HMSE error method).
|
|
54
|
+
hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (used only with HMSE error method).
|
|
55
|
+
num_hessian_samples: Number of samples to approximate Hessian-based scores on (used only with HMSE error method).
|
|
48
56
|
|
|
49
57
|
Returns:
|
|
50
58
|
Power of two threshold to quantize the tensor in a power of 2 manner.
|
|
@@ -57,8 +65,10 @@ def power_of_two_selection_tensor(tensor_data: np.ndarray,
|
|
|
57
65
|
signed = True # weights are always signed
|
|
58
66
|
axis = -1 if per_channel else None
|
|
59
67
|
error_function = get_threshold_selection_tensor_error_function(QuantizationMethod.POWER_OF_TWO,
|
|
60
|
-
quant_error_method, p, axis=axis, norm=False,
|
|
61
|
-
signed=signed
|
|
68
|
+
quant_error_method, p, axis=axis, norm=False,
|
|
69
|
+
n_bits=n_bits, signed=signed, node=node,
|
|
70
|
+
hessian_info_service=hessian_info_service,
|
|
71
|
+
num_hessian_samples=num_hessian_samples)
|
|
62
72
|
threshold = qparams_selection_tensor_search(error_function,
|
|
63
73
|
tensor_data,
|
|
64
74
|
n_bits,
|
|
@@ -12,10 +12,15 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
# ==============================================================================
|
|
15
|
+
import copy
|
|
16
|
+
|
|
15
17
|
from tqdm import tqdm
|
|
16
18
|
from typing import List
|
|
17
19
|
|
|
20
|
+
from model_compression_toolkit.constants import NUM_QPARAM_HESSIAN_SAMPLES
|
|
21
|
+
from model_compression_toolkit.core import QuantizationErrorMethod
|
|
18
22
|
from model_compression_toolkit.core.common import Graph, BaseNode
|
|
23
|
+
from model_compression_toolkit.core.common.hessian import HessianInfoService
|
|
19
24
|
from model_compression_toolkit.core.common.quantization.quantization_params_generation.qparams_activations_computation \
|
|
20
25
|
import get_activations_qparams
|
|
21
26
|
from model_compression_toolkit.core.common.quantization.quantization_params_generation.qparams_weights_computation import \
|
|
@@ -25,7 +30,9 @@ from model_compression_toolkit.logger import Logger
|
|
|
25
30
|
|
|
26
31
|
def calculate_quantization_params(graph: Graph,
|
|
27
32
|
nodes: List[BaseNode] = [],
|
|
28
|
-
specific_nodes: bool = False
|
|
33
|
+
specific_nodes: bool = False,
|
|
34
|
+
hessian_info_service: HessianInfoService = None,
|
|
35
|
+
num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES):
|
|
29
36
|
"""
|
|
30
37
|
For a graph, go over its nodes, compute quantization params (for both weights and activations according
|
|
31
38
|
to the given framework info), and create and attach a NodeQuantizationConfig to each node (containing the
|
|
@@ -39,6 +46,8 @@ def calculate_quantization_params(graph: Graph,
|
|
|
39
46
|
graph: Graph to compute its nodes' thresholds.
|
|
40
47
|
nodes: List of nodes to compute their thresholds instead of computing it for all nodes in the graph.
|
|
41
48
|
specific_nodes: Flag to compute thresholds for only specific nodes.
|
|
49
|
+
hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (used only with HMSE error method).
|
|
50
|
+
num_hessian_samples: Number of samples to approximate Hessian-based scores on (used only with HMSE error method).
|
|
42
51
|
|
|
43
52
|
"""
|
|
44
53
|
|
|
@@ -60,10 +69,28 @@ def calculate_quantization_params(graph: Graph,
|
|
|
60
69
|
output_channels_axis = channels_axis[0]
|
|
61
70
|
else:
|
|
62
71
|
output_channels_axis = None
|
|
72
|
+
|
|
73
|
+
mod_attr_cfg = attr_cfg
|
|
74
|
+
|
|
75
|
+
if attr_cfg.weights_error_method == QuantizationErrorMethod.HMSE:
|
|
76
|
+
kernel_attr_name = graph.fw_info.get_kernel_op_attributes(n.type)
|
|
77
|
+
if len(kernel_attr_name) > 0:
|
|
78
|
+
kernel_attr_name = kernel_attr_name[0]
|
|
79
|
+
|
|
80
|
+
if kernel_attr_name is None or kernel_attr_name not in attr:
|
|
81
|
+
Logger.warning(f"The HMSE error method for parameters selection is only supported for "
|
|
82
|
+
f"kernel weights attributes. Running parameters selection for attribute "
|
|
83
|
+
f"'{attr}' in node '{n.name}' with the default MSE error method instead.")
|
|
84
|
+
mod_attr_cfg = copy.deepcopy(attr_cfg)
|
|
85
|
+
mod_attr_cfg.weights_error_method = QuantizationErrorMethod.MSE
|
|
86
|
+
|
|
63
87
|
weights_params = get_weights_qparams(n.get_weights_by_keys(attr),
|
|
64
88
|
candidate_qc.weights_quantization_cfg,
|
|
65
|
-
|
|
66
|
-
output_channels_axis
|
|
89
|
+
mod_attr_cfg,
|
|
90
|
+
output_channels_axis,
|
|
91
|
+
node=n,
|
|
92
|
+
hessian_info_service=hessian_info_service,
|
|
93
|
+
num_hessian_samples=num_hessian_samples)
|
|
67
94
|
attr_cfg.set_weights_quantization_param(weights_params)
|
|
68
95
|
|
|
69
96
|
if n.is_activation_quantization_enabled():
|
|
@@ -12,11 +12,12 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
# ==============================================================================
|
|
15
|
-
from typing import Dict, Any
|
|
15
|
+
from typing import Dict, Any
|
|
16
16
|
|
|
17
17
|
import numpy as np
|
|
18
18
|
|
|
19
|
-
from model_compression_toolkit.
|
|
19
|
+
from model_compression_toolkit.constants import NUM_QPARAM_HESSIAN_SAMPLES
|
|
20
|
+
from model_compression_toolkit.core.common.hessian import HessianInfoService
|
|
20
21
|
from model_compression_toolkit.defaultdict import DefaultDict
|
|
21
22
|
from model_compression_toolkit.core.common.framework_info import FrameworkInfo
|
|
22
23
|
from model_compression_toolkit.core.common.quantization.node_quantization_config import NodeWeightsQuantizationConfig, \
|
|
@@ -27,31 +28,40 @@ from model_compression_toolkit.core.common.quantization.node_quantization_config
|
|
|
27
28
|
dummy_channel_mapping = DefaultDict(default_value=(None, None))
|
|
28
29
|
|
|
29
30
|
|
|
30
|
-
def get_weights_qparams(
|
|
31
|
+
def get_weights_qparams(weights_attr_values: np.ndarray,
|
|
31
32
|
weights_quant_config: NodeWeightsQuantizationConfig,
|
|
32
33
|
attr_quant_config: WeightsAttrQuantizationConfig,
|
|
33
|
-
output_channels_axis: int
|
|
34
|
+
output_channels_axis: int,
|
|
35
|
+
node=None,
|
|
36
|
+
hessian_info_service: HessianInfoService = None,
|
|
37
|
+
num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES) -> Dict[Any, Any]:
|
|
34
38
|
"""
|
|
35
39
|
Compute thresholds to quantize a kernel according to a NodeWeightsQuantizationConfig
|
|
36
40
|
instance.
|
|
37
41
|
|
|
38
42
|
Args:
|
|
39
|
-
|
|
43
|
+
weights_attr_values: Weights attribute parameter to compute the quantization thresholds for.
|
|
40
44
|
weights_quant_config: Weights quantization configuration to define how the thresholds are computed.
|
|
41
45
|
attr_quant_config: A specific weights attribute quantization configuration to get its params.
|
|
42
46
|
output_channels_axis: Index of the kernel output channels dimension.
|
|
47
|
+
node: The node for which the quantization error is computed (used only with HMSE error method).
|
|
48
|
+
hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (used only with HMSE error method).
|
|
49
|
+
num_hessian_samples: Number of samples to approximate Hessian-based scores on (used only with HMSE error method).
|
|
43
50
|
|
|
44
51
|
Returns:
|
|
45
52
|
A dictionary with the quantization threshold of the kernel.
|
|
46
53
|
"""
|
|
47
54
|
if attr_quant_config.weights_quantization_params_fn is not None:
|
|
48
|
-
weights_params = attr_quant_config.weights_quantization_params_fn(
|
|
55
|
+
weights_params = attr_quant_config.weights_quantization_params_fn(weights_attr_values,
|
|
49
56
|
p=attr_quant_config.l_p_value,
|
|
50
57
|
n_bits=attr_quant_config.weights_n_bits,
|
|
51
58
|
per_channel=attr_quant_config.weights_per_channel_threshold and output_channels_axis is not None,
|
|
52
59
|
channel_axis=output_channels_axis,
|
|
53
60
|
min_threshold=weights_quant_config.min_threshold,
|
|
54
|
-
quant_error_method=attr_quant_config.weights_error_method
|
|
61
|
+
quant_error_method=attr_quant_config.weights_error_method,
|
|
62
|
+
node=node,
|
|
63
|
+
hessian_info_service=hessian_info_service,
|
|
64
|
+
num_hessian_samples=num_hessian_samples)
|
|
55
65
|
else:
|
|
56
66
|
weights_params = {}
|
|
57
67
|
|
|
@@ -15,7 +15,8 @@
|
|
|
15
15
|
import numpy as np
|
|
16
16
|
|
|
17
17
|
import model_compression_toolkit.core.common.quantization.quantization_config as qc
|
|
18
|
-
from model_compression_toolkit.constants import MIN_THRESHOLD, THRESHOLD
|
|
18
|
+
from model_compression_toolkit.constants import MIN_THRESHOLD, THRESHOLD, NUM_QPARAM_HESSIAN_SAMPLES
|
|
19
|
+
from model_compression_toolkit.core.common.hessian import HessianInfoService
|
|
19
20
|
from model_compression_toolkit.core.common.quantization.quantization_params_generation.error_functions import \
|
|
20
21
|
get_threshold_selection_tensor_error_function, get_threshold_selection_histogram_error_function, _kl_error_histogram
|
|
21
22
|
from model_compression_toolkit.core.common.quantization.quantization_params_generation.qparams_search import \
|
|
@@ -33,7 +34,10 @@ def symmetric_selection_tensor(tensor_data: np.ndarray,
|
|
|
33
34
|
channel_axis: int = 1,
|
|
34
35
|
n_iter: int = 10,
|
|
35
36
|
min_threshold: float = MIN_THRESHOLD,
|
|
36
|
-
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE
|
|
37
|
+
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE,
|
|
38
|
+
node=None,
|
|
39
|
+
hessian_info_service: HessianInfoService = None,
|
|
40
|
+
num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES) -> dict:
|
|
37
41
|
"""
|
|
38
42
|
Compute the optimal threshold based on the provided QuantizationErrorMethod to quantize the tensor.
|
|
39
43
|
Different search is applied, depends on the value of the selected QuantizationErrorMethod.
|
|
@@ -47,6 +51,9 @@ def symmetric_selection_tensor(tensor_data: np.ndarray,
|
|
|
47
51
|
n_iter: Number of iterations to search for the optimal threshold (not used for this method).
|
|
48
52
|
min_threshold: Minimal threshold to use if threshold is too small (not used for this method).
|
|
49
53
|
quant_error_method: an error function to optimize the parameters' selection accordingly.
|
|
54
|
+
node: The node for which the quantization error is computed (used only with HMSE error method).
|
|
55
|
+
hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (used only with HMSE error method).
|
|
56
|
+
num_hessian_samples: Number of samples to approximate Hessian-based scores on (used only with HMSE error method).
|
|
50
57
|
|
|
51
58
|
Returns:
|
|
52
59
|
Optimal threshold to quantize the tensor in a symmetric manner.
|
|
@@ -59,7 +66,11 @@ def symmetric_selection_tensor(tensor_data: np.ndarray,
|
|
|
59
66
|
else:
|
|
60
67
|
signed = True # weights are always signed
|
|
61
68
|
axis = -1 if per_channel else None
|
|
62
|
-
error_function = get_threshold_selection_tensor_error_function(QuantizationMethod.SYMMETRIC, quant_error_method,
|
|
69
|
+
error_function = get_threshold_selection_tensor_error_function(QuantizationMethod.SYMMETRIC, quant_error_method,
|
|
70
|
+
p, axis=axis, norm=False, n_bits=n_bits,
|
|
71
|
+
signed=signed, node=node,
|
|
72
|
+
hessian_info_service=hessian_info_service,
|
|
73
|
+
num_hessian_samples=num_hessian_samples)
|
|
63
74
|
threshold = qparams_symmetric_selection_tensor_search(error_function,
|
|
64
75
|
tensor_data,
|
|
65
76
|
tensor_max,
|
|
@@ -15,7 +15,8 @@
|
|
|
15
15
|
import numpy as np
|
|
16
16
|
|
|
17
17
|
import model_compression_toolkit.core.common.quantization.quantization_config as qc
|
|
18
|
-
from model_compression_toolkit.constants import MIN_THRESHOLD, RANGE_MIN, RANGE_MAX
|
|
18
|
+
from model_compression_toolkit.constants import MIN_THRESHOLD, RANGE_MIN, RANGE_MAX, NUM_QPARAM_HESSIAN_SAMPLES
|
|
19
|
+
from model_compression_toolkit.core.common.hessian import HessianInfoService
|
|
19
20
|
from model_compression_toolkit.core.common.quantization.quantization_params_generation.qparams_search import \
|
|
20
21
|
qparams_uniform_selection_tensor_search, qparams_uniform_selection_histogram_search
|
|
21
22
|
from model_compression_toolkit.core.common.quantization.quantization_params_generation.error_functions import \
|
|
@@ -31,7 +32,10 @@ def uniform_selection_tensor(tensor_data: np.ndarray,
|
|
|
31
32
|
channel_axis: int = 1,
|
|
32
33
|
n_iter: int = 10,
|
|
33
34
|
min_threshold: float = MIN_THRESHOLD,
|
|
34
|
-
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE
|
|
35
|
+
quant_error_method: qc.QuantizationErrorMethod = qc.QuantizationErrorMethod.MSE,
|
|
36
|
+
node=None,
|
|
37
|
+
hessian_info_service: HessianInfoService = None,
|
|
38
|
+
num_hessian_samples: int = NUM_QPARAM_HESSIAN_SAMPLES) -> dict:
|
|
35
39
|
"""
|
|
36
40
|
Compute the optimal quantization range based on the provided QuantizationErrorMethod
|
|
37
41
|
to uniformly quantize the tensor.
|
|
@@ -46,6 +50,9 @@ def uniform_selection_tensor(tensor_data: np.ndarray,
|
|
|
46
50
|
n_iter: Number of iterations to search for the optimal threshold (not used for this method).
|
|
47
51
|
min_threshold: Minimal threshold to use if threshold is too small (not used for this method).
|
|
48
52
|
quant_error_method: an error function to optimize the range parameters' selection accordingly.
|
|
53
|
+
node: The node for which the quantization error is computed (used only with HMSE error method).
|
|
54
|
+
hessian_info_service: HessianInfoService object for retrieving Hessian-based scores (used only with HMSE error method).
|
|
55
|
+
num_hessian_samples: Number of samples to approximate Hessian-based scores on (used only with HMSE error method).
|
|
49
56
|
|
|
50
57
|
Returns:
|
|
51
58
|
Optimal quantization range to quantize the tensor uniformly.
|
|
@@ -57,7 +64,10 @@ def uniform_selection_tensor(tensor_data: np.ndarray,
|
|
|
57
64
|
mm = tensor_min, tensor_max
|
|
58
65
|
else:
|
|
59
66
|
axis = -1 if per_channel else None
|
|
60
|
-
error_function = get_threshold_selection_tensor_error_function(QuantizationMethod.UNIFORM, quant_error_method,
|
|
67
|
+
error_function = get_threshold_selection_tensor_error_function(QuantizationMethod.UNIFORM, quant_error_method,
|
|
68
|
+
p, axis=axis, norm=False, node=node,
|
|
69
|
+
hessian_info_service=hessian_info_service,
|
|
70
|
+
num_hessian_samples=num_hessian_samples)
|
|
61
71
|
mm = qparams_uniform_selection_tensor_search(error_function,
|
|
62
72
|
tensor_data,
|
|
63
73
|
tensor_min,
|
|
@@ -24,7 +24,8 @@ from model_compression_toolkit.core.common.graph.base_graph import Graph
|
|
|
24
24
|
from model_compression_toolkit.core.common.quantization.candidate_node_quantization_config import \
|
|
25
25
|
CandidateNodeQuantizationConfig
|
|
26
26
|
from model_compression_toolkit.core.common.quantization.node_quantization_config import NodeActivationQuantizationConfig
|
|
27
|
-
from model_compression_toolkit.core.common.quantization.quantization_config import QuantizationConfig
|
|
27
|
+
from model_compression_toolkit.core.common.quantization.quantization_config import QuantizationConfig, \
|
|
28
|
+
QuantizationErrorMethod
|
|
28
29
|
from model_compression_toolkit.core.common.quantization.quantization_params_fn_selection import \
|
|
29
30
|
get_activation_quantization_params_fn, get_weights_quantization_params_fn
|
|
30
31
|
from model_compression_toolkit.core.common.quantization.quantization_fn_selection import \
|
|
@@ -36,19 +37,31 @@ from model_compression_toolkit.target_platform_capabilities.target_platform.op_q
|
|
|
36
37
|
|
|
37
38
|
def set_quantization_configuration_to_graph(graph: Graph,
|
|
38
39
|
quant_config: QuantizationConfig,
|
|
39
|
-
mixed_precision_enable: bool = False
|
|
40
|
+
mixed_precision_enable: bool = False,
|
|
41
|
+
running_gptq: bool = False) -> Graph:
|
|
40
42
|
"""
|
|
41
43
|
Add quantization configuration for each graph node.
|
|
42
44
|
|
|
43
45
|
Args:
|
|
44
46
|
graph: Graph for which to add quantization info to each node.
|
|
45
47
|
quant_config: Quantization configuration containing parameters for how the graph should be quantized.
|
|
46
|
-
mixed_precision_enable: is mixed precision enabled
|
|
48
|
+
mixed_precision_enable: is mixed precision enabled.
|
|
49
|
+
running_gptq: Whether or not a GPTQ optimization is planned to run after the PTQ process.
|
|
47
50
|
|
|
48
51
|
Returns:
|
|
49
52
|
The graph with quantization configurations attached to each node in it.
|
|
50
53
|
"""
|
|
51
54
|
|
|
55
|
+
if quant_config.weights_error_method == QuantizationErrorMethod.HMSE:
|
|
56
|
+
if not running_gptq:
|
|
57
|
+
Logger.warning(f"The HMSE error method for parameters selection is only supported when running GPTQ "
|
|
58
|
+
f"optimization due to long execution time that is not suitable for basic PTQ. "
|
|
59
|
+
f"Using the default MSE error method instead.")
|
|
60
|
+
quant_config.weights_error_method = QuantizationErrorMethod.MSE
|
|
61
|
+
else:
|
|
62
|
+
Logger.warning("Using the HMSE error method for weights quantization parameters search. "
|
|
63
|
+
"Note: This method may significantly increase runtime during the parameter search process.")
|
|
64
|
+
|
|
52
65
|
for n in graph.nodes:
|
|
53
66
|
set_quantization_configs_to_node(node=n,
|
|
54
67
|
quant_config=quant_config,
|
|
@@ -18,6 +18,8 @@ from typing import Any
|
|
|
18
18
|
import numpy as np
|
|
19
19
|
|
|
20
20
|
from model_compression_toolkit.constants import EPS
|
|
21
|
+
from model_compression_toolkit.logger import Logger
|
|
22
|
+
|
|
21
23
|
|
|
22
24
|
#########################
|
|
23
25
|
# Helpful functions
|
|
@@ -87,7 +89,8 @@ def compute_mse(float_tensor: np.ndarray,
|
|
|
87
89
|
norm: bool = False,
|
|
88
90
|
norm_eps: float = 1e-8,
|
|
89
91
|
batch: bool = False,
|
|
90
|
-
axis: int = None
|
|
92
|
+
axis: int = None,
|
|
93
|
+
weights: np.ndarray = None) -> float:
|
|
91
94
|
"""
|
|
92
95
|
Compute the mean square error between two numpy arrays.
|
|
93
96
|
|
|
@@ -98,6 +101,7 @@ def compute_mse(float_tensor: np.ndarray,
|
|
|
98
101
|
norm_eps: epsilon value for error normalization stability.
|
|
99
102
|
batch: Whether to run batch similarity analysis or not.
|
|
100
103
|
axis: Axis along which the operator has been computed.
|
|
104
|
+
weights: Weights tensor to use for computing Weighted-MSE error computation.
|
|
101
105
|
|
|
102
106
|
Returns:
|
|
103
107
|
The MSE distance between the two tensors.
|
|
@@ -107,7 +111,15 @@ def compute_mse(float_tensor: np.ndarray,
|
|
|
107
111
|
float_flat = flatten_tensor(float_tensor, batch, axis)
|
|
108
112
|
fxp_flat = flatten_tensor(fxp_tensor, batch, axis)
|
|
109
113
|
|
|
110
|
-
|
|
114
|
+
if weights is not None:
|
|
115
|
+
w_flat = flatten_tensor(weights, batch, axis)
|
|
116
|
+
if w_flat.shape != float_flat.shape:
|
|
117
|
+
Logger.critical(f"Shape mismatch: The shape of the weights tensor {weights.shape} does not match the shape "
|
|
118
|
+
f"of the input tensors {float_flat.shape} for Weighted-MSE computation.") # pragma: no cover
|
|
119
|
+
error = ((w_flat * (float_flat - fxp_flat)) ** 2).mean(axis=-1)
|
|
120
|
+
else:
|
|
121
|
+
error = ((float_flat - fxp_flat) ** 2).mean(axis=-1)
|
|
122
|
+
|
|
111
123
|
if norm:
|
|
112
124
|
error /= ((float_flat ** 2).mean(axis=-1) + norm_eps)
|
|
113
125
|
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
from model_compression_toolkit.core.common.graph.base_graph import Graph
|
|
17
|
+
from model_compression_toolkit.core.common.graph.base_node import BaseNode
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def remove_identity_node(graph: Graph,
|
|
21
|
+
node: BaseNode) -> Graph:
|
|
22
|
+
"""
|
|
23
|
+
The method to perform the substitution of the identity node by
|
|
24
|
+
reconnecting its input directly to its output, effectively removing the node
|
|
25
|
+
from the graph.
|
|
26
|
+
|
|
27
|
+
Args:
|
|
28
|
+
graph: The current graph of operations where the node resides.
|
|
29
|
+
node: The specific `BaseNode` that is matched to be an Identity operation.
|
|
30
|
+
|
|
31
|
+
Returns:
|
|
32
|
+
Graph: The updated graph after removing the identity node.
|
|
33
|
+
"""
|
|
34
|
+
# Retrieve the predecessor nodes of the identity node.
|
|
35
|
+
prev_identity_nodes = graph.get_prev_nodes(node)
|
|
36
|
+
# Ensure there is exactly one predecessor; otherwise, do nothing.
|
|
37
|
+
if len(prev_identity_nodes) != 1:
|
|
38
|
+
return graph
|
|
39
|
+
|
|
40
|
+
# Reconnect the output edges of the identity node to its predecessor,
|
|
41
|
+
# effectively bypassing the identity node.
|
|
42
|
+
graph.reconnect_out_edges(current_node=node, new_node=prev_identity_nodes[0])
|
|
43
|
+
# Remove the edge from the predecessor to the identity node.
|
|
44
|
+
graph.remove_edge(prev_identity_nodes[0], node)
|
|
45
|
+
# Remove the identity node from the graph.
|
|
46
|
+
graph.remove_node(node_to_remove=node)
|
|
47
|
+
|
|
48
|
+
return graph
|
|
@@ -39,7 +39,8 @@ def graph_preparation_runner(in_model: Any,
|
|
|
39
39
|
fw_impl: FrameworkImplementation,
|
|
40
40
|
tpc: TargetPlatformCapabilities,
|
|
41
41
|
tb_w: TensorboardWriter = None,
|
|
42
|
-
mixed_precision_enable: bool = False
|
|
42
|
+
mixed_precision_enable: bool = False,
|
|
43
|
+
running_gptq: bool = False) -> Graph:
|
|
43
44
|
"""
|
|
44
45
|
Runs all required preparations in order to build a quantization graph from the given model,
|
|
45
46
|
quantization configuration and target platform specifications.
|
|
@@ -59,6 +60,7 @@ def graph_preparation_runner(in_model: Any,
|
|
|
59
60
|
the attached framework operator's information.
|
|
60
61
|
tb_w: TensorboardWriter object for logging.
|
|
61
62
|
mixed_precision_enable: is mixed precision enabled.
|
|
63
|
+
running_gptq: Whether or not a GPTQ optimization is planned to run after the PTQ process.
|
|
62
64
|
|
|
63
65
|
Returns:
|
|
64
66
|
An internal graph representation of the input model.
|
|
@@ -79,7 +81,8 @@ def graph_preparation_runner(in_model: Any,
|
|
|
79
81
|
fw_info,
|
|
80
82
|
tb_w,
|
|
81
83
|
fw_impl,
|
|
82
|
-
mixed_precision_enable=mixed_precision_enable
|
|
84
|
+
mixed_precision_enable=mixed_precision_enable,
|
|
85
|
+
running_gptq=running_gptq)
|
|
83
86
|
|
|
84
87
|
return transformed_graph
|
|
85
88
|
|
|
@@ -90,7 +93,8 @@ def get_finalized_graph(initial_graph: Graph,
|
|
|
90
93
|
fw_info: FrameworkInfo = None,
|
|
91
94
|
tb_w: TensorboardWriter = None,
|
|
92
95
|
fw_impl: FrameworkImplementation = None,
|
|
93
|
-
mixed_precision_enable: bool = False
|
|
96
|
+
mixed_precision_enable: bool = False,
|
|
97
|
+
running_gptq: bool = False) -> Graph:
|
|
94
98
|
"""
|
|
95
99
|
Applies all edit operation (edit, substitutions, etc.) on the model's graph, to prepare it for the quantization
|
|
96
100
|
process. All future graph substitutions and operations that change the graph should be added to this method.
|
|
@@ -105,6 +109,7 @@ def get_finalized_graph(initial_graph: Graph,
|
|
|
105
109
|
tb_w (TensorboardWriter): TensorboardWriter object to use for logging events such as graphs, histograms, etc.
|
|
106
110
|
fw_impl (FrameworkImplementation): FrameworkImplementation object with a specific framework methods implementation.
|
|
107
111
|
mixed_precision_enable: is mixed precision enabled.
|
|
112
|
+
running_gptq: Whether or not a GPTQ optimization is planned to run after the PTQ process.
|
|
108
113
|
|
|
109
114
|
Returns: Graph object that represents the model, after applying all required modifications to it.
|
|
110
115
|
"""
|
|
@@ -142,7 +147,8 @@ def get_finalized_graph(initial_graph: Graph,
|
|
|
142
147
|
######################################
|
|
143
148
|
transformed_graph = set_quantization_configuration_to_graph(graph=transformed_graph,
|
|
144
149
|
quant_config=quant_config,
|
|
145
|
-
mixed_precision_enable=mixed_precision_enable
|
|
150
|
+
mixed_precision_enable=mixed_precision_enable,
|
|
151
|
+
running_gptq=running_gptq)
|
|
146
152
|
|
|
147
153
|
######################################
|
|
148
154
|
# Layer fusing
|
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
import keras
|
|
17
|
+
import tensorflow as tf
|
|
18
|
+
|
|
19
|
+
from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
|
|
20
|
+
from model_compression_toolkit.core import common
|
|
21
|
+
from model_compression_toolkit.core.common.graph.base_graph import Graph
|
|
22
|
+
from model_compression_toolkit.core.common.graph.base_node import BaseNode
|
|
23
|
+
from model_compression_toolkit.core.common.substitutions.remove_identity import remove_identity_node
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class RemoveIdentity(common.BaseSubstitution):
|
|
27
|
+
"""
|
|
28
|
+
Remove Identity layers from the graph.
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
def __init__(self):
|
|
32
|
+
nodes = NodeOperationMatcher(keras.layers.Identity) | NodeOperationMatcher(tf.identity)
|
|
33
|
+
super().__init__(matcher_instance=nodes)
|
|
34
|
+
|
|
35
|
+
def substitute(self,
|
|
36
|
+
graph: Graph,
|
|
37
|
+
node: BaseNode) -> Graph:
|
|
38
|
+
"""
|
|
39
|
+
The method to perform the substitution of the identity keras node by
|
|
40
|
+
reconnecting its input directly to its output, effectively removing the node
|
|
41
|
+
from the graph.
|
|
42
|
+
|
|
43
|
+
Args:
|
|
44
|
+
graph: The current graph of operations where the node resides.
|
|
45
|
+
node: The specific `BaseNode` that is matched to be an Identity operation.
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
Graph: The updated graph after removing the identity node.
|
|
49
|
+
"""
|
|
50
|
+
return remove_identity_node(graph, node)
|
|
51
|
+
|
|
@@ -22,6 +22,7 @@ from tensorflow.keras.models import Model
|
|
|
22
22
|
|
|
23
23
|
from model_compression_toolkit.constants import HESSIAN_NUM_ITERATIONS
|
|
24
24
|
from model_compression_toolkit.core.common.hessian import TraceHessianRequest, HessianMode, HessianInfoService
|
|
25
|
+
from model_compression_toolkit.core.keras.graph_substitutions.substitutions.remove_identity import RemoveIdentity
|
|
25
26
|
from model_compression_toolkit.core.keras.hessian.activation_trace_hessian_calculator_keras import \
|
|
26
27
|
ActivationTraceHessianCalculatorKeras
|
|
27
28
|
from model_compression_toolkit.core.keras.hessian.weights_trace_hessian_calculator_keras import WeightsTraceHessianCalculatorKeras
|
|
@@ -246,7 +247,8 @@ class KerasImplementation(FrameworkImplementation):
|
|
|
246
247
|
MatmulToDenseSubstitution(),
|
|
247
248
|
MultiHeadAttentionDecomposition(),
|
|
248
249
|
ActivationDecomposition(),
|
|
249
|
-
DwconvToConv()
|
|
250
|
+
DwconvToConv(),
|
|
251
|
+
RemoveIdentity()]
|
|
250
252
|
|
|
251
253
|
def get_substitutions_pre_statistics_collection(self, quant_config: QuantizationConfig) -> \
|
|
252
254
|
List[common.BaseSubstitution]:
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
import torch
|
|
16
|
+
|
|
17
|
+
from model_compression_toolkit.core.common.substitutions.remove_identity import remove_identity_node
|
|
18
|
+
from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
|
|
19
|
+
from model_compression_toolkit.core import common
|
|
20
|
+
from model_compression_toolkit.core.common.graph.base_graph import Graph
|
|
21
|
+
from model_compression_toolkit.core.common.graph.base_node import BaseNode
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class RemoveIdentity(common.BaseSubstitution):
|
|
25
|
+
"""
|
|
26
|
+
Remove `torch.nn.Identity` layers from the graph.
|
|
27
|
+
"""
|
|
28
|
+
|
|
29
|
+
def __init__(self):
|
|
30
|
+
nodes = NodeOperationMatcher(torch.nn.Identity)
|
|
31
|
+
super().__init__(matcher_instance=nodes)
|
|
32
|
+
|
|
33
|
+
def substitute(self,
|
|
34
|
+
graph: Graph,
|
|
35
|
+
node: BaseNode) -> Graph:
|
|
36
|
+
"""
|
|
37
|
+
The method to perform the substitution of the `torch.nn.Identity` node by
|
|
38
|
+
reconnecting its input directly to its output, effectively removing the node
|
|
39
|
+
from the graph.
|
|
40
|
+
|
|
41
|
+
Args:
|
|
42
|
+
graph: The current graph of operations where the node resides.
|
|
43
|
+
node: The specific `BaseNode` that is matched to be an Identity operation.
|
|
44
|
+
|
|
45
|
+
Returns:
|
|
46
|
+
Graph: The updated graph after removing the identity node.
|
|
47
|
+
"""
|
|
48
|
+
return remove_identity_node(graph, node)
|
|
49
|
+
|
|
50
|
+
|
|
@@ -58,6 +58,7 @@ from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.co
|
|
|
58
58
|
FunctionalConvSubstitution
|
|
59
59
|
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.relu_bound_to_power_of_2 import \
|
|
60
60
|
ReLUBoundToPowerOfTwo
|
|
61
|
+
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.remove_identity import RemoveIdentity
|
|
61
62
|
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.reshape_with_static_shapes import \
|
|
62
63
|
ReshapeWithStaticShapes
|
|
63
64
|
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.residual_collapsing import \
|
|
@@ -238,7 +239,8 @@ class PytorchImplementation(FrameworkImplementation):
|
|
|
238
239
|
PermuteCallMethod(),
|
|
239
240
|
FunctionalConvSubstitution(fw_info),
|
|
240
241
|
FunctionalBatchNorm(),
|
|
241
|
-
FunctionalLayerNorm()
|
|
242
|
+
FunctionalLayerNorm(),
|
|
243
|
+
RemoveIdentity()]
|
|
242
244
|
|
|
243
245
|
def get_substitutions_pre_statistics_collection(self,
|
|
244
246
|
quant_config: QuantizationConfig
|
|
@@ -21,6 +21,7 @@ from tqdm import tqdm
|
|
|
21
21
|
from model_compression_toolkit.core.common import FrameworkInfo
|
|
22
22
|
from model_compression_toolkit.core.common.framework_implementation import FrameworkImplementation
|
|
23
23
|
from model_compression_toolkit.core.common.graph.base_graph import Graph
|
|
24
|
+
from model_compression_toolkit.core.common.hessian import HessianInfoService
|
|
24
25
|
from model_compression_toolkit.core.common.model_collector import ModelCollector
|
|
25
26
|
from model_compression_toolkit.core.common.network_editors.edit_network import edit_network_graph
|
|
26
27
|
from model_compression_toolkit.core.common.quantization.core_config import CoreConfig
|
|
@@ -38,7 +39,8 @@ def quantization_preparation_runner(graph: Graph,
|
|
|
38
39
|
core_config: CoreConfig,
|
|
39
40
|
fw_info: FrameworkInfo,
|
|
40
41
|
fw_impl: FrameworkImplementation,
|
|
41
|
-
tb_w: TensorboardWriter = None
|
|
42
|
+
tb_w: TensorboardWriter = None,
|
|
43
|
+
hessian_info_service: HessianInfoService = None,) -> Graph:
|
|
42
44
|
"""
|
|
43
45
|
Prepares a trained model for post-training quantization.
|
|
44
46
|
First, the model graph is optimized using several transformations (e.g. folding BatchNormalization to preceding layers).
|
|
@@ -55,6 +57,7 @@ def quantization_preparation_runner(graph: Graph,
|
|
|
55
57
|
groups of layers by how they should be quantized, etc.).
|
|
56
58
|
fw_impl: FrameworkImplementation object with a specific framework methods implementation.
|
|
57
59
|
tb_w: TensorboardWriter object for logging
|
|
60
|
+
hessian_info_service: HessianInfoService object for retrieving Hessian-based scores.
|
|
58
61
|
|
|
59
62
|
Returns:
|
|
60
63
|
Graph object that represents the model, contains thresholds, and ready for quantization.
|
|
@@ -86,7 +89,8 @@ def quantization_preparation_runner(graph: Graph,
|
|
|
86
89
|
######################################
|
|
87
90
|
# Calculate quantization params
|
|
88
91
|
######################################
|
|
89
|
-
|
|
92
|
+
|
|
93
|
+
calculate_quantization_params(graph, hessian_info_service=hessian_info_service)
|
|
90
94
|
|
|
91
95
|
if tb_w is not None:
|
|
92
96
|
tb_w.add_graph(graph, 'thresholds_selection')
|
|
@@ -48,6 +48,7 @@ def core_runner(in_model: Any,
|
|
|
48
48
|
fw_impl: FrameworkImplementation,
|
|
49
49
|
tpc: TargetPlatformCapabilities,
|
|
50
50
|
target_resource_utilization: ResourceUtilization = None,
|
|
51
|
+
running_gptq: bool = False,
|
|
51
52
|
tb_w: TensorboardWriter = None):
|
|
52
53
|
"""
|
|
53
54
|
Quantize a trained model using post-training quantization.
|
|
@@ -97,7 +98,8 @@ def core_runner(in_model: Any,
|
|
|
97
98
|
fw_impl,
|
|
98
99
|
tpc,
|
|
99
100
|
tb_w,
|
|
100
|
-
mixed_precision_enable=core_config.mixed_precision_enable
|
|
101
|
+
mixed_precision_enable=core_config.mixed_precision_enable,
|
|
102
|
+
running_gptq=running_gptq)
|
|
101
103
|
|
|
102
104
|
hessian_info_service = HessianInfoService(graph=graph,
|
|
103
105
|
representative_dataset=representative_data_gen,
|
|
@@ -108,7 +110,8 @@ def core_runner(in_model: Any,
|
|
|
108
110
|
core_config=core_config,
|
|
109
111
|
fw_info=fw_info,
|
|
110
112
|
fw_impl=fw_impl,
|
|
111
|
-
tb_w=tb_w
|
|
113
|
+
tb_w=tb_w,
|
|
114
|
+
hessian_info_service=hessian_info_service)
|
|
112
115
|
|
|
113
116
|
######################################
|
|
114
117
|
# Finalize bit widths
|
|
@@ -180,7 +180,9 @@ if FOUND_TORCH:
|
|
|
180
180
|
fw_impl=fw_impl,
|
|
181
181
|
tpc=target_platform_capabilities,
|
|
182
182
|
target_resource_utilization=target_resource_utilization,
|
|
183
|
-
tb_w=tb_w
|
|
183
|
+
tb_w=tb_w,
|
|
184
|
+
running_gptq=True)
|
|
185
|
+
|
|
184
186
|
float_graph = copy.deepcopy(graph)
|
|
185
187
|
|
|
186
188
|
# ---------------------- #
|
|
@@ -111,6 +111,7 @@ def gptq_runner(tg: Graph,
|
|
|
111
111
|
#############################################
|
|
112
112
|
# Gradient Based Post Training Quantization
|
|
113
113
|
#############################################
|
|
114
|
+
Logger.info("Running GPTQ optimization.")
|
|
114
115
|
tg_gptq = _apply_gptq(gptq_config,
|
|
115
116
|
gptq_representative_data_gen,
|
|
116
117
|
tb_w,
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py
CHANGED
|
@@ -13,12 +13,12 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
# ==============================================================================
|
|
15
15
|
from model_compression_toolkit.constants import FOUND_TF, FOUND_TORCH
|
|
16
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.
|
|
16
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v1.tp_model import get_tp_model, generate_tp_model, \
|
|
17
17
|
get_op_quantization_configs
|
|
18
18
|
if FOUND_TF:
|
|
19
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.
|
|
20
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.
|
|
19
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v1.tpc_keras import get_keras_tpc as get_keras_tpc_latest
|
|
20
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v1.tpc_keras import generate_keras_tpc
|
|
21
21
|
if FOUND_TORCH:
|
|
22
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.
|
|
22
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v1.tpc_pytorch import get_pytorch_tpc as \
|
|
23
23
|
get_pytorch_tpc_latest
|
|
24
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.
|
|
24
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v1.tpc_pytorch import generate_pytorch_tpc
|
{mct_nightly-2.0.0.20240417.406.dist-info → mct_nightly-2.0.0.20240418.439.dist-info}/LICENSE.md
RENAMED
|
File without changes
|
|
File without changes
|
{mct_nightly-2.0.0.20240417.406.dist-info → mct_nightly-2.0.0.20240418.439.dist-info}/top_level.txt
RENAMED
|
File without changes
|