mct-nightly 1.8.0.7032023.post439__py3-none-any.whl → 1.8.0.7042023.post403__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. {mct_nightly-1.8.0.7032023.post439.dist-info → mct_nightly-1.8.0.7042023.post403.dist-info}/METADATA +7 -7
  2. {mct_nightly-1.8.0.7032023.post439.dist-info → mct_nightly-1.8.0.7042023.post403.dist-info}/RECORD +63 -59
  3. {mct_nightly-1.8.0.7032023.post439.dist-info → mct_nightly-1.8.0.7042023.post403.dist-info}/WHEEL +1 -1
  4. model_compression_toolkit/__init__.py +9 -15
  5. model_compression_toolkit/core/common/logger.py +10 -2
  6. model_compression_toolkit/core/keras/back2framework/model_gradients.py +3 -2
  7. model_compression_toolkit/core/keras/quantization_facade.py +1 -1
  8. model_compression_toolkit/core/pytorch/back2framework/model_gradients.py +13 -6
  9. model_compression_toolkit/core/pytorch/constants.py +4 -0
  10. model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +16 -2
  11. model_compression_toolkit/exporter/__init__.py +5 -0
  12. model_compression_toolkit/exporter/model_exporter/__init__.py +0 -3
  13. model_compression_toolkit/exporter/model_exporter/tflite/fakely_quant_tflite_exporter.py +1 -1
  14. model_compression_toolkit/exporter/model_wrapper/__init__.py +4 -8
  15. model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +45 -39
  16. model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +39 -24
  17. model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +50 -42
  18. model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +43 -36
  19. model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +24 -5
  20. model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +25 -18
  21. model_compression_toolkit/gptq/__init__.py +6 -0
  22. model_compression_toolkit/gptq/common/gptq_config.py +57 -104
  23. model_compression_toolkit/gptq/common/gptq_constants.py +0 -7
  24. model_compression_toolkit/gptq/common/gptq_training.py +28 -38
  25. model_compression_toolkit/gptq/keras/gptq_training.py +10 -28
  26. model_compression_toolkit/gptq/keras/graph_info.py +8 -33
  27. model_compression_toolkit/gptq/keras/quantization_facade.py +6 -12
  28. model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -1
  29. model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +2 -2
  30. model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +45 -0
  31. model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +112 -0
  32. model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +38 -135
  33. model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +11 -41
  34. model_compression_toolkit/gptq/pytorch/gptq_training.py +9 -24
  35. model_compression_toolkit/gptq/pytorch/graph_info.py +7 -27
  36. model_compression_toolkit/gptq/pytorch/quantization_facade.py +9 -22
  37. model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +1 -0
  38. model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -20
  39. model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +10 -1
  40. model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +2 -2
  41. model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +45 -0
  42. model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +115 -0
  43. model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +30 -117
  44. model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +196 -0
  45. model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +9 -31
  46. model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +30 -37
  47. model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +27 -36
  48. model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +21 -21
  49. model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +25 -26
  50. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/get_all_subclasses.py +1 -2
  51. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/get_quantizers.py +1 -1
  52. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/__init__.py +4 -0
  53. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/constants.py +1 -0
  54. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantize_wrapper.py +13 -3
  55. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/__init__.py +6 -0
  56. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/constants.py +3 -0
  57. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/base_trainable_quantizer.py +53 -2
  58. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/get_quantizers.py +2 -1
  59. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/keras/base_keras_quantizer.py +22 -4
  60. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +24 -3
  61. model_compression_toolkit/gptq/common/gptq_quantizer_config.py +0 -93
  62. {mct_nightly-1.8.0.7032023.post439.dist-info → mct_nightly-1.8.0.7042023.post403.dist-info}/LICENSE.md +0 -0
  63. {mct_nightly-1.8.0.7032023.post439.dist-info → mct_nightly-1.8.0.7042023.post403.dist-info}/top_level.txt +0 -0
  64. /model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/{common → pytorch/quantizers/activation_inferable_quantizers}/activation_lut_pot_inferable_quantizer.py +0 -0
@@ -15,11 +15,11 @@
15
15
  import torch
16
16
  import torch.nn as nn
17
17
  from typing import List
18
-
19
18
  from model_compression_toolkit.core.pytorch.constants import BIAS
20
19
  from model_compression_toolkit.core.pytorch.default_framework_info import DEFAULT_PYTORCH_INFO
21
20
  from model_compression_toolkit.gptq.common.gptq_graph import get_kernel_attribute_name_for_gptq
22
21
  from model_compression_toolkit.quantizers_infrastructure import PytorchQuantizationWrapper
22
+ from model_compression_toolkit.quantizers_infrastructure.trainable_infrastructure.common.base_trainable_quantizer import VariableGroup
23
23
 
24
24
 
25
25
  def get_gptq_trainable_parameters(fxp_model: nn.Module,
@@ -39,21 +39,23 @@ def get_gptq_trainable_parameters(fxp_model: nn.Module,
39
39
  trainable_aux_weights = nn.ParameterList()
40
40
  trainable_threshold = nn.ParameterList()
41
41
  trainable_bias = nn.ParameterList()
42
- trainable_temperature = nn.ParameterList()
43
42
 
44
43
  for layer in fxp_model.modules():
45
44
  if isinstance(layer, PytorchQuantizationWrapper):
46
45
  kernel_attribute = get_kernel_attribute_name_for_gptq(layer_type=type(layer.layer),
47
46
  fw_info=DEFAULT_PYTORCH_INFO)
48
47
 
49
- trainable_aux_weights.extend(layer.weights_quantizers[kernel_attribute].get_aux_variable())
50
- trainable_threshold.extend(layer.weights_quantizers[kernel_attribute].get_quantization_variable())
48
+ # collect trainable weights per quantizer
49
+ quantizer_trainable_weights = layer.weights_quantizers[kernel_attribute].get_trainable_variables(VariableGroup.WEIGHTS)
50
+ quantizer_trainable_threshold = layer.weights_quantizers[kernel_attribute].get_trainable_variables(VariableGroup.QPARAMS)
51
+ trainable_aux_weights.extend(quantizer_trainable_weights)
52
+ trainable_threshold.extend(quantizer_trainable_threshold)
51
53
 
52
54
  if add_bias and hasattr(layer.layer, BIAS):
53
55
  bias = getattr(layer.layer, BIAS)
54
56
  trainable_bias.append(bias)
55
57
 
56
- return trainable_aux_weights, trainable_bias, trainable_threshold, trainable_temperature
58
+ return trainable_aux_weights, trainable_bias, trainable_threshold
57
59
 
58
60
 
59
61
  def get_weights_for_loss(fxp_model: nn.Module) -> [List[nn.Parameter], List[torch.Tensor]]:
@@ -77,25 +79,3 @@ def get_weights_for_loss(fxp_model: nn.Module) -> [List[nn.Parameter], List[torc
77
79
  fxp_weights_list.append(quantizer(training=False, inputs=quantizer_vars))
78
80
 
79
81
  return flp_weights_list, fxp_weights_list
80
-
81
-
82
- # TODO: this function need to move to location that is relevant only for soft quantizer -
83
- # once deciding how to handle GPTQ quantizers regularization.
84
- def get_soft_rounding_reg(fxp_model: nn.Module) -> List[torch.Tensor]:
85
- """
86
- This function returns the soft quantizer regularization values for SoftRounding.
87
-
88
- Args:
89
- fxp_model: A model to be quantized with SoftRounding.
90
-
91
- Returns: A list of tensors.
92
- """
93
-
94
- soft_reg_aux: List[torch.Tensor] = []
95
- for layer in fxp_model.modules():
96
- if isinstance(layer, PytorchQuantizationWrapper):
97
- kernel_attribute = get_kernel_attribute_name_for_gptq(layer_type=type(layer.layer),
98
- fw_info=DEFAULT_PYTORCH_INFO)
99
-
100
- soft_reg_aux.append(layer.weights_quantizers[kernel_attribute].get_regularization())
101
- return soft_reg_aux
@@ -17,14 +17,15 @@ from model_compression_toolkit.core import common
17
17
  from model_compression_toolkit.core.common.constants import FOUND_TORCH
18
18
  from model_compression_toolkit.core.common import Logger
19
19
  from model_compression_toolkit.core.common.constants import PYTORCH
20
- from model_compression_toolkit.gptq.common.gptq_config import GradientPTQConfigV2, RoundingType
20
+ from model_compression_toolkit.gptq.common.gptq_config import GradientPTQConfigV2
21
21
  from model_compression_toolkit.core.common.target_platform import TargetPlatformCapabilities
22
22
  from model_compression_toolkit.core.common.mixed_precision.kpi_tools.kpi import KPI
23
23
  from model_compression_toolkit.core.runner import core_runner, _init_tensorboard_writer
24
+ from model_compression_toolkit.gptq.keras.quantization_facade import GPTQ_MOMENTUM
24
25
  from model_compression_toolkit.gptq.runner import gptq_runner
25
26
  from model_compression_toolkit.core.exporter import export_model
26
27
  from model_compression_toolkit.core.analyzer import analyzer_model_quantization
27
- from model_compression_toolkit import CoreConfig, GPTQQuantizerConfig
28
+ from model_compression_toolkit import CoreConfig
28
29
  from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import \
29
30
  MixedPrecisionQuantizationConfigV2
30
31
 
@@ -71,33 +72,19 @@ if FOUND_TORCH:
71
72
  Import MCT and Create a GradientPTQConfigV2 to run for 5 epochs:
72
73
 
73
74
  >>> import model_compression_toolkit as mct
74
- >>> gptq_conf = mct.get_pytorch_gptq_config(n_epochs=5)
75
+ >>> gptq_conf = mct.gptq.get_pytorch_gptq_config(n_epochs=5)
75
76
 
76
77
  Other PyTorch optimizers can be passed with dummy params:
77
78
 
78
79
  >>> import torch
79
- >>> gptq_conf = mct.get_pytorch_gptq_config(n_epochs=3, optimizer=torch.optim.Adam([torch.Tensor(1)]))
80
+ >>> gptq_conf = mct.gptq.get_pytorch_gptq_config(n_epochs=3, optimizer=torch.optim.Adam([torch.Tensor(1)]))
80
81
 
81
82
  The configuration can be passed to :func:`~model_compression_toolkit.pytorch_post_training_quantization` in order to quantize a pytorch model using gptq.
82
83
 
83
84
  """
84
- bias_optimizer = Adam([torch.Tensor([])], lr=LR_BIAS_DEFAULT)
85
- optimizer_quantization_parameter = Adam([torch.Tensor([])], lr=LR_QUANTIZATION_PARAM_DEFAULT)
86
- # TODO: Once implementing Soft Quantizer for GPTQ in Pytorch:
87
- # - change default quantization_parameters_learning to True.
88
- # - remove explicit rounding_type and quantizer_config (and let it use the default GradientPTQConfig).
89
- return GradientPTQConfigV2(n_epochs,
90
- optimizer,
91
- optimizer_rest=optimizer_rest,
92
- loss=loss,
93
- log_function=log_function,
94
- train_bias=True,
95
- optimizer_quantization_parameter=optimizer_quantization_parameter,
96
- optimizer_bias=bias_optimizer,
97
- rounding_type=RoundingType.STE,
98
- quantizer_config=GPTQQuantizerConfig(),
99
- quantization_parameters_learning=False,
100
- )
85
+ bias_optimizer = torch.optim.SGD([torch.Tensor([])], lr=LR_BIAS_DEFAULT, momentum=GPTQ_MOMENTUM)
86
+ return GradientPTQConfigV2(n_epochs, optimizer, optimizer_rest=optimizer_rest, loss=loss,
87
+ log_function=log_function, train_bias=True, optimizer_bias=bias_optimizer)
101
88
 
102
89
 
103
90
  def pytorch_gradient_post_training_quantization_experimental(model: Module,
@@ -159,7 +146,7 @@ if FOUND_TORCH:
159
146
 
160
147
  Pass the module, the representative dataset generator and the configuration (optional) to get a quantized module
161
148
 
162
- >>> quantized_module, quantization_info = mct.pytorch_gradient_post_training_quantization_experimental(module, repr_datagen, core_config=config, gptq_config=gptq_conf)
149
+ >>> quantized_module, quantization_info = mct.gptq.pytorch_gradient_post_training_quantization_experimental(module, repr_datagen, core_config=config, gptq_config=gptq_conf)
163
150
 
164
151
  """
165
152
 
@@ -15,3 +15,4 @@
15
15
 
16
16
  import model_compression_toolkit.gptq.pytorch.quantizer.ste_rounding.symmetric_ste
17
17
  import model_compression_toolkit.gptq.pytorch.quantizer.soft_rounding.symmetric_soft_quantizer
18
+ import model_compression_toolkit.gptq.pytorch.quantizer.soft_rounding.uniform_soft_quantizer
@@ -71,26 +71,6 @@ if FOUND_TORCH:
71
71
 
72
72
  return weights, quant_config, {}
73
73
 
74
- def get_aux_variable(self) -> List[Tensor]:
75
- """
76
- This function return a list with the quantizer's quantization auxiliary variables.
77
-
78
- Returns: A list with the quantization auxiliary variables.
79
-
80
- """
81
-
82
- return [] # pragma: no cover
83
-
84
- def get_quantization_variable(self) -> List[Tensor]:
85
- """
86
- This function return a list with the quantizer's quantization parameters variables.
87
-
88
- Returns: A list with the quantization parameters.
89
-
90
- """
91
-
92
- return [] # pragma: no cover
93
-
94
74
  @abstractmethod
95
75
  def get_quant_config(self):
96
76
  """
@@ -30,11 +30,20 @@ def calculate_delta(max_tensor: torch.Tensor,
30
30
  num_bits: int,
31
31
  signed: bool) -> torch.Tensor:
32
32
  """
33
- Compute the step size for the quantization.
33
+ Compute the step size for the symmetric quantization.
34
34
  """
35
35
  return max_tensor / (2 ** (num_bits - int(signed)))
36
36
 
37
37
 
38
+ def calculate_delta_uniform(min_tensor: torch.Tensor,
39
+ max_tensor: torch.Tensor,
40
+ num_bits: int) -> torch.Tensor:
41
+ """
42
+ Compute the step size for the uniform quantization.
43
+ """
44
+ return (max_tensor-min_tensor) / (2 ** num_bits - 1)
45
+
46
+
38
47
  def ste_ceil(x: torch.Tensor) -> torch.Tensor:
39
48
  """
40
49
  Return the ceil values of a tensor.
@@ -14,7 +14,7 @@
14
14
  # ==============================================================================
15
15
  from typing import List, Dict, Tuple
16
16
 
17
- from model_compression_toolkit import GradientPTQConfigV2
17
+ from model_compression_toolkit.gptq import GradientPTQConfigV2
18
18
  from model_compression_toolkit.core import common
19
19
  from model_compression_toolkit.core.pytorch.constants import KERNEL
20
20
  from model_compression_toolkit.exporter.model_wrapper.pytorch.builder.node_to_quantizer import \
@@ -59,7 +59,7 @@ def quantization_builder(n: common.BaseNode,
59
59
  quant_method=quant_method,
60
60
  quantizer_base_class=BasePytorchGPTQTrainableQuantizer)
61
61
  weights_quantizers.update({KERNEL: quantizer_class(get_trainable_quantizer_weights_config(n),
62
- **gptq_config.get_extended_quantizer_parametes())})
62
+ **gptq_config.gptq_quantizer_params_override)})
63
63
  activation_quantizers = []
64
64
  if n.is_activation_quantization_enabled():
65
65
  quant_method = n.final_activation_quantization_cfg.activation_quantization_method
@@ -0,0 +1,45 @@
1
+ # Copyright 2023 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ from typing import Callable
16
+
17
+ from model_compression_toolkit.gptq import RoundingType, GradientPTQConfigV2, GradientPTQConfig
18
+ from model_compression_toolkit.gptq.pytorch.quantizer.soft_rounding.soft_quantizer_reg import \
19
+ SoftQuantizerRegularization
20
+
21
+
22
+ def get_regularization(gptq_config: GradientPTQConfig, representative_data_gen: Callable) -> Callable:
23
+ """
24
+ Returns a function that computes the regularization term for GPTQ training based on the given
25
+ rounding type in the GPTQ configuration.
26
+
27
+ Args:
28
+ gptq_config: A GPTQ configuration.
29
+ representative_data_gen: Dataset used for the GPTQ training.
30
+
31
+ Returns: A function for computing the regularization. If there is no regularization function defined for the given
32
+ rounding type, then it returns a function that just returns 0.
33
+
34
+ """
35
+ if gptq_config.rounding_type == RoundingType.SoftQuantizer:
36
+ # dry run on the representative dataset to count number of batches
37
+ num_batches = 0
38
+ for _ in representative_data_gen():
39
+ num_batches += 1
40
+
41
+ n_epochs = GradientPTQConfigV2.from_v1(n_ptq_iter=num_batches, config_v1=gptq_config).n_epochs if \
42
+ not type(gptq_config) == GradientPTQConfigV2 else gptq_config.n_epochs
43
+ return SoftQuantizerRegularization(total_gradient_steps=num_batches * n_epochs)
44
+ else:
45
+ return lambda m, e_reg: 0
@@ -0,0 +1,115 @@
1
+ # Copyright 2023 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ from typing import List
16
+
17
+ import torch
18
+ import numpy as np
19
+ from torch import nn
20
+
21
+ from model_compression_toolkit.core.pytorch.default_framework_info import DEFAULT_PYTORCH_INFO
22
+ from model_compression_toolkit.core.pytorch.utils import to_torch_tensor
23
+ from model_compression_toolkit.gptq.common.gptq_graph import get_kernel_attribute_name_for_gptq
24
+ from model_compression_toolkit.quantizers_infrastructure import PytorchQuantizationWrapper
25
+
26
+
27
+ class LinearTempDecay:
28
+ """
29
+ Annealing process for the soft quantizer regularization temperature term.
30
+ """
31
+
32
+ def __init__(self, t_max: int, rel_start_decay: float = 0.2, start_b: int = 20, end_b: int = 2):
33
+ """
34
+ Initializes a LinearTempDecay object.
35
+
36
+ Args:
37
+ t_max: maximal time step.
38
+ rel_start_decay: Decay step size at the beginning of the process.
39
+ start_b: Starting value of the regularization term.
40
+ end_b: Target value of the regularization term.
41
+ """
42
+
43
+ self.t_max = t_max
44
+ self.start_decay = rel_start_decay * t_max
45
+ self.start_b = start_b
46
+ self.end_b = end_b
47
+
48
+ def __call__(self, t: float) -> float:
49
+ """
50
+ Cosine annealing scheduler for soft quantizer regularization temperature term.
51
+
52
+ Args:
53
+ t: The current time step.
54
+
55
+ Returns: Scheduled temperature.
56
+ """
57
+
58
+ is_before_start_decay = (t < self.start_decay)
59
+
60
+ rel_t = (t - self.start_decay) / (self.t_max - self.start_decay)
61
+
62
+ return self.start_b * is_before_start_decay + \
63
+ (1 - is_before_start_decay) * \
64
+ (self.end_b + (self.start_b - self.end_b) * torch.maximum(to_torch_tensor(np.array([0.0])),
65
+ to_torch_tensor(np.array((1 - rel_t)))))
66
+
67
+
68
+ class SoftQuantizerRegularization:
69
+ """
70
+ A class to handle the computation of soft quantizer regularization for GPTQ training.
71
+ """
72
+
73
+ def __init__(self, total_gradient_steps: int):
74
+ """
75
+ Initializes the regularization computation object with a LinearDecay object.
76
+
77
+ Args:
78
+ total_gradient_steps: The number of gradient steps during optimization.
79
+ """
80
+
81
+ # Initializing the temperature decay according to the number of expected gradient steps
82
+ self.linear_decay = LinearTempDecay(total_gradient_steps)
83
+
84
+ self.count_iter = 0
85
+
86
+ def __call__(self, model: nn.Module, entropy_reg: float):
87
+ """
88
+ Returns the soft quantizer regularization value for SoftRounding.
89
+
90
+ Args:
91
+ model: A model to be quantized with SoftRounding.
92
+ entropy_reg: Entropy value to scale the quantizer regularization.
93
+
94
+ Returns: Regularization value.
95
+ """
96
+
97
+ soft_reg_aux: List[torch.Tensor] = []
98
+ for layer in model.modules():
99
+ if isinstance(layer, PytorchQuantizationWrapper):
100
+ kernel_attribute = get_kernel_attribute_name_for_gptq(layer_type=type(layer.layer),
101
+ fw_info=DEFAULT_PYTORCH_INFO)
102
+
103
+ st = layer.weights_quantizers[kernel_attribute].get_soft_targets()
104
+ b = self.linear_decay(self.count_iter)
105
+
106
+ soft_reg_aux.append((1 - torch.pow(torch.abs(st - .5) * 2, b)).sum())
107
+
108
+ reg = 0
109
+
110
+ for sq in soft_reg_aux:
111
+ reg += sq
112
+
113
+ self.count_iter += 1
114
+
115
+ return entropy_reg * reg
@@ -14,10 +14,10 @@
14
14
  # ==============================================================================
15
15
  import torch
16
16
  import torch.nn as nn
17
- from typing import List, Dict
17
+ from typing import Dict
18
18
  import numpy as np
19
19
 
20
- from model_compression_toolkit.core.common import Logger, max_power_of_two
20
+ from model_compression_toolkit.core.common import max_power_of_two
21
21
  from model_compression_toolkit import quantizers_infrastructure as qi
22
22
  from model_compression_toolkit.core.common.target_platform import QuantizationMethod
23
23
  from model_compression_toolkit.gptq.common.gptq_config import RoundingType
@@ -25,13 +25,14 @@ from model_compression_toolkit.gptq.pytorch.quantizer.base_pytorch_gptq_quantize
25
25
  BasePytorchGPTQTrainableQuantizer
26
26
  from model_compression_toolkit.core.pytorch.utils import to_torch_tensor, torch_tensor_to_numpy
27
27
  from model_compression_toolkit.gptq.pytorch.quantizer import quant_utils as qutils
28
- from model_compression_toolkit.gptq.common.gptq_constants import PTQ_THRESHOLD, SCALE_PTQ, N_EPOCHS, \
29
- MAX_ITERATIONS_DEFAULT, SOFT_ROUNDING_GAMMA, SOFT_ROUNDING_ZETA, SOFT_ROUNDING_BETA, GPTQ_ITER, AUXVAR
28
+ from model_compression_toolkit.gptq.common.gptq_constants import PTQ_THRESHOLD, SCALE_PTQ, \
29
+ SOFT_ROUNDING_GAMMA, SOFT_ROUNDING_ZETA, AUXVAR
30
30
  from model_compression_toolkit.core.common.constants import THRESHOLD, MIN_THRESHOLD
31
31
  from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig
32
32
  from model_compression_toolkit.quantizers_infrastructure.inferable_infrastructure.common.base_inferable_quantizer import mark_quantizer
33
33
  from model_compression_toolkit.quantizers_infrastructure.trainable_infrastructure.common.quant_utils import \
34
34
  get_threshold_reshape_shape
35
+ from model_compression_toolkit.quantizers_infrastructure.trainable_infrastructure.common.base_trainable_quantizer import VariableGroup
35
36
 
36
37
 
37
38
  def soft_rounding_symmetric_quantizer(input_tensor: torch.Tensor,
@@ -67,46 +68,6 @@ def soft_rounding_symmetric_quantizer(input_tensor: torch.Tensor,
67
68
  max_val=int_threshold - 1)
68
69
 
69
70
 
70
- class LinearTempDecay:
71
- """
72
- Annealing process for the soft quantizer regularization temperature term.
73
- """
74
-
75
- def __init__(self, t_max: int, rel_start_decay: float = 0.2, start_b: int = 20, end_b: int = 2):
76
- """
77
- Initializes a LinearTempDecay object.
78
-
79
- Args:
80
- t_max: maximal time step.
81
- rel_start_decay: Decay step size at the beginning of the process.
82
- start_b: Starting value of the regularization term.
83
- end_b: Target value of the regularization term.
84
- """
85
-
86
- self.t_max = t_max
87
- self.start_decay = rel_start_decay * t_max
88
- self.start_b = start_b
89
- self.end_b = end_b
90
-
91
- def __call__(self, t: nn.Parameter) -> float:
92
- """
93
- Cosine annealing scheduler for soft quantizer regularization temperature term.
94
-
95
- Args:
96
- t: The current time step.
97
-
98
- Returns: Scheduled temperature.
99
- """
100
-
101
- is_before_start_decay = (t < self.start_decay).to(torch.float32)
102
-
103
- rel_t = (t - self.start_decay) / (self.t_max - self.start_decay)
104
-
105
- return self.start_b * is_before_start_decay + \
106
- (1 - is_before_start_decay) * \
107
- (self.end_b + (self.start_b - self.end_b) * torch.maximum(to_torch_tensor(np.array([0.0])), (1 - rel_t)))
108
-
109
-
110
71
  @mark_quantizer(quantization_target=qi.QuantizationTarget.Weights,
111
72
  quantization_method=[QuantizationMethod.POWER_OF_TWO, QuantizationMethod.SYMMETRIC],
112
73
  quantizer_type=RoundingType.SoftQuantizer)
@@ -117,22 +78,15 @@ class SymmetricSoftRoundingGPTQ(BasePytorchGPTQTrainableQuantizer):
117
78
 
118
79
  def __init__(self,
119
80
  quantization_config: TrainableQuantizerWeightsConfig,
120
- n_batches: int = None,
121
- quantization_parameter_learning: bool = False,
122
- n_epochs: int = N_EPOCHS):
81
+ quantization_parameter_learning: bool = False):
123
82
  """
124
83
  Construct a Pytorch model that utilize a fake weight quantizer of soft-quantizer for symmetric quantizer.
125
84
 
126
85
  Args:
127
86
  quantization_config: Trainable weights quantizer config.
128
- n_batches (int): number of batches in representative dataset
129
87
  quantization_parameter_learning (Bool): Whether to learn the threshold or not
130
- n_epochs (int): number of epochs the representative dataset is run during fine-tuning
131
88
  """
132
89
 
133
- if n_batches is None:
134
- Logger.error("SymmetricSoftRoundingGPTQ got an uninitialized n_batches argument.")
135
-
136
90
  super().__init__(quantization_config)
137
91
  self.num_bits = quantization_config.weights_n_bits
138
92
  self.per_channel = quantization_config.weights_per_channel_threshold
@@ -147,35 +101,24 @@ class SymmetricSoftRoundingGPTQ(BasePytorchGPTQTrainableQuantizer):
147
101
  self.quantization_parameter_learning = quantization_parameter_learning
148
102
 
149
103
  # gamma and zeta are stretch parameters for computing the rectified sigmoind function.
150
- # beta is used to set the regularization term.
151
104
  # See: https://arxiv.org/pdf/2004.10568.pdf
152
105
  self.gamma = SOFT_ROUNDING_GAMMA
153
106
  self.zeta = SOFT_ROUNDING_ZETA
154
- self.beta = SOFT_ROUNDING_BETA
155
107
 
156
108
  self.quantizer_parameters = {}
157
109
 
158
- # Initializing the temperature decay according to the number of expected gradient steps
159
- num_iterations = MAX_ITERATIONS_DEFAULT if n_batches is None else n_epochs * n_batches
160
- self.linear_decay = LinearTempDecay(num_iterations)
161
-
162
110
  def initialize_quantization(self,
163
111
  tensor_shape: torch.Size,
164
112
  name: str,
165
- layer: qi.PytorchQuantizationWrapper) -> Dict[str, nn.Parameter]:
113
+ layer: qi.PytorchQuantizationWrapper):
166
114
  """
167
- Return a dictionary of quantizer parameters and their names.
115
+ Add quantizer parameters to the quantizer parameters dictionary
168
116
 
169
117
  Args:
170
118
  tensor_shape: tensor shape of the quantized tensor.
171
119
  name: Tensor name.
172
120
  layer: Layer to quantize.
173
-
174
- Returns:
175
- Dictionary of parameters names to the variables.
176
121
  """
177
- layer.register_parameter(f"{name}_{GPTQ_ITER}",
178
- nn.Parameter(to_torch_tensor(np.array([0])), requires_grad=False))
179
122
 
180
123
  if self.per_channel:
181
124
  threshold_tensor = to_torch_tensor(self.threshold_values)
@@ -195,31 +138,18 @@ class SymmetricSoftRoundingGPTQ(BasePytorchGPTQTrainableQuantizer):
195
138
  layer.register_parameter(f"{name}_{AUXVAR}", nn.Parameter(alpha, requires_grad=True))
196
139
 
197
140
  # save the quantizer added parameters for later calculations
198
- self.quantizer_parameters = {PTQ_THRESHOLD: layer.get_parameter(f"{name}_{PTQ_THRESHOLD}"),
199
- AUXVAR: layer.get_parameter(f"{name}_{AUXVAR}"),
200
- GPTQ_ITER: layer.get_parameter(f"{name}_{GPTQ_ITER}")}
141
+ self.add_quantizer_variable(PTQ_THRESHOLD, layer.get_parameter(f"{name}_{PTQ_THRESHOLD}"), VariableGroup.QPARAMS)
142
+ self.add_quantizer_variable(AUXVAR, layer.get_parameter(f"{name}_{AUXVAR}"), VariableGroup.WEIGHTS)
201
143
 
202
144
  if self.quantization_parameter_learning:
203
- layer.register_parameter(f"{name}_{SCALE_PTQ}",
204
- nn.Parameter(torch.ones_like(torch.Tensor(self.threshold_values)),
205
- requires_grad=True))
206
-
207
- self.quantizer_parameters.update({SCALE_PTQ: layer.get_parameter(f"{name}_{SCALE_PTQ}")})
208
-
209
- return self.quantizer_parameters
210
-
211
- def get_regularization(self) -> torch.Tensor:
212
- """
213
- Computes the regularization term for the soft rounding loss.
214
-
215
- Returns:
216
- regularization term.
217
- """
218
-
219
- st = self.get_soft_targets()
220
- ar_iter = self.quantizer_parameters[GPTQ_ITER]
221
- b = self.linear_decay(ar_iter)
222
- return (1 - torch.pow(torch.abs(st - .5) * 2, b)).sum()
145
+ if self.per_channel:
146
+ layer.register_parameter(f"{name}_{SCALE_PTQ}",
147
+ nn.Parameter(to_torch_tensor(torch.ones_like(torch.Tensor(self.threshold_values))),
148
+ requires_grad=True))
149
+ else:
150
+ layer.register_parameter(f"{name}_{SCALE_PTQ}",
151
+ nn.Parameter(to_torch_tensor((torch.tensor([1.0], requires_grad=True)))))
152
+ self.add_quantizer_variable(SCALE_PTQ, layer.get_parameter(f"{name}_{SCALE_PTQ}"), VariableGroup.QPARAMS)
223
153
 
224
154
  def get_soft_targets(self) -> torch.Tensor:
225
155
  """
@@ -229,28 +159,9 @@ class SymmetricSoftRoundingGPTQ(BasePytorchGPTQTrainableQuantizer):
229
159
  A tensor with the soft rounding targets values.
230
160
 
231
161
  """
232
- scaled_sigmoid = torch.sigmoid(self.quantizer_parameters[AUXVAR]) * (self.zeta - self.gamma) + self.gamma
162
+ scaled_sigmoid = torch.sigmoid(self.get_quantizer_variable(AUXVAR)) * (self.zeta - self.gamma) + self.gamma
233
163
  return torch.clip(scaled_sigmoid, min=0, max=1)
234
164
 
235
- def get_aux_variable(self) -> List[torch.Tensor]:
236
- """
237
- This function return a list with the quantizer's quantization auxiliary variables.
238
-
239
- Returns: A list with the quantization auxiliary variables.
240
- """
241
- return [self.quantizer_parameters.get(AUXVAR)]
242
-
243
- def get_quantization_variable(self) -> List[torch.Tensor]:
244
- """
245
- This function return a list with the quantizer's quantization parameters variables.
246
-
247
- Returns: A list with the quantization parameters.
248
- """
249
- if self.quantization_parameter_learning and not self.power_of_two:
250
- return [self.quantizer_parameters[SCALE_PTQ]]
251
- else:
252
- return []
253
-
254
165
  def get_quant_config(self) -> Dict[str, np.ndarray]:
255
166
  """
256
167
  Returns the config used to edit NodeQuantizationConfig after GPTQ retraining
@@ -260,12 +171,13 @@ class SymmetricSoftRoundingGPTQ(BasePytorchGPTQTrainableQuantizer):
260
171
  Keys must match NodeQuantizationConfig attributes
261
172
 
262
173
  """
263
- old_threshold = torch_tensor_to_numpy(self.quantizer_parameters[PTQ_THRESHOLD])
174
+ old_threshold = torch_tensor_to_numpy(self.get_quantizer_variable(PTQ_THRESHOLD))
175
+ old_threshold = np.resize(old_threshold, self.threshold_shape)
264
176
  if self.power_of_two:
265
177
  old_threshold = max_power_of_two(old_threshold, MIN_THRESHOLD)
266
178
  else:
267
179
  if self.quantization_parameter_learning:
268
- scale = torch.reshape(self.quantizer_parameters[SCALE_PTQ], self.threshold_shape)
180
+ scale = torch.reshape(self.get_quantizer_variable(SCALE_PTQ), self.threshold_shape)
269
181
  old_threshold = old_threshold * torch_tensor_to_numpy(scale)
270
182
  old_threshold = old_threshold.reshape(self.threshold_shape)
271
183
  return {THRESHOLD: old_threshold}
@@ -283,17 +195,14 @@ class SymmetricSoftRoundingGPTQ(BasePytorchGPTQTrainableQuantizer):
283
195
  Returns:
284
196
  quantized tensor
285
197
  """
286
- ar_iter = self.quantizer_parameters[GPTQ_ITER]
287
- auxvar = self.quantizer_parameters[AUXVAR]
288
- ptq_threshold_tensor = self.quantizer_parameters[PTQ_THRESHOLD]
198
+ auxvar = self.get_quantizer_variable(AUXVAR)
199
+ ptq_threshold_tensor = self.get_quantizer_variable(PTQ_THRESHOLD)
289
200
 
290
201
  #####################################################
291
202
  # Soft Rounding
292
203
  #####################################################
293
204
  aux_var = self.get_soft_targets()
294
- if training:
295
- ar_iter.set_(ar_iter + 1)
296
- else:
205
+ if not training:
297
206
  aux_var = (aux_var >= 0.5).to(auxvar.dtype)
298
207
 
299
208
  if self.per_channel:
@@ -317,7 +226,7 @@ class SymmetricSoftRoundingGPTQ(BasePytorchGPTQTrainableQuantizer):
317
226
  power_of_two=self.power_of_two)
318
227
 
319
228
  if self.quantization_parameter_learning and not self.power_of_two:
320
- scale = torch.reshape(self.quantizer_parameters[SCALE_PTQ], reshape_shape)
229
+ scale = torch.reshape(self.get_quantizer_variable(SCALE_PTQ), reshape_shape)
321
230
  q_tensor *= scale
322
231
 
323
232
  else:
@@ -328,4 +237,8 @@ class SymmetricSoftRoundingGPTQ(BasePytorchGPTQTrainableQuantizer):
328
237
  signed=True,
329
238
  power_of_two=self.power_of_two)
330
239
 
240
+ if self.quantization_parameter_learning and not self.power_of_two:
241
+ scale = self.get_quantizer_variable(SCALE_PTQ)
242
+ q_tensor *= scale
243
+
331
244
  return q_tensor