mct-nightly 2.0.0.20240415.5018__py3-none-any.whl → 2.0.0.20240417.406__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240415.5018
3
+ Version: 2.0.0.20240417.406
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=pU9oIc4ZlkMr0MR9kraXEOboqcZF2lShgkyhaDHxzn0,1573
1
+ model_compression_toolkit/__init__.py,sha256=HSq5ybA5NctJln9ucs7HnIcj00pgOGdhjVxEY-2w5dY,1573
2
2
  model_compression_toolkit/constants.py,sha256=f9at1H_-vb5nvdHRmAHUco4ja4_QermK6yu0N9qbRGE,3723
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -429,7 +429,7 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py,sh
429
429
  model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py,sha256=aHoAu5Iye9YVn2HLwNb4X9cUDX1WJt20R5GsNGIAk9E,3337
430
430
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
431
431
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py,sha256=fPOzybGECCWPkAD1hmJryWZrf9vd5Od-UOH6PE0lH94,3820
432
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=F5RG4MnuAwKcNXbfVbPFLQu30-lNax-7knqu20B6udQ,1522
432
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=v1eush7kGZ_Pdl8iyIVkKIqCmix2afiuPZDMgm6kBrE,1522
433
433
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py,sha256=1mMOREEMoNHu_KTMGDp4crN61opKWX6aFn1DrDLvqcc,717
434
434
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=S-GwMI-JiuPpbtOdd6TSOEjiUFiIs6M2RAiJNJ3O950,10883
435
435
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=bPBWxopMUHFgiaJjaAfoompwShvfH2wHAouN56PQn0A,6484
@@ -444,12 +444,12 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_
444
444
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py,sha256=X853xDEF-3rcPoqxbrlYN28vvW3buSdM36c_eN_LKx8,5758
445
445
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py,sha256=vKWAoQ2KkhuptS5HZB50zHG6KY8wHpHTxPugw_nGCRo,717
446
446
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=8FZjOCaQRwrQLbtmzNrrRj2-VyZMUGzsIWKIDpGVEoQ,10947
447
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py,sha256=waefIjxpRfjSnJhKfgpR2DZM6B9NLzU-harUerk6oBc,6485
448
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py,sha256=m6gOYBJZZd31RZHaiovDPLMlpt0HRiJhcKmk73_8380,5732
447
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py,sha256=QVIOc_DrFHBb81q3N8Fmx5GkOBviWsulxEwHpsyFik4,6570
448
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py,sha256=jAyTXhcChO124odtWC3bYKRH4ZyqLPkKQluJFOoyPIM,5726
449
449
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py,sha256=wUk4Xsg7jpxOWYjq2K3WUwLcI185p_sVPK-ttG0ydhA,721
450
450
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=T6Hp_Rk15SAz22g_SWDyHJecBpBAjxKt3ezuVEYf4LE,10680
451
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py,sha256=O7h77xAC92nlpgl6cwuJvL3DKDVBplMbKZEQXXg6p0w,6493
452
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py,sha256=uvHIwmZ1DtA9-XY7SV-b4pSWZde2Ya9MNvGRlVVvdY0,5739
451
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py,sha256=n9HA61-bFm8g0rals9aTvH7i09EU4B788nymFofLwkw,6578
452
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py,sha256=dFQjzFlLDwoUqKNP1at1fS1N1WJadSSasRyzHl6vaB8,5733
453
453
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
454
454
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py,sha256=lnhJcwvTF0t7ybeiTleIS1p0aD8xzFZxVPx4ISk5uWQ,2090
455
455
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py,sha256=UUvUCcTots_sehdRnDfgkaE8WPQ7dPbeuhDF4Qy2nzw,1510
@@ -480,8 +480,8 @@ model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py,sha
480
480
  model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py,sha256=MVwXNymmFRB2NXIBx4e2mdJ1RfoHxRPYRgjb1MQP5kY,1797
481
481
  model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
482
482
  model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py,sha256=7bbzqJN8ZAycVDvZr_5xC-niTAR5df8f03Kooev_pfg,3047
483
- mct_nightly-2.0.0.20240415.5018.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
484
- mct_nightly-2.0.0.20240415.5018.dist-info/METADATA,sha256=NaQHHj_S3oEuCRqkeaaOSlRIUc6HthT3C9IjzX6p7FQ,18796
485
- mct_nightly-2.0.0.20240415.5018.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
486
- mct_nightly-2.0.0.20240415.5018.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
487
- mct_nightly-2.0.0.20240415.5018.dist-info/RECORD,,
483
+ mct_nightly-2.0.0.20240417.406.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
484
+ mct_nightly-2.0.0.20240417.406.dist-info/METADATA,sha256=wDYGNbzlScIweXxmrfcYA9RSLM_OaB2fYaIsx28fm-Y,18795
485
+ mct_nightly-2.0.0.20240417.406.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
486
+ mct_nightly-2.0.0.20240417.406.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
487
+ mct_nightly-2.0.0.20240417.406.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.0.0.20240415.005018"
30
+ __version__ = "2.0.0.20240417.000406"
@@ -13,12 +13,12 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
  from model_compression_toolkit.constants import FOUND_TF, FOUND_TORCH
16
- from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v1.tp_model import get_tp_model, generate_tp_model, \
16
+ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v2.tp_model import get_tp_model, generate_tp_model, \
17
17
  get_op_quantization_configs
18
18
  if FOUND_TF:
19
- from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v1.tpc_keras import get_keras_tpc as get_keras_tpc_latest
20
- from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v1.tpc_keras import generate_keras_tpc
19
+ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v2.tpc_keras import get_keras_tpc as get_keras_tpc_latest
20
+ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v2.tpc_keras import generate_keras_tpc
21
21
  if FOUND_TORCH:
22
- from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v1.tpc_pytorch import get_pytorch_tpc as \
22
+ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v2.tpc_pytorch import get_pytorch_tpc as \
23
23
  get_pytorch_tpc_latest
24
- from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v1.tpc_pytorch import generate_pytorch_tpc
24
+ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v2.tpc_pytorch import generate_pytorch_tpc
@@ -26,11 +26,11 @@ if FOUND_SONY_CUSTOM_LAYERS:
26
26
  if version.parse(tf.__version__) >= version.parse("2.13"):
27
27
  from keras.src.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
28
28
  MaxPooling2D, Activation, ReLU, Add, Subtract, Multiply, PReLU, Flatten, Cropping2D, LeakyReLU, Permute, \
29
- Conv2DTranspose
29
+ Conv2DTranspose, Identity
30
30
  else:
31
31
  from keras.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
32
32
  MaxPooling2D, Activation, ReLU, Add, Subtract, Multiply, PReLU, Flatten, Cropping2D, LeakyReLU, Permute, \
33
- Conv2DTranspose
33
+ Conv2DTranspose, Identity
34
34
 
35
35
  from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v2.tp_model import get_tp_model
36
36
  import model_compression_toolkit as mct
@@ -62,7 +62,9 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
62
62
 
63
63
  keras_tpc = tp.TargetPlatformCapabilities(tp_model, name=name, version=TPC_VERSION)
64
64
 
65
- no_quant_list = [Reshape,
65
+ no_quant_list = [Identity,
66
+ tf.identity,
67
+ Reshape,
66
68
  tf.reshape,
67
69
  Permute,
68
70
  tf.transpose,
@@ -18,8 +18,8 @@ import operator
18
18
  import torch
19
19
  from torch import add, sub, mul, div, flatten, reshape, split, unsqueeze, dropout, sigmoid, tanh, chunk, unbind, topk, \
20
20
  gather, equal, transpose, permute, argmax, squeeze
21
- from torch.nn import Conv2d, Linear, BatchNorm2d, ConvTranspose2d
22
- from torch.nn import Dropout, Flatten, Hardtanh
21
+ from torch.nn import Conv2d, Linear, ConvTranspose2d
22
+ from torch.nn import Dropout, Flatten, Hardtanh, Identity
23
23
  from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, LeakyReLU
24
24
  from torch.nn.functional import relu, relu6, prelu, silu, hardtanh, hardswish, leaky_relu
25
25
 
@@ -65,7 +65,8 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
65
65
  BIAS_ATTR: DefaultDict(default_value=BIAS)}
66
66
 
67
67
  with pytorch_tpc:
68
- tp.OperationsSetToLayers("NoQuantization", [Dropout,
68
+ tp.OperationsSetToLayers("NoQuantization", [Identity,
69
+ Dropout,
69
70
  Flatten,
70
71
  dropout,
71
72
  flatten,
@@ -73,7 +74,6 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
73
74
  operator.getitem,
74
75
  reshape,
75
76
  unsqueeze,
76
- BatchNorm2d,
77
77
  chunk,
78
78
  unbind,
79
79
  torch.Tensor.size,
@@ -26,11 +26,11 @@ if FOUND_SONY_CUSTOM_LAYERS:
26
26
  if version.parse(tf.__version__) >= version.parse("2.13"):
27
27
  from keras.src.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
28
28
  MaxPooling2D, Activation, ReLU, Add, Subtract, Multiply, PReLU, Flatten, Cropping2D, LeakyReLU, Permute, \
29
- Conv2DTranspose
29
+ Conv2DTranspose, Identity
30
30
  else:
31
31
  from keras.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
32
32
  MaxPooling2D, Activation, ReLU, Add, Subtract, Multiply, PReLU, Flatten, Cropping2D, LeakyReLU, Permute, \
33
- Conv2DTranspose
33
+ Conv2DTranspose, Identity
34
34
 
35
35
  from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v2_lut.tp_model import get_tp_model
36
36
  import model_compression_toolkit as mct
@@ -61,7 +61,9 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
61
61
 
62
62
  keras_tpc = tp.TargetPlatformCapabilities(tp_model, name=name, version=TPC_VERSION)
63
63
 
64
- no_quant_list = [Reshape,
64
+ no_quant_list = [Identity,
65
+ tf.identity,
66
+ Reshape,
65
67
  tf.reshape,
66
68
  Permute,
67
69
  tf.transpose,
@@ -18,8 +18,8 @@ import operator
18
18
  import torch
19
19
  from torch import add, sub, mul, div, flatten, reshape, split, unsqueeze, dropout, sigmoid, tanh, chunk, unbind, topk, \
20
20
  gather, equal, transpose, permute, argmax, squeeze
21
- from torch.nn import Conv2d, Linear, BatchNorm2d, ConvTranspose2d
22
- from torch.nn import Dropout, Flatten, Hardtanh
21
+ from torch.nn import Conv2d, Linear, ConvTranspose2d
22
+ from torch.nn import Dropout, Flatten, Hardtanh, Identity
23
23
  from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, LeakyReLU
24
24
  from torch.nn.functional import relu, relu6, prelu, silu, hardtanh, hardswish, leaky_relu
25
25
 
@@ -64,7 +64,8 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
64
64
  BIAS_ATTR: DefaultDict(default_value=BIAS)}
65
65
 
66
66
  with pytorch_tpc:
67
- tp.OperationsSetToLayers("NoQuantization", [Dropout,
67
+ tp.OperationsSetToLayers("NoQuantization", [Identity,
68
+ Dropout,
68
69
  Flatten,
69
70
  dropout,
70
71
  flatten,
@@ -72,7 +73,6 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
72
73
  operator.getitem,
73
74
  reshape,
74
75
  unsqueeze,
75
- BatchNorm2d,
76
76
  chunk,
77
77
  unbind,
78
78
  torch.Tensor.size,