mct-nightly 2.0.0.20240402.404__py3-none-any.whl → 2.0.0.20240403.423__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.0.0.20240402.404
3
+ Version: 2.0.0.20240403.423
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -103,8 +103,8 @@ You can customize data generation configurations to suit your specific needs. [G
103
103
 
104
104
  ### Quantization
105
105
  MCT supports different quantization methods:
106
- * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_post_training_quantization_experimental.html#ug-keras-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_post_training_quantization_experimental.html#ug-pytorch-post-training-quantization-experimental)
107
- * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_gradient_post_training_quantization_experimental.html#ug-keras-gradient-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_gradient_post_training_quantization_experimental.html#ug-pytorch-gradient-post-training-quantization-experimental)
106
+ * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
107
+ * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
108
108
  * Quantization-aware training (QAT) [*](#experimental-features)
109
109
 
110
110
 
@@ -147,8 +147,8 @@ taking into account the target platform's Single Instruction, Multiple Data (SIM
147
147
  By pruning groups of channels (SIMD groups), our approach not only reduces model size
148
148
  and complexity, but ensures that better utilization of channels is in line with the SIMD architecture
149
149
  for a target Resource Utilization of weights memory footprint.
150
- [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_pruning_experimental.html)
151
- [Pytorch API](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/pruning/pytorch/pruning_facade.py#L43)
150
+ [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)
151
+ [Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html)
152
152
 
153
153
  #### Experimental features
154
154
 
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=sH25chlxx_ns2CVp78brFoISuxbfFYKH55ooUgWQ0A0,1573
1
+ model_compression_toolkit/__init__.py,sha256=rr-lU1cO0RuS_7QNw41uShlq2s0ILvvtATqaUT-NKzo,1573
2
2
  model_compression_toolkit/constants.py,sha256=KW_HUEPmQEYqCvWGyORqkYxpvO7w5LViB5J5D-pm_6o,3648
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -320,12 +320,12 @@ model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quant
320
320
  model_compression_toolkit/exporter/model_wrapper/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
321
321
  model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py,sha256=YffgbVYJG5LKeIsW84Pi7NqzQcvJMeQRnAKQCCmIL6c,3776
322
322
  model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
323
- model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py,sha256=ygAfF5uAzuFlBpc2a1YZ205f5GzwGfJxdyHRAM7ak0g,5128
323
+ model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py,sha256=NBDzg2rX5BcVELtExHxS5wi0HFxwpGrEedB4ZPSVMas,5130
324
324
  model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py,sha256=uL6tJWC4s2IWUy8GJVwtMWpwZZioRRztfKyPJHo14xI,9442
325
325
  model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
326
326
  model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py,sha256=uTQcnzvP44CgPO0twsUdiMmTBE_Td6ZdQtz5U0GZuPI,3464
327
327
  model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
328
- model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py,sha256=KTTZra2qDoj3r2kateErRVzoEiqIex4eAs569NaLvPM,4913
328
+ model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py,sha256=T3QNZl0JFRAm62Z66quHPx0iNHgXwyfSpoBgbqJBBnY,4915
329
329
  model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py,sha256=4sN5z-6BXrTE5Dp2FX_jKO9ty5iZ2r4RM7XvXtDVLSI,9348
330
330
  model_compression_toolkit/gptq/__init__.py,sha256=YKg-tMj9D4Yd0xW9VRD5EN1J5JrmlRbNEF2fOSgodqA,1228
331
331
  model_compression_toolkit/gptq/runner.py,sha256=MIg-oBtR1nbHkexySdCJD_XfjRoHSknLotmGBMuD5qM,5924
@@ -471,8 +471,8 @@ model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py,sha
471
471
  model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py,sha256=MVwXNymmFRB2NXIBx4e2mdJ1RfoHxRPYRgjb1MQP5kY,1797
472
472
  model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
473
473
  model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py,sha256=7bbzqJN8ZAycVDvZr_5xC-niTAR5df8f03Kooev_pfg,3047
474
- mct_nightly-2.0.0.20240402.404.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
475
- mct_nightly-2.0.0.20240402.404.dist-info/METADATA,sha256=RwnATsdAqLdaJ3SeHPVCuJWWLa89jFcR8EEdvPMK-Mk,19145
476
- mct_nightly-2.0.0.20240402.404.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
477
- mct_nightly-2.0.0.20240402.404.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
478
- mct_nightly-2.0.0.20240402.404.dist-info/RECORD,,
474
+ mct_nightly-2.0.0.20240403.423.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
475
+ mct_nightly-2.0.0.20240403.423.dist-info/METADATA,sha256=dHTEKAHtl1x-dI2jaHQiDYi7QJInTciTrVMfjF2DzxQ,18795
476
+ mct_nightly-2.0.0.20240403.423.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
477
+ mct_nightly-2.0.0.20240403.423.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
478
+ mct_nightly-2.0.0.20240403.423.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.0.0.20240402.000404"
30
+ __version__ = "2.0.0.20240403.000423"
@@ -92,7 +92,7 @@ if FOUND_TF:
92
92
 
93
93
  Logger.info("Please run your accuracy evaluation on the exported quantized model to verify it's accuracy.\n"
94
94
  "Checkout the FAQ and Troubleshooting pages for resolving common issues and improving the quantized model accuracy:\n"
95
- "FAQ: https://github.com/sony/model_optimization/tree/main/FAQ.md"
95
+ "FAQ: https://github.com/sony/model_optimization/tree/main/FAQ.md\n"
96
96
  "Quantization Troubleshooting: https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md")
97
97
  return exportable_model, user_info
98
98
  else:
@@ -84,7 +84,7 @@ if FOUND_TORCH:
84
84
 
85
85
  Logger.info("Please run your accuracy evaluation on the exported quantized model to verify it's accuracy.\n"
86
86
  "Checkout the FAQ and Troubleshooting pages for resolving common issues and improving the quantized model accuracy:\n"
87
- "FAQ: https://github.com/sony/model_optimization/tree/main/FAQ.md"
87
+ "FAQ: https://github.com/sony/model_optimization/tree/main/FAQ.md\n"
88
88
  "Quantization Troubleshooting: https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md")
89
89
 
90
90
  return exportable_model, user_info