mct-nightly 1.8.0.22042023.post414__py3-none-any.whl → 1.8.0.22052023.post408__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (238) hide show
  1. {mct_nightly-1.8.0.22042023.post414.dist-info → mct_nightly-1.8.0.22052023.post408.dist-info}/METADATA +1 -1
  2. {mct_nightly-1.8.0.22042023.post414.dist-info → mct_nightly-1.8.0.22052023.post408.dist-info}/RECORD +237 -230
  3. model_compression_toolkit/__init__.py +8 -31
  4. model_compression_toolkit/{core/common/constants.py → constants.py} +2 -6
  5. model_compression_toolkit/core/__init__.py +14 -0
  6. model_compression_toolkit/core/analyzer.py +3 -2
  7. model_compression_toolkit/core/common/__init__.py +0 -1
  8. model_compression_toolkit/core/common/collectors/base_collector.py +1 -1
  9. model_compression_toolkit/core/common/collectors/mean_collector.py +1 -1
  10. model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +1 -1
  11. model_compression_toolkit/core/common/framework_implementation.py +1 -8
  12. model_compression_toolkit/core/common/fusion/layer_fusing.py +2 -2
  13. model_compression_toolkit/core/common/graph/base_graph.py +1 -1
  14. model_compression_toolkit/core/common/graph/base_node.py +57 -1
  15. model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +1 -1
  16. model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +1 -1
  17. model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +2 -2
  18. model_compression_toolkit/core/common/memory_computation.py +1 -1
  19. model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +1 -1
  20. model_compression_toolkit/core/common/mixed_precision/kpi_tools/kpi_data.py +2 -3
  21. model_compression_toolkit/core/common/mixed_precision/kpi_tools/kpi_methods.py +3 -3
  22. model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +1 -1
  23. model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +3 -2
  24. model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +1 -1
  25. model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +1 -1
  26. model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +2 -2
  27. model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +2 -2
  28. model_compression_toolkit/core/common/model_collector.py +2 -2
  29. model_compression_toolkit/core/common/model_validation.py +1 -1
  30. model_compression_toolkit/core/common/network_editors/actions.py +4 -1
  31. model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +1 -1
  32. model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +1 -1
  33. model_compression_toolkit/core/common/quantization/node_quantization_config.py +1 -1
  34. model_compression_toolkit/core/common/quantization/quantization_config.py +2 -2
  35. model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +1 -1
  36. model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +1 -1
  37. model_compression_toolkit/core/common/quantization/quantization_params_generation/kmeans_params.py +1 -1
  38. model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +2 -2
  39. model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +1 -1
  40. model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +2 -2
  41. model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +1 -1
  42. model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +1 -1
  43. model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +1 -1
  44. model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +1 -1
  45. model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +1 -1
  46. model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +2 -1
  47. model_compression_toolkit/core/common/quantization/quantize_node.py +2 -2
  48. model_compression_toolkit/core/common/quantization/quantizers/kmeans_quantizer.py +1 -1
  49. model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +1 -1
  50. model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +4 -2
  51. model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +2 -2
  52. model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +3 -2
  53. model_compression_toolkit/core/common/similarity_analyzer.py +2 -2
  54. model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +4 -3
  55. model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +3 -2
  56. model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +1 -1
  57. model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +2 -2
  58. model_compression_toolkit/core/common/substitutions/linear_collapsing.py +1 -1
  59. model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +4 -4
  60. model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +1 -1
  61. model_compression_toolkit/core/common/substitutions/weights_activation_split.py +1 -1
  62. model_compression_toolkit/core/common/visualization/tensorboard_writer.py +1 -1
  63. model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +1 -1
  64. model_compression_toolkit/core/keras/back2framework/float_model_builder.py +1 -1
  65. model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +66 -21
  66. model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +1 -1
  67. model_compression_toolkit/core/keras/back2framework/model_gradients.py +2 -2
  68. model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +1 -1
  69. model_compression_toolkit/core/keras/constants.py +0 -7
  70. model_compression_toolkit/core/keras/default_framework_info.py +2 -2
  71. model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +1 -1
  72. model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +1 -1
  73. model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +1 -1
  74. model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +3 -4
  75. model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +2 -1
  76. model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_relu_upper_bound.py +3 -2
  77. model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +1 -1
  78. model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +1 -1
  79. model_compression_toolkit/core/keras/keras_implementation.py +2 -10
  80. model_compression_toolkit/core/keras/keras_model_validation.py +1 -1
  81. model_compression_toolkit/core/keras/keras_node_prior_info.py +1 -1
  82. model_compression_toolkit/core/keras/kpi_data_facade.py +7 -7
  83. model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +2 -2
  84. model_compression_toolkit/core/keras/quantizer/input_layer_quantize_transform.py +1 -1
  85. model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +2 -2
  86. model_compression_toolkit/core/keras/quantizer/mixed_precision/selective_quantize_config.py +1 -1
  87. model_compression_toolkit/core/keras/reader/common.py +1 -1
  88. model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +1 -1
  89. model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +1 -1
  90. model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +1 -1
  91. model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +1 -1
  92. model_compression_toolkit/core/pytorch/back2framework/model_gradients.py +2 -2
  93. model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +1 -1
  94. model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +1 -1
  95. model_compression_toolkit/core/pytorch/constants.py +0 -6
  96. model_compression_toolkit/core/pytorch/default_framework_info.py +1 -1
  97. model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +1 -1
  98. model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +1 -1
  99. model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +3 -2
  100. model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +1 -1
  101. model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +1 -1
  102. model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +1 -1
  103. model_compression_toolkit/core/pytorch/kpi_data_facade.py +6 -6
  104. model_compression_toolkit/core/pytorch/mixed_precision/mixed_precision_wrapper.py +1 -1
  105. model_compression_toolkit/core/pytorch/pytorch_implementation.py +1 -9
  106. model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +1 -1
  107. model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +2 -2
  108. model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +1 -1
  109. model_compression_toolkit/core/pytorch/reader/graph_builders.py +3 -2
  110. model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +1 -1
  111. model_compression_toolkit/core/runner.py +6 -6
  112. model_compression_toolkit/exporter/__init__.py +6 -3
  113. model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +1 -1
  114. model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +20 -0
  115. model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +1 -1
  116. model_compression_toolkit/exporter/model_exporter/{tflite → keras}/fakely_quant_tflite_exporter.py +1 -1
  117. model_compression_toolkit/exporter/model_exporter/{tflite → keras}/int8_tflite_exporter.py +1 -1
  118. model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +60 -22
  119. model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +20 -0
  120. model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +15 -1
  121. model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +1 -1
  122. model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +54 -31
  123. model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +5 -3
  124. model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +4 -2
  125. model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +2 -2
  126. model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +3 -2
  127. model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +3 -2
  128. model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +2 -2
  129. model_compression_toolkit/gptq/common/gptq_framework_implementation.py +32 -0
  130. model_compression_toolkit/gptq/common/gptq_graph.py +2 -2
  131. model_compression_toolkit/gptq/common/gptq_training.py +5 -4
  132. model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +29 -0
  133. model_compression_toolkit/gptq/keras/gptq_training.py +41 -14
  134. model_compression_toolkit/gptq/keras/graph_info.py +4 -0
  135. model_compression_toolkit/gptq/keras/quantization_facade.py +26 -19
  136. model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +2 -2
  137. model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +1 -1
  138. model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +1 -1
  139. model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +2 -2
  140. model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +1 -1
  141. model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +29 -0
  142. model_compression_toolkit/gptq/pytorch/gptq_training.py +1 -1
  143. model_compression_toolkit/gptq/pytorch/quantization_facade.py +11 -11
  144. model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +3 -3
  145. model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +1 -3
  146. model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +1 -1
  147. model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +2 -2
  148. model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +1 -1
  149. model_compression_toolkit/gptq/runner.py +3 -2
  150. model_compression_toolkit/{exporter/model_exporter/tflite → legacy}/__init__.py +1 -1
  151. model_compression_toolkit/{core/keras/quantization_facade.py → legacy/keras_quantization_facade.py} +8 -9
  152. model_compression_toolkit/{core/pytorch/quantization_facade.py → legacy/pytorch_quantization_facade.py} +8 -9
  153. model_compression_toolkit/ptq/__init__.py +3 -0
  154. model_compression_toolkit/ptq/keras/quantization_facade.py +10 -11
  155. model_compression_toolkit/ptq/pytorch/quantization_facade.py +7 -7
  156. model_compression_toolkit/qat/__init__.py +4 -0
  157. model_compression_toolkit/qat/common/__init__.py +1 -2
  158. model_compression_toolkit/qat/common/qat_config.py +5 -1
  159. model_compression_toolkit/qat/keras/quantization_facade.py +33 -27
  160. model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +2 -2
  161. model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +31 -4
  162. model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +12 -10
  163. model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +8 -8
  164. model_compression_toolkit/qat/pytorch/quantization_facade.py +8 -8
  165. model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +2 -2
  166. model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +3 -2
  167. model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +6 -4
  168. model_compression_toolkit/quantizers_infrastructure/__init__.py +2 -2
  169. model_compression_toolkit/{qat/common → quantizers_infrastructure}/constants.py +2 -1
  170. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/constants.py +5 -0
  171. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/get_quantizers.py +1 -1
  172. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/activation_quantization_holder.py +147 -0
  173. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/load_model.py +5 -5
  174. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantize_wrapper.py +2 -2
  175. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_lut_pot_inferable_quantizer.py +2 -2
  176. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_pot_inferable_quantizer.py +2 -2
  177. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_symmetric_inferable_quantizer.py +1 -1
  178. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_uniform_inferable_quantizer.py +2 -2
  179. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/base_keras_inferable_quantizer.py +1 -1
  180. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_lut_pot_inferable_quantizer.py +1 -1
  181. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_lut_symmetric_inferable_quantizer.py +1 -1
  182. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_pot_inferable_quantizer.py +1 -1
  183. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_symmetric_inferable_quantizer.py +1 -1
  184. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_uniform_inferable_quantizer.py +1 -1
  185. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/validation_functions.py +1 -1
  186. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantize_wrapper.py +2 -2
  187. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_lut_pot_inferable_quantizer.py +1 -2
  188. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_pot_inferable_quantizer.py +1 -1
  189. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_symmetric_inferable_quantizer.py +1 -1
  190. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_uniform_inferable_quantizer.py +1 -1
  191. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_lut_symmetric_inferable_quantizer.py +1 -1
  192. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_pytorch_inferable_quantizer.py +1 -1
  193. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_symmetric_inferable_quantizer.py +1 -1
  194. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_uniform_inferable_quantizer.py +1 -1
  195. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_lut_pot_inferable_quantizer.py +1 -1
  196. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_lut_symmetric_inferable_quantizer.py +1 -1
  197. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_pot_inferable_quantizer.py +1 -1
  198. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_symmetric_inferable_quantizer.py +1 -1
  199. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_uniform_inferable_quantizer.py +2 -2
  200. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/base_trainable_quantizer.py +9 -9
  201. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/get_quantizer_config.py +2 -1
  202. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/get_quantizers.py +3 -5
  203. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/keras/base_keras_quantizer.py +2 -2
  204. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +2 -2
  205. model_compression_toolkit/target_platform_capabilities/constants.py +27 -0
  206. model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +1 -1
  207. model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +1 -1
  208. model_compression_toolkit/target_platform_capabilities/target_platform/quantization_format.py +20 -0
  209. model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +11 -2
  210. model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +1 -1
  211. model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +32 -34
  212. model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +2 -2
  213. model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +3 -24
  214. model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/latest/__init__.py +1 -1
  215. model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/target_platform_capabilities.py +3 -1
  216. model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v1/tp_model.py +7 -1
  217. model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v2/tp_model.py +7 -1
  218. model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v3/tp_model.py +7 -1
  219. model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v3_lut/tp_model.py +7 -2
  220. model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v4/tp_model.py +7 -1
  221. model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v4_lut/tp_model.py +7 -2
  222. model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v5/tp_model.py +7 -1
  223. model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +1 -3
  224. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +1 -1
  225. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +2 -1
  226. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +7 -1
  227. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +1 -1
  228. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +2 -1
  229. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +7 -1
  230. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +1 -1
  231. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +2 -1
  232. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +26 -18
  233. model_compression_toolkit/exporter/model_exporter/tflite/tflite_export_facade.py +0 -73
  234. {mct_nightly-1.8.0.22042023.post414.dist-info → mct_nightly-1.8.0.22052023.post408.dist-info}/LICENSE.md +0 -0
  235. {mct_nightly-1.8.0.22042023.post414.dist-info → mct_nightly-1.8.0.22052023.post408.dist-info}/WHEEL +0 -0
  236. {mct_nightly-1.8.0.22042023.post414.dist-info → mct_nightly-1.8.0.22052023.post408.dist-info}/top_level.txt +0 -0
  237. /model_compression_toolkit/{core/common/logger.py → logger.py} +0 -0
  238. /model_compression_toolkit/{core/common → target_platform_capabilities}/immutable.py +0 -0
@@ -16,17 +16,18 @@ from typing import Callable, List, Tuple, Union
16
16
 
17
17
  import tensorflow as tf
18
18
  from keras import Model
19
+ from packaging import version
19
20
  from tensorflow.keras.layers import Layer
20
21
  from tqdm import tqdm
21
22
 
22
23
  # As from Tensorflow 2.6, keras is a separate package and some classes should be imported differently.
23
24
  from model_compression_toolkit.core.common.user_info import UserInformation
24
25
  from model_compression_toolkit.core.keras.back2framework.keras_model_builder import KerasModelBuilder
25
- from packaging import version
26
-
27
26
  from model_compression_toolkit.gptq.common.gptq_graph import get_kernel_attribute_name_for_gptq
28
27
  from model_compression_toolkit.gptq.keras.quantizer.quantization_builder import quantization_builder
28
+ from model_compression_toolkit.logger import Logger
29
29
  from model_compression_toolkit.quantizers_infrastructure import KerasQuantizationWrapper
30
+ from model_compression_toolkit.quantizers_infrastructure.inferable_infrastructure.keras.activation_quantization_holder import ActivationQuantizationHolder
30
31
 
31
32
  if version.parse(tf.__version__) < version.parse("2.6"):
32
33
  from tensorflow.python.keras.engine.base_layer import TensorFlowOpLayer
@@ -105,7 +106,7 @@ class KerasGPTQTrainer(GPTQTrainer):
105
106
  [len(optimizer_params_tuple[1]) for optimizer_params_tuple in self.optimizer_with_param]) > 0
106
107
 
107
108
  if self.float_user_info.input_scale != self.gptq_user_info.input_scale:
108
- common.Logger.error("Input scale mismatch between float and GPTQ networks") # pragma: no cover
109
+ Logger.error("Input scale mismatch between float and GPTQ networks") # pragma: no cover
109
110
  else:
110
111
  self.input_scale = self.gptq_user_info.input_scale
111
112
 
@@ -113,8 +114,8 @@ class KerasGPTQTrainer(GPTQTrainer):
113
114
 
114
115
  self.reg_func = get_regularization(self.gptq_config, representative_data_gen)
115
116
 
116
- def _is_gptq_applicable(self,
117
- node: common.BaseNode) -> bool:
117
+ def _is_gptq_weights_trainable(self,
118
+ node: common.BaseNode) -> bool:
118
119
  """
119
120
  A function for deciding if a layer should be fine-tuned during GPTQ.
120
121
 
@@ -126,11 +127,13 @@ class KerasGPTQTrainer(GPTQTrainer):
126
127
  """
127
128
 
128
129
  if node.is_weights_quantization_enabled() and not self.fw_info.is_kernel_op(node.type):
129
- common.Logger.error(f"GPTQ Error: Quantizing node {node.name} of type {node.type} "
130
+ Logger.error(f"GPTQ Error: Quantizing node {node.name} of type {node.type} "
130
131
  f"without a kernel isn't supported")
131
132
  return node.is_weights_quantization_enabled()
132
133
 
133
- def gptq_wrapper(self, n: common.BaseNode, layer: Layer) -> Union[qi.KerasQuantizationWrapper, Layer]:
134
+ def gptq_wrapper(self,
135
+ n: common.BaseNode,
136
+ layer: Layer) -> Union[qi.KerasQuantizationWrapper, Layer]:
134
137
  """
135
138
  A function which takes a computational graph node and a keras layer and perform the quantization wrapping.
136
139
 
@@ -141,14 +144,37 @@ class KerasGPTQTrainer(GPTQTrainer):
141
144
  Returns: Wrapped layer if the layer should be wrap, otherwise returns the layer as is.
142
145
 
143
146
  """
144
- if self._is_gptq_applicable(n):
145
- weights_quantizers, activation_quantizers = quantization_builder(n, self.gptq_config)
147
+ if self._is_gptq_weights_trainable(n):
148
+ weights_quantizers, _ = quantization_builder(n, self.gptq_config) # TODO: split quantizers building into two functions: for weights and activations
146
149
  return qi.KerasQuantizationWrapper(layer,
147
- weights_quantizers=weights_quantizers,
148
- activation_quantizers=activation_quantizers)
150
+ weights_quantizers=weights_quantizers)
149
151
  else:
150
152
  return layer
151
153
 
154
+ def get_activation_quantizer_holder(self, n: common.BaseNode) -> Union[None, Callable]:
155
+ """
156
+ Retrieve a ActivationQuantizationHolder layer to use for activation quantization for a node.
157
+ If the layer is not supposed to be wrapped with activation quantizers - return None.
158
+
159
+ Args:
160
+ n: Node to get ActivationQuantizationHolder to attach in its output.
161
+
162
+ Returns:
163
+ A ActivationQuantizationHolder layer for the node activation quantization.
164
+ """
165
+ _, activation_quantizers = quantization_builder(n, self.gptq_config) # TODO: split quantizers building into two functions: for weights and activations
166
+
167
+ # Holder by definition uses a single quantizer for the activation quantization
168
+ # thus we make sure this is the only possible case (unless it's a node with no activation
169
+ # quantization, which in this case has an empty list).
170
+ if len(activation_quantizers) == 1:
171
+ return ActivationQuantizationHolder(activation_quantizers[0])
172
+
173
+ Logger.error(
174
+ f'ActivationQuantizationHolder supports a single quantizer but {len(activation_quantizers)} quantizers '
175
+ f'were found for node {n}')
176
+
177
+
152
178
  def build_gptq_model(self) -> Tuple[Model, UserInformation]:
153
179
  """
154
180
  Build the GPTQ model with QuantizationWrappers
@@ -161,7 +187,8 @@ class KerasGPTQTrainer(GPTQTrainer):
161
187
  append2output=self.compare_points,
162
188
  fw_info=self.fw_info,
163
189
  return_float_outputs=True,
164
- wrapper=self.gptq_wrapper).build_model()
190
+ wrapper=self.gptq_wrapper,
191
+ get_activation_quantizer_holder_fn=self.get_activation_quantizer_holder).build_model()
165
192
 
166
193
  return gptq_model, gptq_user_info
167
194
 
@@ -280,7 +307,7 @@ class KerasGPTQTrainer(GPTQTrainer):
280
307
  self.gptq_config.log_function(loss_value_step, grads[0], in_optimizer_with_param[0][-1],
281
308
  self.compare_points)
282
309
  self.loss_list.append(loss_value_step.numpy())
283
- common.Logger.debug(f'last loss value: {self.loss_list[-1]}')
310
+ Logger.debug(f'last loss value: {self.loss_list[-1]}')
284
311
 
285
312
  def update_graph(self):
286
313
  """
@@ -297,7 +324,7 @@ class KerasGPTQTrainer(GPTQTrainer):
297
324
  if len(node) == 0 and isinstance(layer.layer, TensorFlowOpLayer):
298
325
  node = graph.find_node_by_name('_'.join(layer.layer.name.split('_')[3:]))
299
326
  if len(node) != 1:
300
- common.Logger.error(f"Can't update GPTQ graph due to missing layer named: {layer.layer.name}")
327
+ Logger.error(f"Can't update GPTQ graph due to missing layer named: {layer.layer.name}")
301
328
  node = node[0]
302
329
  kernel_attribute = get_kernel_attribute_name_for_gptq(layer_type=node.type,
303
330
  fw_info=self.fw_info)
@@ -20,6 +20,7 @@ from model_compression_toolkit.core.common.framework_info import FrameworkInfo
20
20
  from tensorflow.keras.models import Model
21
21
  from model_compression_toolkit.core.keras.default_framework_info import DEFAULT_KERAS_INFO
22
22
  from model_compression_toolkit.gptq.common.gptq_graph import get_kernel_attribute_name_for_gptq
23
+ from model_compression_toolkit.logger import Logger
23
24
  from model_compression_toolkit.quantizers_infrastructure import KerasQuantizationWrapper
24
25
  from model_compression_toolkit.quantizers_infrastructure.trainable_infrastructure.common.base_trainable_quantizer import VariableGroup
25
26
 
@@ -50,6 +51,9 @@ def get_gptq_trainable_parameters(fxp_model: Model,
50
51
  fw_info=DEFAULT_KERAS_INFO)
51
52
 
52
53
  # collect trainable weights per quantizer
54
+ if kernel_attribute not in layer.weights_quantizers:
55
+ Logger.error(f'{kernel_attribute} was not found in weight quantizers of layer {layer.layer}')
56
+
53
57
  quantizer_trainable_weights = layer.weights_quantizers[kernel_attribute].get_trainable_variables(VariableGroup.WEIGHTS)
54
58
  quantizer_trainable_threshold = layer.weights_quantizers[kernel_attribute].get_trainable_variables(VariableGroup.QPARAMS)
55
59
  trainable_weights.append(quantizer_trainable_weights)
@@ -16,16 +16,14 @@
16
16
  from typing import Callable, Tuple
17
17
  from packaging import version
18
18
 
19
- from model_compression_toolkit.core import common
20
- from model_compression_toolkit.core.common import Logger
21
- from model_compression_toolkit.core.common.constants import TENSORFLOW
19
+ from model_compression_toolkit.logger import Logger
20
+ from model_compression_toolkit.constants import TENSORFLOW, FOUND_TF
22
21
  from model_compression_toolkit.core.common.user_info import UserInformation
23
22
  from model_compression_toolkit.gptq.common.gptq_config import GradientPTQConfigV2
24
23
  from model_compression_toolkit.core.common.mixed_precision.kpi_tools.kpi import KPI
25
24
  from model_compression_toolkit.core.common.framework_info import FrameworkInfo
26
- from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import \
27
- MixedPrecisionQuantizationConfigV2
28
- from model_compression_toolkit import CoreConfig
25
+ from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import MixedPrecisionQuantizationConfigV2
26
+ from model_compression_toolkit.core import CoreConfig
29
27
  from model_compression_toolkit.core.runner import core_runner, _init_tensorboard_writer
30
28
  from model_compression_toolkit.gptq.runner import gptq_runner
31
29
  from model_compression_toolkit.core.exporter import export_model
@@ -38,14 +36,14 @@ LR_BIAS_DEFAULT = 1e-4
38
36
  LR_QUANTIZATION_PARAM_DEFAULT = 1e-3
39
37
  GPTQ_MOMENTUM = 0.9
40
38
 
41
- if common.constants.FOUND_TF:
39
+ if FOUND_TF:
42
40
  import tensorflow as tf
43
41
  from model_compression_toolkit.core.keras.default_framework_info import DEFAULT_KERAS_INFO
44
- from model_compression_toolkit.core.keras.keras_implementation import KerasImplementation
42
+ from model_compression_toolkit.gptq.keras.gptq_keras_implementation import GPTQKerasImplemantation
45
43
  from model_compression_toolkit.core.keras.keras_model_validation import KerasModelValidation
46
44
  from tensorflow.keras.models import Model
47
45
  from model_compression_toolkit.gptq.keras.gptq_loss import GPTQMultipleTensorsLoss
48
- from model_compression_toolkit.core.keras.constants import DEFAULT_TP_MODEL
46
+ from model_compression_toolkit.target_platform_capabilities.constants import DEFAULT_TP_MODEL
49
47
  from model_compression_toolkit.exporter.model_wrapper import get_exportable_keras_model
50
48
  from model_compression_toolkit import get_target_platform_capabilities
51
49
 
@@ -62,7 +60,8 @@ if common.constants.FOUND_TF:
62
60
  optimizer: OptimizerV2 = tf.keras.optimizers.Adam(learning_rate=LR_DEFAULT),
63
61
  optimizer_rest: OptimizerV2 = tf.keras.optimizers.Adam(learning_rate=LR_REST_DEFAULT),
64
62
  loss: Callable = GPTQMultipleTensorsLoss(),
65
- log_function: Callable = None) -> GradientPTQConfigV2:
63
+ log_function: Callable = None,
64
+ use_hessian_based_weights: bool = True) -> GradientPTQConfigV2:
66
65
  """
67
66
  Create a GradientPTQConfigV2 instance for Keras models.
68
67
 
@@ -72,6 +71,7 @@ if common.constants.FOUND_TF:
72
71
  optimizer_rest (OptimizerV2): Keras optimizer to use for fine-tuning of the bias variable.
73
72
  loss (Callable): loss to use during fine-tuning. should accept 4 lists of tensors. 1st list of quantized tensors, the 2nd list is the float tensors, the 3rd is a list of quantized weights and the 4th is a list of float weights.
74
73
  log_function (Callable): Function to log information about the gptq process.
74
+ use_hessian_based_weights (bool): Whether to use Hessian-based weights for weighted average loss.
75
75
 
76
76
  returns:
77
77
  a GradientPTQConfigV2 object to use when fine-tuning the quantized model using gptq.
@@ -94,9 +94,16 @@ if common.constants.FOUND_TF:
94
94
  The configuration can be passed to :func:`~model_compression_toolkit.keras_post_training_quantization` in order to quantize a keras model using gptq.
95
95
 
96
96
  """
97
- bias_optimizer = tf.keras.optimizers.SGD(learning_rate=LR_BIAS_DEFAULT, momentum=GPTQ_MOMENTUM)
98
- return GradientPTQConfigV2(n_epochs, optimizer, optimizer_rest=optimizer_rest, loss=loss,
99
- log_function=log_function, train_bias=True, optimizer_bias=bias_optimizer)
97
+ bias_optimizer = tf.keras.optimizers.SGD(learning_rate=LR_BIAS_DEFAULT,
98
+ momentum=GPTQ_MOMENTUM)
99
+ return GradientPTQConfigV2(n_epochs,
100
+ optimizer,
101
+ optimizer_rest=optimizer_rest,
102
+ loss=loss,
103
+ log_function=log_function,
104
+ train_bias=True,
105
+ optimizer_bias=bias_optimizer,
106
+ use_hessian_based_weights=use_hessian_based_weights)
100
107
 
101
108
 
102
109
  def keras_gradient_post_training_quantization_experimental(in_model: Model,
@@ -158,20 +165,20 @@ if common.constants.FOUND_TF:
158
165
 
159
166
  Create an MCT core config, containing the quantization configuration:
160
167
 
161
- >>> config = mct.CoreConfig()
168
+ >>> config = mct.core.CoreConfig()
162
169
 
163
170
  If mixed precision is desired, create an MCT core config with a mixed-precision configuration, to quantize a model
164
171
  with different bitwidths for different layers.
165
172
  The candidates bitwidth for quantization should be defined in the target platform model:
166
173
 
167
- >>> config = mct.CoreConfig(mixed_precision_config=mct.MixedPrecisionQuantizationConfigV2(num_of_images=1))
174
+ >>> config = mct.core.CoreConfig(mixed_precision_config=mct.core.MixedPrecisionQuantizationConfigV2(num_of_images=1))
168
175
 
169
176
  For mixed-precision set a target KPI object:
170
177
  Create a KPI object to limit our returned model's size. Note that this value affects only coefficients
171
178
  that should be quantized (for example, the kernel of Conv2D in Keras will be affected by this value,
172
179
  while the bias will not):
173
180
 
174
- >>> kpi = mct.KPI(model.count_params() * 0.75) # About 0.75 of the model size when quantized with 8 bits.
181
+ >>> kpi = mct.core.KPI(model.count_params() * 0.75) # About 0.75 of the model size when quantized with 8 bits.
175
182
 
176
183
  Create GPTQ config:
177
184
 
@@ -187,15 +194,15 @@ if common.constants.FOUND_TF:
187
194
 
188
195
  if core_config.mixed_precision_enable:
189
196
  if not isinstance(core_config.mixed_precision_config, MixedPrecisionQuantizationConfigV2):
190
- common.Logger.error("Given quantization config to mixed-precision facade is not of type "
197
+ Logger.error("Given quantization config to mixed-precision facade is not of type "
191
198
  "MixedPrecisionQuantizationConfigV2. Please use keras_post_training_quantization "
192
199
  "API, or pass a valid mixed precision configuration.") # pragma: no cover
193
200
 
194
- common.Logger.info("Using experimental mixed-precision quantization. "
201
+ Logger.info("Using experimental mixed-precision quantization. "
195
202
  "If you encounter an issue please file a bug.")
196
203
  tb_w = _init_tensorboard_writer(fw_info)
197
204
 
198
- fw_impl = KerasImplementation()
205
+ fw_impl = GPTQKerasImplemantation()
199
206
 
200
207
  tg, bit_widths_config = core_runner(in_model=in_model,
201
208
  representative_data_gen=representative_data_gen,
@@ -15,8 +15,8 @@
15
15
  from abc import abstractmethod
16
16
  from typing import Union, Dict, List
17
17
 
18
- from model_compression_toolkit.core.common import Logger
19
- from model_compression_toolkit.core.common.constants import FOUND_TF
18
+ from model_compression_toolkit.logger import Logger
19
+ from model_compression_toolkit.constants import FOUND_TF
20
20
  from model_compression_toolkit.gptq.common.gptq_constants import WEIGHTS_QUANTIZATION_PARAMS
21
21
 
22
22
  from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig, \
@@ -14,7 +14,7 @@
14
14
  # ==============================================================================
15
15
 
16
16
  import tensorflow as tf
17
- from model_compression_toolkit.core.common.constants import MIN_THRESHOLD
17
+ from model_compression_toolkit.constants import MIN_THRESHOLD
18
18
  from typing import Tuple
19
19
 
20
20
 
@@ -24,7 +24,7 @@ from model_compression_toolkit.gptq.common.gptq_constants import PTQ_THRESHOLD,
24
24
  SOFT_ROUNDING_GAMMA, SOFT_ROUNDING_ZETA, AUXVAR
25
25
  from model_compression_toolkit.gptq.keras.quantizer import quant_utils as qutils
26
26
  from typing import Dict, Any
27
- from model_compression_toolkit.core.common.constants import THRESHOLD, MIN_THRESHOLD
27
+ from model_compression_toolkit.constants import THRESHOLD, MIN_THRESHOLD
28
28
  from model_compression_toolkit.gptq.keras.quantizer.base_keras_gptq_quantizer import BaseKerasGPTQTrainableQuantizer
29
29
  from model_compression_toolkit.gptq.keras.quantizer.quant_utils import power_of_two_max, clip, calculate_delta
30
30
  from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig
@@ -18,13 +18,13 @@ import numpy as np
18
18
 
19
19
  from model_compression_toolkit.gptq import RoundingType
20
20
  from model_compression_toolkit import quantizers_infrastructure as qi
21
+ from model_compression_toolkit.quantizers_infrastructure.constants import FQ_MIN, FQ_MAX
21
22
  from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
22
23
  from model_compression_toolkit.gptq.common.gptq_constants import \
23
24
  SOFT_ROUNDING_GAMMA, SOFT_ROUNDING_ZETA, AUXVAR
24
25
  from model_compression_toolkit.gptq.keras.quantizer import quant_utils as qutils
25
26
  from typing import Dict, Any
26
- from model_compression_toolkit.core.common.constants import RANGE_MIN, RANGE_MAX
27
- from model_compression_toolkit.qat.common.constants import FQ_MIN, FQ_MAX
27
+ from model_compression_toolkit.constants import RANGE_MIN, RANGE_MAX
28
28
  from model_compression_toolkit.gptq.keras.quantizer.base_keras_gptq_quantizer import BaseKerasGPTQTrainableQuantizer
29
29
  from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig
30
30
  from model_compression_toolkit.quantizers_infrastructure.inferable_infrastructure.common.base_inferable_quantizer import mark_quantizer
@@ -23,7 +23,7 @@ from model_compression_toolkit import quantizers_infrastructure as qi
23
23
  from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
24
24
  from model_compression_toolkit.gptq.common.gptq_constants import AUXVAR, PTQ_THRESHOLD
25
25
  from model_compression_toolkit.gptq.keras.quantizer import quant_utils as qutils
26
- from model_compression_toolkit.core.common.constants import THRESHOLD
26
+ from model_compression_toolkit.constants import THRESHOLD
27
27
  from model_compression_toolkit.core.common.defaultdict import DefaultDict
28
28
  from model_compression_toolkit.gptq.keras.quantizer.base_keras_gptq_quantizer import BaseKerasGPTQTrainableQuantizer
29
29
  from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig
@@ -0,0 +1,29 @@
1
+ # Copyright 2023 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from typing import Type
17
+
18
+ from model_compression_toolkit.core.pytorch.pytorch_implementation import PytorchImplementation
19
+ from model_compression_toolkit.gptq.common.gptq_framework_implementation import GPTQFrameworkImplemantation
20
+ from model_compression_toolkit.gptq.pytorch.gptq_training import PytorchGPTQTrainer
21
+
22
+
23
+ class GPTQPytorchImplemantation(GPTQFrameworkImplemantation, PytorchImplementation):
24
+
25
+ def get_gptq_trainer_obj(self) -> Type[PytorchGPTQTrainer]:
26
+ """
27
+ Returns: Pytorch object of GPTQTrainer
28
+ """
29
+ return PytorchGPTQTrainer
@@ -19,7 +19,7 @@ from torch.nn import Module
19
19
  from tqdm import tqdm
20
20
  import copy
21
21
  import torch
22
- from model_compression_toolkit.core.common.logger import Logger
22
+ from model_compression_toolkit.logger import Logger
23
23
  from model_compression_toolkit.core.pytorch.back2framework.pytorch_model_builder import PyTorchModelBuilder
24
24
  from model_compression_toolkit.gptq.common.gptq_graph import get_kernel_attribute_name_for_gptq
25
25
  from model_compression_toolkit.gptq.common.gptq_training import GPTQTrainer
@@ -14,9 +14,9 @@
14
14
  # ==============================================================================
15
15
  from typing import Callable
16
16
  from model_compression_toolkit.core import common
17
- from model_compression_toolkit.core.common.constants import FOUND_TORCH
18
- from model_compression_toolkit.core.common import Logger
19
- from model_compression_toolkit.core.common.constants import PYTORCH
17
+ from model_compression_toolkit.constants import FOUND_TORCH
18
+ from model_compression_toolkit.logger import Logger
19
+ from model_compression_toolkit.constants import PYTORCH
20
20
  from model_compression_toolkit.gptq.common.gptq_config import GradientPTQConfigV2
21
21
  from model_compression_toolkit.target_platform_capabilities.target_platform import TargetPlatformCapabilities
22
22
  from model_compression_toolkit.core.common.mixed_precision.kpi_tools.kpi import KPI
@@ -25,7 +25,7 @@ from model_compression_toolkit.gptq.keras.quantization_facade import GPTQ_MOMENT
25
25
  from model_compression_toolkit.gptq.runner import gptq_runner
26
26
  from model_compression_toolkit.core.exporter import export_model
27
27
  from model_compression_toolkit.core.analyzer import analyzer_model_quantization
28
- from model_compression_toolkit import CoreConfig
28
+ from model_compression_toolkit.core import CoreConfig
29
29
  from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import \
30
30
  MixedPrecisionQuantizationConfigV2
31
31
 
@@ -36,8 +36,8 @@ LR_QUANTIZATION_PARAM_DEFAULT = 1e-4
36
36
 
37
37
  if FOUND_TORCH:
38
38
  from model_compression_toolkit.core.pytorch.default_framework_info import DEFAULT_PYTORCH_INFO
39
- from model_compression_toolkit.core.pytorch.pytorch_implementation import PytorchImplementation
40
- from model_compression_toolkit.core.pytorch.constants import DEFAULT_TP_MODEL
39
+ from model_compression_toolkit.gptq.pytorch.gptq_pytorch_implementation import GPTQPytorchImplemantation
40
+ from model_compression_toolkit.target_platform_capabilities.constants import DEFAULT_TP_MODEL
41
41
  from model_compression_toolkit.gptq.pytorch.gptq_loss import multiple_tensors_mse_loss
42
42
  from model_compression_toolkit.exporter.model_wrapper.pytorch.builder.fully_quantized_model_builder import get_exportable_pytorch_model
43
43
  import torch
@@ -142,7 +142,7 @@ if FOUND_TORCH:
142
142
 
143
143
  Create MCT core configurations with number of calibration iterations set to 1:
144
144
 
145
- >>> config = mct.CoreConfig()
145
+ >>> config = mct.core.CoreConfig()
146
146
 
147
147
  Pass the module, the representative dataset generator and the configuration (optional) to get a quantized module
148
148
 
@@ -152,16 +152,16 @@ if FOUND_TORCH:
152
152
 
153
153
  if core_config.mixed_precision_enable:
154
154
  if not isinstance(core_config.mixed_precision_config, MixedPrecisionQuantizationConfigV2):
155
- common.Logger.error("Given quantization config to mixed-precision facade is not of type "
155
+ Logger.error("Given quantization config to mixed-precision facade is not of type "
156
156
  "MixedPrecisionQuantizationConfigV2. Please use keras_post_training_quantization "
157
157
  "API, or pass a valid mixed precision configuration.") # pragma: no cover
158
158
 
159
- common.Logger.info("Using experimental mixed-precision quantization. "
159
+ Logger.info("Using experimental mixed-precision quantization. "
160
160
  "If you encounter an issue please file a bug.")
161
161
 
162
162
  tb_w = _init_tensorboard_writer(DEFAULT_PYTORCH_INFO)
163
163
 
164
- fw_impl = PytorchImplementation()
164
+ fw_impl = GPTQPytorchImplemantation()
165
165
 
166
166
  # ---------------------- #
167
167
  # Core Runner
@@ -192,7 +192,7 @@ if FOUND_TORCH:
192
192
  Logger.warning('Using new experimental exported models. '
193
193
  'Please do not use unless you are familiar with what you are doing')
194
194
 
195
- return get_fully_quantized_pytorch_model(graph_gptq)
195
+ return get_exportable_pytorch_model(graph_gptq)
196
196
 
197
197
  return export_model(graph_gptq,
198
198
  DEFAULT_PYTORCH_INFO,
@@ -13,10 +13,10 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
  from abc import abstractmethod
16
- from typing import Union, Dict, List
16
+ from typing import Union, Dict
17
17
 
18
- from model_compression_toolkit.core.common.logger import Logger
19
- from model_compression_toolkit.core.common.constants import FOUND_TORCH
18
+ from model_compression_toolkit.logger import Logger
19
+ from model_compression_toolkit.constants import FOUND_TORCH
20
20
  from model_compression_toolkit.gptq.common.gptq_constants import WEIGHTS_QUANTIZATION_PARAMS
21
21
 
22
22
  from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig, \
@@ -14,9 +14,7 @@
14
14
  # ==============================================================================
15
15
  from typing import Union, Tuple
16
16
  import torch
17
- from torch.nn.functional import softmax, log_softmax, one_hot
18
- from model_compression_toolkit.core.common.constants import MIN_THRESHOLD
19
- from model_compression_toolkit.core.pytorch.utils import to_torch_tensor
17
+ from model_compression_toolkit.constants import MIN_THRESHOLD
20
18
 
21
19
 
22
20
  def power_of_two_max(max_tensor: torch.Tensor) -> torch.Tensor:
@@ -27,7 +27,7 @@ from model_compression_toolkit.core.pytorch.utils import to_torch_tensor, torch_
27
27
  from model_compression_toolkit.gptq.pytorch.quantizer import quant_utils as qutils
28
28
  from model_compression_toolkit.gptq.common.gptq_constants import PTQ_THRESHOLD, SCALE_PTQ, \
29
29
  SOFT_ROUNDING_GAMMA, SOFT_ROUNDING_ZETA, AUXVAR
30
- from model_compression_toolkit.core.common.constants import THRESHOLD, MIN_THRESHOLD
30
+ from model_compression_toolkit.constants import THRESHOLD, MIN_THRESHOLD
31
31
  from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig
32
32
  from model_compression_toolkit.quantizers_infrastructure.inferable_infrastructure.common.base_inferable_quantizer import mark_quantizer
33
33
  from model_compression_toolkit.quantizers_infrastructure.trainable_infrastructure.common.quant_utils import \
@@ -18,6 +18,7 @@ from typing import Dict
18
18
  import numpy as np
19
19
 
20
20
  from model_compression_toolkit import quantizers_infrastructure as qi
21
+ from model_compression_toolkit.quantizers_infrastructure.constants import FQ_MIN, FQ_MAX
21
22
  from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
22
23
  from model_compression_toolkit.gptq.common.gptq_config import RoundingType
23
24
  from model_compression_toolkit.gptq.pytorch.quantizer.base_pytorch_gptq_quantizer import \
@@ -31,8 +32,7 @@ from model_compression_toolkit.quantizers_infrastructure.inferable_infrastructur
31
32
  mark_quantizer
32
33
  from model_compression_toolkit.quantizers_infrastructure.trainable_infrastructure.common.base_trainable_quantizer import \
33
34
  VariableGroup
34
- from model_compression_toolkit.core.common.constants import RANGE_MAX, RANGE_MIN
35
- from model_compression_toolkit.qat.common.constants import FQ_MIN, FQ_MAX
35
+ from model_compression_toolkit.constants import RANGE_MAX, RANGE_MIN
36
36
 
37
37
 
38
38
  def soft_rounding_unifrom_quantizer(input_tensor: torch.Tensor,
@@ -26,7 +26,7 @@ from model_compression_toolkit.gptq.pytorch.quantizer.base_pytorch_gptq_quantize
26
26
  from model_compression_toolkit.core.pytorch.utils import to_torch_tensor, torch_tensor_to_numpy
27
27
  from model_compression_toolkit.gptq.pytorch.quantizer import quant_utils as qutils
28
28
  from model_compression_toolkit.gptq.common.gptq_constants import AUXVAR, PTQ_THRESHOLD, MAX_LSB_CHANGE
29
- from model_compression_toolkit.core.common.constants import THRESHOLD
29
+ from model_compression_toolkit.constants import THRESHOLD
30
30
  from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig
31
31
  from model_compression_toolkit.quantizers_infrastructure.inferable_infrastructure.common.base_inferable_quantizer import \
32
32
  mark_quantizer
@@ -15,7 +15,7 @@
15
15
 
16
16
  from typing import Callable
17
17
 
18
- from model_compression_toolkit import CoreConfig
18
+ from model_compression_toolkit.core import CoreConfig
19
19
  from model_compression_toolkit.core import common
20
20
  from model_compression_toolkit.core.common.statistics_correction.statistics_correction import \
21
21
  apply_statistics_correction
@@ -28,6 +28,7 @@ from model_compression_toolkit.gptq.common.gptq_training import gptq_training
28
28
  from model_compression_toolkit.core.common.visualization.tensorboard_writer import TensorboardWriter
29
29
  from model_compression_toolkit.core.common.statistics_correction.apply_bias_correction_to_graph import \
30
30
  apply_bias_correction_to_graph
31
+ from model_compression_toolkit.logger import Logger
31
32
 
32
33
 
33
34
  def _apply_gptq(gptq_config: GradientPTQConfigV2,
@@ -55,7 +56,7 @@ def _apply_gptq(gptq_config: GradientPTQConfigV2,
55
56
 
56
57
  """
57
58
  if gptq_config is not None and gptq_config.n_epochs > 0:
58
- common.Logger.info("Using experimental Gradient Based PTQ: If you encounter an issue "
59
+ Logger.info("Using experimental Gradient Based PTQ: If you encounter an issue "
59
60
  "please file a bug. To disable it, do not pass a gptq configuration.")
60
61
 
61
62
  tg_bias = gptq_training(tg,
@@ -1,4 +1,4 @@
1
- # Copyright 2022 Sony Semiconductor Israel, Inc. All rights reserved.
1
+ # Copyright 2023 Sony Semiconductor Israel, Inc. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -15,9 +15,8 @@
15
15
 
16
16
  from typing import Callable, List, Tuple
17
17
 
18
- from model_compression_toolkit.core import common
19
- from model_compression_toolkit.core.common import Logger
20
- from model_compression_toolkit.core.common.constants import TENSORFLOW
18
+ from model_compression_toolkit.logger import Logger
19
+ from model_compression_toolkit.constants import TENSORFLOW
21
20
  from model_compression_toolkit.core.common.user_info import UserInformation
22
21
  from model_compression_toolkit.gptq import GradientPTQConfig, GradientPTQConfigV2
23
22
  from model_compression_toolkit.core.common.mixed_precision.kpi_tools.kpi import KPI
@@ -36,14 +35,14 @@ from model_compression_toolkit.core.exporter import export_model
36
35
  from model_compression_toolkit.core.analyzer import analyzer_model_quantization
37
36
 
38
37
  from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import TargetPlatformCapabilities
39
- from model_compression_toolkit.core.common.constants import FOUND_TF
38
+ from model_compression_toolkit.constants import FOUND_TF
40
39
 
41
40
  if FOUND_TF:
42
41
  from model_compression_toolkit.core.keras.default_framework_info import DEFAULT_KERAS_INFO
43
42
  from model_compression_toolkit.core.keras.keras_implementation import KerasImplementation
44
43
  from model_compression_toolkit.core.keras.keras_model_validation import KerasModelValidation
45
44
  from tensorflow.keras.models import Model
46
- from model_compression_toolkit.core.keras.constants import DEFAULT_TP_MODEL
45
+ from model_compression_toolkit.target_platform_capabilities.constants import DEFAULT_TP_MODEL
47
46
 
48
47
  from model_compression_toolkit import get_target_platform_capabilities
49
48
 
@@ -209,13 +208,13 @@ if FOUND_TF:
209
208
  Create a mixed-precision configuration, to quantize a model with different bitwidths for different layers.
210
209
  The candidates bitwidth for quantization should be defined in the target platform model:
211
210
 
212
- >>> config = mct.MixedPrecisionQuantizationConfig()
211
+ >>> config = mct.core.MixedPrecisionQuantizationConfig()
213
212
 
214
213
  Create a KPI object to limit our returned model's size. Note that this value affects only coefficients
215
214
  that should be quantized (for example, the kernel of Conv2D in Keras will be affected by this value,
216
215
  while the bias will not):
217
216
 
218
- >>> kpi = mct.KPI(model.count_params() * 0.75) # About 0.75 of the model size when quantized with 8 bits.
217
+ >>> kpi = mct.core.KPI(model.count_params() * 0.75) # About 0.75 of the model size when quantized with 8 bits.
219
218
 
220
219
  Pass the model, the representative dataset generator, the configuration and the target KPI to get a
221
220
  quantized model:
@@ -229,11 +228,11 @@ if FOUND_TF:
229
228
  fw_info=fw_info).validate()
230
229
 
231
230
  if not isinstance(quant_config, MixedPrecisionQuantizationConfig):
232
- common.Logger.error("Given quantization config to mixed-precision facade is not of type "
231
+ Logger.error("Given quantization config to mixed-precision facade is not of type "
233
232
  "MixedPrecisionQuantizationConfig. Please use keras_post_training_quantization API,"
234
233
  "or pass a valid mixed precision configuration.")
235
234
 
236
- common.Logger.info("Using experimental mixed-precision quantization. "
235
+ Logger.info("Using experimental mixed-precision quantization. "
237
236
  "If you encounter an issue please file a bug.")
238
237
 
239
238
  quantization_config, mp_config = quant_config.separate_configs()