mct-nightly 1.8.0.22042023.post414__py3-none-any.whl → 1.8.0.22052023.post408__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-1.8.0.22042023.post414.dist-info → mct_nightly-1.8.0.22052023.post408.dist-info}/METADATA +1 -1
- {mct_nightly-1.8.0.22042023.post414.dist-info → mct_nightly-1.8.0.22052023.post408.dist-info}/RECORD +237 -230
- model_compression_toolkit/__init__.py +8 -31
- model_compression_toolkit/{core/common/constants.py → constants.py} +2 -6
- model_compression_toolkit/core/__init__.py +14 -0
- model_compression_toolkit/core/analyzer.py +3 -2
- model_compression_toolkit/core/common/__init__.py +0 -1
- model_compression_toolkit/core/common/collectors/base_collector.py +1 -1
- model_compression_toolkit/core/common/collectors/mean_collector.py +1 -1
- model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +1 -1
- model_compression_toolkit/core/common/framework_implementation.py +1 -8
- model_compression_toolkit/core/common/fusion/layer_fusing.py +2 -2
- model_compression_toolkit/core/common/graph/base_graph.py +1 -1
- model_compression_toolkit/core/common/graph/base_node.py +57 -1
- model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +1 -1
- model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +1 -1
- model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +2 -2
- model_compression_toolkit/core/common/memory_computation.py +1 -1
- model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +1 -1
- model_compression_toolkit/core/common/mixed_precision/kpi_tools/kpi_data.py +2 -3
- model_compression_toolkit/core/common/mixed_precision/kpi_tools/kpi_methods.py +3 -3
- model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +1 -1
- model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +3 -2
- model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +1 -1
- model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +1 -1
- model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +2 -2
- model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +2 -2
- model_compression_toolkit/core/common/model_collector.py +2 -2
- model_compression_toolkit/core/common/model_validation.py +1 -1
- model_compression_toolkit/core/common/network_editors/actions.py +4 -1
- model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +1 -1
- model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +1 -1
- model_compression_toolkit/core/common/quantization/node_quantization_config.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_config.py +2 -2
- model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/kmeans_params.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +2 -2
- model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +2 -2
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +1 -1
- model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +2 -1
- model_compression_toolkit/core/common/quantization/quantize_node.py +2 -2
- model_compression_toolkit/core/common/quantization/quantizers/kmeans_quantizer.py +1 -1
- model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +1 -1
- model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +4 -2
- model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +2 -2
- model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +3 -2
- model_compression_toolkit/core/common/similarity_analyzer.py +2 -2
- model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +4 -3
- model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +3 -2
- model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +1 -1
- model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +2 -2
- model_compression_toolkit/core/common/substitutions/linear_collapsing.py +1 -1
- model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +4 -4
- model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +1 -1
- model_compression_toolkit/core/common/substitutions/weights_activation_split.py +1 -1
- model_compression_toolkit/core/common/visualization/tensorboard_writer.py +1 -1
- model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +1 -1
- model_compression_toolkit/core/keras/back2framework/float_model_builder.py +1 -1
- model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +66 -21
- model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +1 -1
- model_compression_toolkit/core/keras/back2framework/model_gradients.py +2 -2
- model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +1 -1
- model_compression_toolkit/core/keras/constants.py +0 -7
- model_compression_toolkit/core/keras/default_framework_info.py +2 -2
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +1 -1
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +1 -1
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +1 -1
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +3 -4
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +2 -1
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_relu_upper_bound.py +3 -2
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +1 -1
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +1 -1
- model_compression_toolkit/core/keras/keras_implementation.py +2 -10
- model_compression_toolkit/core/keras/keras_model_validation.py +1 -1
- model_compression_toolkit/core/keras/keras_node_prior_info.py +1 -1
- model_compression_toolkit/core/keras/kpi_data_facade.py +7 -7
- model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +2 -2
- model_compression_toolkit/core/keras/quantizer/input_layer_quantize_transform.py +1 -1
- model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +2 -2
- model_compression_toolkit/core/keras/quantizer/mixed_precision/selective_quantize_config.py +1 -1
- model_compression_toolkit/core/keras/reader/common.py +1 -1
- model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +1 -1
- model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +1 -1
- model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +1 -1
- model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +1 -1
- model_compression_toolkit/core/pytorch/back2framework/model_gradients.py +2 -2
- model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +1 -1
- model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +1 -1
- model_compression_toolkit/core/pytorch/constants.py +0 -6
- model_compression_toolkit/core/pytorch/default_framework_info.py +1 -1
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +1 -1
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +1 -1
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +3 -2
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +1 -1
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +1 -1
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +1 -1
- model_compression_toolkit/core/pytorch/kpi_data_facade.py +6 -6
- model_compression_toolkit/core/pytorch/mixed_precision/mixed_precision_wrapper.py +1 -1
- model_compression_toolkit/core/pytorch/pytorch_implementation.py +1 -9
- model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +1 -1
- model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +2 -2
- model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +1 -1
- model_compression_toolkit/core/pytorch/reader/graph_builders.py +3 -2
- model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +1 -1
- model_compression_toolkit/core/runner.py +6 -6
- model_compression_toolkit/exporter/__init__.py +6 -3
- model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +1 -1
- model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +20 -0
- model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +1 -1
- model_compression_toolkit/exporter/model_exporter/{tflite → keras}/fakely_quant_tflite_exporter.py +1 -1
- model_compression_toolkit/exporter/model_exporter/{tflite → keras}/int8_tflite_exporter.py +1 -1
- model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +60 -22
- model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +20 -0
- model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +15 -1
- model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +1 -1
- model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +54 -31
- model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +5 -3
- model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +4 -2
- model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +2 -2
- model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +3 -2
- model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +3 -2
- model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +2 -2
- model_compression_toolkit/gptq/common/gptq_framework_implementation.py +32 -0
- model_compression_toolkit/gptq/common/gptq_graph.py +2 -2
- model_compression_toolkit/gptq/common/gptq_training.py +5 -4
- model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +29 -0
- model_compression_toolkit/gptq/keras/gptq_training.py +41 -14
- model_compression_toolkit/gptq/keras/graph_info.py +4 -0
- model_compression_toolkit/gptq/keras/quantization_facade.py +26 -19
- model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +2 -2
- model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +1 -1
- model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +1 -1
- model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +2 -2
- model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +1 -1
- model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +29 -0
- model_compression_toolkit/gptq/pytorch/gptq_training.py +1 -1
- model_compression_toolkit/gptq/pytorch/quantization_facade.py +11 -11
- model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +3 -3
- model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +1 -3
- model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +1 -1
- model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +2 -2
- model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +1 -1
- model_compression_toolkit/gptq/runner.py +3 -2
- model_compression_toolkit/{exporter/model_exporter/tflite → legacy}/__init__.py +1 -1
- model_compression_toolkit/{core/keras/quantization_facade.py → legacy/keras_quantization_facade.py} +8 -9
- model_compression_toolkit/{core/pytorch/quantization_facade.py → legacy/pytorch_quantization_facade.py} +8 -9
- model_compression_toolkit/ptq/__init__.py +3 -0
- model_compression_toolkit/ptq/keras/quantization_facade.py +10 -11
- model_compression_toolkit/ptq/pytorch/quantization_facade.py +7 -7
- model_compression_toolkit/qat/__init__.py +4 -0
- model_compression_toolkit/qat/common/__init__.py +1 -2
- model_compression_toolkit/qat/common/qat_config.py +5 -1
- model_compression_toolkit/qat/keras/quantization_facade.py +33 -27
- model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +2 -2
- model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +31 -4
- model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +12 -10
- model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +8 -8
- model_compression_toolkit/qat/pytorch/quantization_facade.py +8 -8
- model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +2 -2
- model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +3 -2
- model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +6 -4
- model_compression_toolkit/quantizers_infrastructure/__init__.py +2 -2
- model_compression_toolkit/{qat/common → quantizers_infrastructure}/constants.py +2 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/constants.py +5 -0
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/get_quantizers.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/activation_quantization_holder.py +147 -0
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/load_model.py +5 -5
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantize_wrapper.py +2 -2
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_lut_pot_inferable_quantizer.py +2 -2
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_pot_inferable_quantizer.py +2 -2
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_symmetric_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_uniform_inferable_quantizer.py +2 -2
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/base_keras_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_lut_pot_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_lut_symmetric_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_pot_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_symmetric_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_uniform_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/validation_functions.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantize_wrapper.py +2 -2
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_lut_pot_inferable_quantizer.py +1 -2
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_pot_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_symmetric_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_uniform_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_lut_symmetric_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_pytorch_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_symmetric_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_uniform_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_lut_pot_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_lut_symmetric_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_pot_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_symmetric_inferable_quantizer.py +1 -1
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_uniform_inferable_quantizer.py +2 -2
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/base_trainable_quantizer.py +9 -9
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/get_quantizer_config.py +2 -1
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/get_quantizers.py +3 -5
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/keras/base_keras_quantizer.py +2 -2
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +2 -2
- model_compression_toolkit/target_platform_capabilities/constants.py +27 -0
- model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +1 -1
- model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +1 -1
- model_compression_toolkit/target_platform_capabilities/target_platform/quantization_format.py +20 -0
- model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +11 -2
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +1 -1
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +32 -34
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +2 -2
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +3 -24
- model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/latest/__init__.py +1 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/target_platform_capabilities.py +3 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v1/tp_model.py +7 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v2/tp_model.py +7 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v3/tp_model.py +7 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v3_lut/tp_model.py +7 -2
- model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v4/tp_model.py +7 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v4_lut/tp_model.py +7 -2
- model_compression_toolkit/target_platform_capabilities/tpc_models/default_tpc/v5/tp_model.py +7 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +1 -3
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +1 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +2 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +7 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +1 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +2 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +7 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +1 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +2 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +26 -18
- model_compression_toolkit/exporter/model_exporter/tflite/tflite_export_facade.py +0 -73
- {mct_nightly-1.8.0.22042023.post414.dist-info → mct_nightly-1.8.0.22052023.post408.dist-info}/LICENSE.md +0 -0
- {mct_nightly-1.8.0.22042023.post414.dist-info → mct_nightly-1.8.0.22052023.post408.dist-info}/WHEEL +0 -0
- {mct_nightly-1.8.0.22042023.post414.dist-info → mct_nightly-1.8.0.22052023.post408.dist-info}/top_level.txt +0 -0
- /model_compression_toolkit/{core/common/logger.py → logger.py} +0 -0
- /model_compression_toolkit/{core/common → target_platform_capabilities}/immutable.py +0 -0
|
@@ -16,17 +16,18 @@ from typing import Callable, List, Tuple, Union
|
|
|
16
16
|
|
|
17
17
|
import tensorflow as tf
|
|
18
18
|
from keras import Model
|
|
19
|
+
from packaging import version
|
|
19
20
|
from tensorflow.keras.layers import Layer
|
|
20
21
|
from tqdm import tqdm
|
|
21
22
|
|
|
22
23
|
# As from Tensorflow 2.6, keras is a separate package and some classes should be imported differently.
|
|
23
24
|
from model_compression_toolkit.core.common.user_info import UserInformation
|
|
24
25
|
from model_compression_toolkit.core.keras.back2framework.keras_model_builder import KerasModelBuilder
|
|
25
|
-
from packaging import version
|
|
26
|
-
|
|
27
26
|
from model_compression_toolkit.gptq.common.gptq_graph import get_kernel_attribute_name_for_gptq
|
|
28
27
|
from model_compression_toolkit.gptq.keras.quantizer.quantization_builder import quantization_builder
|
|
28
|
+
from model_compression_toolkit.logger import Logger
|
|
29
29
|
from model_compression_toolkit.quantizers_infrastructure import KerasQuantizationWrapper
|
|
30
|
+
from model_compression_toolkit.quantizers_infrastructure.inferable_infrastructure.keras.activation_quantization_holder import ActivationQuantizationHolder
|
|
30
31
|
|
|
31
32
|
if version.parse(tf.__version__) < version.parse("2.6"):
|
|
32
33
|
from tensorflow.python.keras.engine.base_layer import TensorFlowOpLayer
|
|
@@ -105,7 +106,7 @@ class KerasGPTQTrainer(GPTQTrainer):
|
|
|
105
106
|
[len(optimizer_params_tuple[1]) for optimizer_params_tuple in self.optimizer_with_param]) > 0
|
|
106
107
|
|
|
107
108
|
if self.float_user_info.input_scale != self.gptq_user_info.input_scale:
|
|
108
|
-
|
|
109
|
+
Logger.error("Input scale mismatch between float and GPTQ networks") # pragma: no cover
|
|
109
110
|
else:
|
|
110
111
|
self.input_scale = self.gptq_user_info.input_scale
|
|
111
112
|
|
|
@@ -113,8 +114,8 @@ class KerasGPTQTrainer(GPTQTrainer):
|
|
|
113
114
|
|
|
114
115
|
self.reg_func = get_regularization(self.gptq_config, representative_data_gen)
|
|
115
116
|
|
|
116
|
-
def
|
|
117
|
-
|
|
117
|
+
def _is_gptq_weights_trainable(self,
|
|
118
|
+
node: common.BaseNode) -> bool:
|
|
118
119
|
"""
|
|
119
120
|
A function for deciding if a layer should be fine-tuned during GPTQ.
|
|
120
121
|
|
|
@@ -126,11 +127,13 @@ class KerasGPTQTrainer(GPTQTrainer):
|
|
|
126
127
|
"""
|
|
127
128
|
|
|
128
129
|
if node.is_weights_quantization_enabled() and not self.fw_info.is_kernel_op(node.type):
|
|
129
|
-
|
|
130
|
+
Logger.error(f"GPTQ Error: Quantizing node {node.name} of type {node.type} "
|
|
130
131
|
f"without a kernel isn't supported")
|
|
131
132
|
return node.is_weights_quantization_enabled()
|
|
132
133
|
|
|
133
|
-
def gptq_wrapper(self,
|
|
134
|
+
def gptq_wrapper(self,
|
|
135
|
+
n: common.BaseNode,
|
|
136
|
+
layer: Layer) -> Union[qi.KerasQuantizationWrapper, Layer]:
|
|
134
137
|
"""
|
|
135
138
|
A function which takes a computational graph node and a keras layer and perform the quantization wrapping.
|
|
136
139
|
|
|
@@ -141,14 +144,37 @@ class KerasGPTQTrainer(GPTQTrainer):
|
|
|
141
144
|
Returns: Wrapped layer if the layer should be wrap, otherwise returns the layer as is.
|
|
142
145
|
|
|
143
146
|
"""
|
|
144
|
-
if self.
|
|
145
|
-
weights_quantizers,
|
|
147
|
+
if self._is_gptq_weights_trainable(n):
|
|
148
|
+
weights_quantizers, _ = quantization_builder(n, self.gptq_config) # TODO: split quantizers building into two functions: for weights and activations
|
|
146
149
|
return qi.KerasQuantizationWrapper(layer,
|
|
147
|
-
weights_quantizers=weights_quantizers
|
|
148
|
-
activation_quantizers=activation_quantizers)
|
|
150
|
+
weights_quantizers=weights_quantizers)
|
|
149
151
|
else:
|
|
150
152
|
return layer
|
|
151
153
|
|
|
154
|
+
def get_activation_quantizer_holder(self, n: common.BaseNode) -> Union[None, Callable]:
|
|
155
|
+
"""
|
|
156
|
+
Retrieve a ActivationQuantizationHolder layer to use for activation quantization for a node.
|
|
157
|
+
If the layer is not supposed to be wrapped with activation quantizers - return None.
|
|
158
|
+
|
|
159
|
+
Args:
|
|
160
|
+
n: Node to get ActivationQuantizationHolder to attach in its output.
|
|
161
|
+
|
|
162
|
+
Returns:
|
|
163
|
+
A ActivationQuantizationHolder layer for the node activation quantization.
|
|
164
|
+
"""
|
|
165
|
+
_, activation_quantizers = quantization_builder(n, self.gptq_config) # TODO: split quantizers building into two functions: for weights and activations
|
|
166
|
+
|
|
167
|
+
# Holder by definition uses a single quantizer for the activation quantization
|
|
168
|
+
# thus we make sure this is the only possible case (unless it's a node with no activation
|
|
169
|
+
# quantization, which in this case has an empty list).
|
|
170
|
+
if len(activation_quantizers) == 1:
|
|
171
|
+
return ActivationQuantizationHolder(activation_quantizers[0])
|
|
172
|
+
|
|
173
|
+
Logger.error(
|
|
174
|
+
f'ActivationQuantizationHolder supports a single quantizer but {len(activation_quantizers)} quantizers '
|
|
175
|
+
f'were found for node {n}')
|
|
176
|
+
|
|
177
|
+
|
|
152
178
|
def build_gptq_model(self) -> Tuple[Model, UserInformation]:
|
|
153
179
|
"""
|
|
154
180
|
Build the GPTQ model with QuantizationWrappers
|
|
@@ -161,7 +187,8 @@ class KerasGPTQTrainer(GPTQTrainer):
|
|
|
161
187
|
append2output=self.compare_points,
|
|
162
188
|
fw_info=self.fw_info,
|
|
163
189
|
return_float_outputs=True,
|
|
164
|
-
wrapper=self.gptq_wrapper
|
|
190
|
+
wrapper=self.gptq_wrapper,
|
|
191
|
+
get_activation_quantizer_holder_fn=self.get_activation_quantizer_holder).build_model()
|
|
165
192
|
|
|
166
193
|
return gptq_model, gptq_user_info
|
|
167
194
|
|
|
@@ -280,7 +307,7 @@ class KerasGPTQTrainer(GPTQTrainer):
|
|
|
280
307
|
self.gptq_config.log_function(loss_value_step, grads[0], in_optimizer_with_param[0][-1],
|
|
281
308
|
self.compare_points)
|
|
282
309
|
self.loss_list.append(loss_value_step.numpy())
|
|
283
|
-
|
|
310
|
+
Logger.debug(f'last loss value: {self.loss_list[-1]}')
|
|
284
311
|
|
|
285
312
|
def update_graph(self):
|
|
286
313
|
"""
|
|
@@ -297,7 +324,7 @@ class KerasGPTQTrainer(GPTQTrainer):
|
|
|
297
324
|
if len(node) == 0 and isinstance(layer.layer, TensorFlowOpLayer):
|
|
298
325
|
node = graph.find_node_by_name('_'.join(layer.layer.name.split('_')[3:]))
|
|
299
326
|
if len(node) != 1:
|
|
300
|
-
|
|
327
|
+
Logger.error(f"Can't update GPTQ graph due to missing layer named: {layer.layer.name}")
|
|
301
328
|
node = node[0]
|
|
302
329
|
kernel_attribute = get_kernel_attribute_name_for_gptq(layer_type=node.type,
|
|
303
330
|
fw_info=self.fw_info)
|
|
@@ -20,6 +20,7 @@ from model_compression_toolkit.core.common.framework_info import FrameworkInfo
|
|
|
20
20
|
from tensorflow.keras.models import Model
|
|
21
21
|
from model_compression_toolkit.core.keras.default_framework_info import DEFAULT_KERAS_INFO
|
|
22
22
|
from model_compression_toolkit.gptq.common.gptq_graph import get_kernel_attribute_name_for_gptq
|
|
23
|
+
from model_compression_toolkit.logger import Logger
|
|
23
24
|
from model_compression_toolkit.quantizers_infrastructure import KerasQuantizationWrapper
|
|
24
25
|
from model_compression_toolkit.quantizers_infrastructure.trainable_infrastructure.common.base_trainable_quantizer import VariableGroup
|
|
25
26
|
|
|
@@ -50,6 +51,9 @@ def get_gptq_trainable_parameters(fxp_model: Model,
|
|
|
50
51
|
fw_info=DEFAULT_KERAS_INFO)
|
|
51
52
|
|
|
52
53
|
# collect trainable weights per quantizer
|
|
54
|
+
if kernel_attribute not in layer.weights_quantizers:
|
|
55
|
+
Logger.error(f'{kernel_attribute} was not found in weight quantizers of layer {layer.layer}')
|
|
56
|
+
|
|
53
57
|
quantizer_trainable_weights = layer.weights_quantizers[kernel_attribute].get_trainable_variables(VariableGroup.WEIGHTS)
|
|
54
58
|
quantizer_trainable_threshold = layer.weights_quantizers[kernel_attribute].get_trainable_variables(VariableGroup.QPARAMS)
|
|
55
59
|
trainable_weights.append(quantizer_trainable_weights)
|
|
@@ -16,16 +16,14 @@
|
|
|
16
16
|
from typing import Callable, Tuple
|
|
17
17
|
from packaging import version
|
|
18
18
|
|
|
19
|
-
from model_compression_toolkit.
|
|
20
|
-
from model_compression_toolkit.
|
|
21
|
-
from model_compression_toolkit.core.common.constants import TENSORFLOW
|
|
19
|
+
from model_compression_toolkit.logger import Logger
|
|
20
|
+
from model_compression_toolkit.constants import TENSORFLOW, FOUND_TF
|
|
22
21
|
from model_compression_toolkit.core.common.user_info import UserInformation
|
|
23
22
|
from model_compression_toolkit.gptq.common.gptq_config import GradientPTQConfigV2
|
|
24
23
|
from model_compression_toolkit.core.common.mixed_precision.kpi_tools.kpi import KPI
|
|
25
24
|
from model_compression_toolkit.core.common.framework_info import FrameworkInfo
|
|
26
|
-
from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import
|
|
27
|
-
|
|
28
|
-
from model_compression_toolkit import CoreConfig
|
|
25
|
+
from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import MixedPrecisionQuantizationConfigV2
|
|
26
|
+
from model_compression_toolkit.core import CoreConfig
|
|
29
27
|
from model_compression_toolkit.core.runner import core_runner, _init_tensorboard_writer
|
|
30
28
|
from model_compression_toolkit.gptq.runner import gptq_runner
|
|
31
29
|
from model_compression_toolkit.core.exporter import export_model
|
|
@@ -38,14 +36,14 @@ LR_BIAS_DEFAULT = 1e-4
|
|
|
38
36
|
LR_QUANTIZATION_PARAM_DEFAULT = 1e-3
|
|
39
37
|
GPTQ_MOMENTUM = 0.9
|
|
40
38
|
|
|
41
|
-
if
|
|
39
|
+
if FOUND_TF:
|
|
42
40
|
import tensorflow as tf
|
|
43
41
|
from model_compression_toolkit.core.keras.default_framework_info import DEFAULT_KERAS_INFO
|
|
44
|
-
from model_compression_toolkit.
|
|
42
|
+
from model_compression_toolkit.gptq.keras.gptq_keras_implementation import GPTQKerasImplemantation
|
|
45
43
|
from model_compression_toolkit.core.keras.keras_model_validation import KerasModelValidation
|
|
46
44
|
from tensorflow.keras.models import Model
|
|
47
45
|
from model_compression_toolkit.gptq.keras.gptq_loss import GPTQMultipleTensorsLoss
|
|
48
|
-
from model_compression_toolkit.
|
|
46
|
+
from model_compression_toolkit.target_platform_capabilities.constants import DEFAULT_TP_MODEL
|
|
49
47
|
from model_compression_toolkit.exporter.model_wrapper import get_exportable_keras_model
|
|
50
48
|
from model_compression_toolkit import get_target_platform_capabilities
|
|
51
49
|
|
|
@@ -62,7 +60,8 @@ if common.constants.FOUND_TF:
|
|
|
62
60
|
optimizer: OptimizerV2 = tf.keras.optimizers.Adam(learning_rate=LR_DEFAULT),
|
|
63
61
|
optimizer_rest: OptimizerV2 = tf.keras.optimizers.Adam(learning_rate=LR_REST_DEFAULT),
|
|
64
62
|
loss: Callable = GPTQMultipleTensorsLoss(),
|
|
65
|
-
log_function: Callable = None
|
|
63
|
+
log_function: Callable = None,
|
|
64
|
+
use_hessian_based_weights: bool = True) -> GradientPTQConfigV2:
|
|
66
65
|
"""
|
|
67
66
|
Create a GradientPTQConfigV2 instance for Keras models.
|
|
68
67
|
|
|
@@ -72,6 +71,7 @@ if common.constants.FOUND_TF:
|
|
|
72
71
|
optimizer_rest (OptimizerV2): Keras optimizer to use for fine-tuning of the bias variable.
|
|
73
72
|
loss (Callable): loss to use during fine-tuning. should accept 4 lists of tensors. 1st list of quantized tensors, the 2nd list is the float tensors, the 3rd is a list of quantized weights and the 4th is a list of float weights.
|
|
74
73
|
log_function (Callable): Function to log information about the gptq process.
|
|
74
|
+
use_hessian_based_weights (bool): Whether to use Hessian-based weights for weighted average loss.
|
|
75
75
|
|
|
76
76
|
returns:
|
|
77
77
|
a GradientPTQConfigV2 object to use when fine-tuning the quantized model using gptq.
|
|
@@ -94,9 +94,16 @@ if common.constants.FOUND_TF:
|
|
|
94
94
|
The configuration can be passed to :func:`~model_compression_toolkit.keras_post_training_quantization` in order to quantize a keras model using gptq.
|
|
95
95
|
|
|
96
96
|
"""
|
|
97
|
-
bias_optimizer = tf.keras.optimizers.SGD(learning_rate=LR_BIAS_DEFAULT,
|
|
98
|
-
|
|
99
|
-
|
|
97
|
+
bias_optimizer = tf.keras.optimizers.SGD(learning_rate=LR_BIAS_DEFAULT,
|
|
98
|
+
momentum=GPTQ_MOMENTUM)
|
|
99
|
+
return GradientPTQConfigV2(n_epochs,
|
|
100
|
+
optimizer,
|
|
101
|
+
optimizer_rest=optimizer_rest,
|
|
102
|
+
loss=loss,
|
|
103
|
+
log_function=log_function,
|
|
104
|
+
train_bias=True,
|
|
105
|
+
optimizer_bias=bias_optimizer,
|
|
106
|
+
use_hessian_based_weights=use_hessian_based_weights)
|
|
100
107
|
|
|
101
108
|
|
|
102
109
|
def keras_gradient_post_training_quantization_experimental(in_model: Model,
|
|
@@ -158,20 +165,20 @@ if common.constants.FOUND_TF:
|
|
|
158
165
|
|
|
159
166
|
Create an MCT core config, containing the quantization configuration:
|
|
160
167
|
|
|
161
|
-
>>> config = mct.CoreConfig()
|
|
168
|
+
>>> config = mct.core.CoreConfig()
|
|
162
169
|
|
|
163
170
|
If mixed precision is desired, create an MCT core config with a mixed-precision configuration, to quantize a model
|
|
164
171
|
with different bitwidths for different layers.
|
|
165
172
|
The candidates bitwidth for quantization should be defined in the target platform model:
|
|
166
173
|
|
|
167
|
-
>>> config = mct.CoreConfig(mixed_precision_config=mct.MixedPrecisionQuantizationConfigV2(num_of_images=1))
|
|
174
|
+
>>> config = mct.core.CoreConfig(mixed_precision_config=mct.core.MixedPrecisionQuantizationConfigV2(num_of_images=1))
|
|
168
175
|
|
|
169
176
|
For mixed-precision set a target KPI object:
|
|
170
177
|
Create a KPI object to limit our returned model's size. Note that this value affects only coefficients
|
|
171
178
|
that should be quantized (for example, the kernel of Conv2D in Keras will be affected by this value,
|
|
172
179
|
while the bias will not):
|
|
173
180
|
|
|
174
|
-
>>> kpi = mct.KPI(model.count_params() * 0.75) # About 0.75 of the model size when quantized with 8 bits.
|
|
181
|
+
>>> kpi = mct.core.KPI(model.count_params() * 0.75) # About 0.75 of the model size when quantized with 8 bits.
|
|
175
182
|
|
|
176
183
|
Create GPTQ config:
|
|
177
184
|
|
|
@@ -187,15 +194,15 @@ if common.constants.FOUND_TF:
|
|
|
187
194
|
|
|
188
195
|
if core_config.mixed_precision_enable:
|
|
189
196
|
if not isinstance(core_config.mixed_precision_config, MixedPrecisionQuantizationConfigV2):
|
|
190
|
-
|
|
197
|
+
Logger.error("Given quantization config to mixed-precision facade is not of type "
|
|
191
198
|
"MixedPrecisionQuantizationConfigV2. Please use keras_post_training_quantization "
|
|
192
199
|
"API, or pass a valid mixed precision configuration.") # pragma: no cover
|
|
193
200
|
|
|
194
|
-
|
|
201
|
+
Logger.info("Using experimental mixed-precision quantization. "
|
|
195
202
|
"If you encounter an issue please file a bug.")
|
|
196
203
|
tb_w = _init_tensorboard_writer(fw_info)
|
|
197
204
|
|
|
198
|
-
fw_impl =
|
|
205
|
+
fw_impl = GPTQKerasImplemantation()
|
|
199
206
|
|
|
200
207
|
tg, bit_widths_config = core_runner(in_model=in_model,
|
|
201
208
|
representative_data_gen=representative_data_gen,
|
|
@@ -15,8 +15,8 @@
|
|
|
15
15
|
from abc import abstractmethod
|
|
16
16
|
from typing import Union, Dict, List
|
|
17
17
|
|
|
18
|
-
from model_compression_toolkit.
|
|
19
|
-
from model_compression_toolkit.
|
|
18
|
+
from model_compression_toolkit.logger import Logger
|
|
19
|
+
from model_compression_toolkit.constants import FOUND_TF
|
|
20
20
|
from model_compression_toolkit.gptq.common.gptq_constants import WEIGHTS_QUANTIZATION_PARAMS
|
|
21
21
|
|
|
22
22
|
from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig, \
|
|
@@ -14,7 +14,7 @@
|
|
|
14
14
|
# ==============================================================================
|
|
15
15
|
|
|
16
16
|
import tensorflow as tf
|
|
17
|
-
from model_compression_toolkit.
|
|
17
|
+
from model_compression_toolkit.constants import MIN_THRESHOLD
|
|
18
18
|
from typing import Tuple
|
|
19
19
|
|
|
20
20
|
|
|
@@ -24,7 +24,7 @@ from model_compression_toolkit.gptq.common.gptq_constants import PTQ_THRESHOLD,
|
|
|
24
24
|
SOFT_ROUNDING_GAMMA, SOFT_ROUNDING_ZETA, AUXVAR
|
|
25
25
|
from model_compression_toolkit.gptq.keras.quantizer import quant_utils as qutils
|
|
26
26
|
from typing import Dict, Any
|
|
27
|
-
from model_compression_toolkit.
|
|
27
|
+
from model_compression_toolkit.constants import THRESHOLD, MIN_THRESHOLD
|
|
28
28
|
from model_compression_toolkit.gptq.keras.quantizer.base_keras_gptq_quantizer import BaseKerasGPTQTrainableQuantizer
|
|
29
29
|
from model_compression_toolkit.gptq.keras.quantizer.quant_utils import power_of_two_max, clip, calculate_delta
|
|
30
30
|
from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig
|
|
@@ -18,13 +18,13 @@ import numpy as np
|
|
|
18
18
|
|
|
19
19
|
from model_compression_toolkit.gptq import RoundingType
|
|
20
20
|
from model_compression_toolkit import quantizers_infrastructure as qi
|
|
21
|
+
from model_compression_toolkit.quantizers_infrastructure.constants import FQ_MIN, FQ_MAX
|
|
21
22
|
from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
|
|
22
23
|
from model_compression_toolkit.gptq.common.gptq_constants import \
|
|
23
24
|
SOFT_ROUNDING_GAMMA, SOFT_ROUNDING_ZETA, AUXVAR
|
|
24
25
|
from model_compression_toolkit.gptq.keras.quantizer import quant_utils as qutils
|
|
25
26
|
from typing import Dict, Any
|
|
26
|
-
from model_compression_toolkit.
|
|
27
|
-
from model_compression_toolkit.qat.common.constants import FQ_MIN, FQ_MAX
|
|
27
|
+
from model_compression_toolkit.constants import RANGE_MIN, RANGE_MAX
|
|
28
28
|
from model_compression_toolkit.gptq.keras.quantizer.base_keras_gptq_quantizer import BaseKerasGPTQTrainableQuantizer
|
|
29
29
|
from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig
|
|
30
30
|
from model_compression_toolkit.quantizers_infrastructure.inferable_infrastructure.common.base_inferable_quantizer import mark_quantizer
|
|
@@ -23,7 +23,7 @@ from model_compression_toolkit import quantizers_infrastructure as qi
|
|
|
23
23
|
from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
|
|
24
24
|
from model_compression_toolkit.gptq.common.gptq_constants import AUXVAR, PTQ_THRESHOLD
|
|
25
25
|
from model_compression_toolkit.gptq.keras.quantizer import quant_utils as qutils
|
|
26
|
-
from model_compression_toolkit.
|
|
26
|
+
from model_compression_toolkit.constants import THRESHOLD
|
|
27
27
|
from model_compression_toolkit.core.common.defaultdict import DefaultDict
|
|
28
28
|
from model_compression_toolkit.gptq.keras.quantizer.base_keras_gptq_quantizer import BaseKerasGPTQTrainableQuantizer
|
|
29
29
|
from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
# Copyright 2023 Sony Semiconductor Israel, Inc. All rights reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
|
|
16
|
+
from typing import Type
|
|
17
|
+
|
|
18
|
+
from model_compression_toolkit.core.pytorch.pytorch_implementation import PytorchImplementation
|
|
19
|
+
from model_compression_toolkit.gptq.common.gptq_framework_implementation import GPTQFrameworkImplemantation
|
|
20
|
+
from model_compression_toolkit.gptq.pytorch.gptq_training import PytorchGPTQTrainer
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class GPTQPytorchImplemantation(GPTQFrameworkImplemantation, PytorchImplementation):
|
|
24
|
+
|
|
25
|
+
def get_gptq_trainer_obj(self) -> Type[PytorchGPTQTrainer]:
|
|
26
|
+
"""
|
|
27
|
+
Returns: Pytorch object of GPTQTrainer
|
|
28
|
+
"""
|
|
29
|
+
return PytorchGPTQTrainer
|
|
@@ -19,7 +19,7 @@ from torch.nn import Module
|
|
|
19
19
|
from tqdm import tqdm
|
|
20
20
|
import copy
|
|
21
21
|
import torch
|
|
22
|
-
from model_compression_toolkit.
|
|
22
|
+
from model_compression_toolkit.logger import Logger
|
|
23
23
|
from model_compression_toolkit.core.pytorch.back2framework.pytorch_model_builder import PyTorchModelBuilder
|
|
24
24
|
from model_compression_toolkit.gptq.common.gptq_graph import get_kernel_attribute_name_for_gptq
|
|
25
25
|
from model_compression_toolkit.gptq.common.gptq_training import GPTQTrainer
|
|
@@ -14,9 +14,9 @@
|
|
|
14
14
|
# ==============================================================================
|
|
15
15
|
from typing import Callable
|
|
16
16
|
from model_compression_toolkit.core import common
|
|
17
|
-
from model_compression_toolkit.
|
|
18
|
-
from model_compression_toolkit.
|
|
19
|
-
from model_compression_toolkit.
|
|
17
|
+
from model_compression_toolkit.constants import FOUND_TORCH
|
|
18
|
+
from model_compression_toolkit.logger import Logger
|
|
19
|
+
from model_compression_toolkit.constants import PYTORCH
|
|
20
20
|
from model_compression_toolkit.gptq.common.gptq_config import GradientPTQConfigV2
|
|
21
21
|
from model_compression_toolkit.target_platform_capabilities.target_platform import TargetPlatformCapabilities
|
|
22
22
|
from model_compression_toolkit.core.common.mixed_precision.kpi_tools.kpi import KPI
|
|
@@ -25,7 +25,7 @@ from model_compression_toolkit.gptq.keras.quantization_facade import GPTQ_MOMENT
|
|
|
25
25
|
from model_compression_toolkit.gptq.runner import gptq_runner
|
|
26
26
|
from model_compression_toolkit.core.exporter import export_model
|
|
27
27
|
from model_compression_toolkit.core.analyzer import analyzer_model_quantization
|
|
28
|
-
from model_compression_toolkit import CoreConfig
|
|
28
|
+
from model_compression_toolkit.core import CoreConfig
|
|
29
29
|
from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import \
|
|
30
30
|
MixedPrecisionQuantizationConfigV2
|
|
31
31
|
|
|
@@ -36,8 +36,8 @@ LR_QUANTIZATION_PARAM_DEFAULT = 1e-4
|
|
|
36
36
|
|
|
37
37
|
if FOUND_TORCH:
|
|
38
38
|
from model_compression_toolkit.core.pytorch.default_framework_info import DEFAULT_PYTORCH_INFO
|
|
39
|
-
from model_compression_toolkit.
|
|
40
|
-
from model_compression_toolkit.
|
|
39
|
+
from model_compression_toolkit.gptq.pytorch.gptq_pytorch_implementation import GPTQPytorchImplemantation
|
|
40
|
+
from model_compression_toolkit.target_platform_capabilities.constants import DEFAULT_TP_MODEL
|
|
41
41
|
from model_compression_toolkit.gptq.pytorch.gptq_loss import multiple_tensors_mse_loss
|
|
42
42
|
from model_compression_toolkit.exporter.model_wrapper.pytorch.builder.fully_quantized_model_builder import get_exportable_pytorch_model
|
|
43
43
|
import torch
|
|
@@ -142,7 +142,7 @@ if FOUND_TORCH:
|
|
|
142
142
|
|
|
143
143
|
Create MCT core configurations with number of calibration iterations set to 1:
|
|
144
144
|
|
|
145
|
-
>>> config = mct.CoreConfig()
|
|
145
|
+
>>> config = mct.core.CoreConfig()
|
|
146
146
|
|
|
147
147
|
Pass the module, the representative dataset generator and the configuration (optional) to get a quantized module
|
|
148
148
|
|
|
@@ -152,16 +152,16 @@ if FOUND_TORCH:
|
|
|
152
152
|
|
|
153
153
|
if core_config.mixed_precision_enable:
|
|
154
154
|
if not isinstance(core_config.mixed_precision_config, MixedPrecisionQuantizationConfigV2):
|
|
155
|
-
|
|
155
|
+
Logger.error("Given quantization config to mixed-precision facade is not of type "
|
|
156
156
|
"MixedPrecisionQuantizationConfigV2. Please use keras_post_training_quantization "
|
|
157
157
|
"API, or pass a valid mixed precision configuration.") # pragma: no cover
|
|
158
158
|
|
|
159
|
-
|
|
159
|
+
Logger.info("Using experimental mixed-precision quantization. "
|
|
160
160
|
"If you encounter an issue please file a bug.")
|
|
161
161
|
|
|
162
162
|
tb_w = _init_tensorboard_writer(DEFAULT_PYTORCH_INFO)
|
|
163
163
|
|
|
164
|
-
fw_impl =
|
|
164
|
+
fw_impl = GPTQPytorchImplemantation()
|
|
165
165
|
|
|
166
166
|
# ---------------------- #
|
|
167
167
|
# Core Runner
|
|
@@ -192,7 +192,7 @@ if FOUND_TORCH:
|
|
|
192
192
|
Logger.warning('Using new experimental exported models. '
|
|
193
193
|
'Please do not use unless you are familiar with what you are doing')
|
|
194
194
|
|
|
195
|
-
return
|
|
195
|
+
return get_exportable_pytorch_model(graph_gptq)
|
|
196
196
|
|
|
197
197
|
return export_model(graph_gptq,
|
|
198
198
|
DEFAULT_PYTORCH_INFO,
|
|
@@ -13,10 +13,10 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
# ==============================================================================
|
|
15
15
|
from abc import abstractmethod
|
|
16
|
-
from typing import Union, Dict
|
|
16
|
+
from typing import Union, Dict
|
|
17
17
|
|
|
18
|
-
from model_compression_toolkit.
|
|
19
|
-
from model_compression_toolkit.
|
|
18
|
+
from model_compression_toolkit.logger import Logger
|
|
19
|
+
from model_compression_toolkit.constants import FOUND_TORCH
|
|
20
20
|
from model_compression_toolkit.gptq.common.gptq_constants import WEIGHTS_QUANTIZATION_PARAMS
|
|
21
21
|
|
|
22
22
|
from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig, \
|
|
@@ -14,9 +14,7 @@
|
|
|
14
14
|
# ==============================================================================
|
|
15
15
|
from typing import Union, Tuple
|
|
16
16
|
import torch
|
|
17
|
-
from
|
|
18
|
-
from model_compression_toolkit.core.common.constants import MIN_THRESHOLD
|
|
19
|
-
from model_compression_toolkit.core.pytorch.utils import to_torch_tensor
|
|
17
|
+
from model_compression_toolkit.constants import MIN_THRESHOLD
|
|
20
18
|
|
|
21
19
|
|
|
22
20
|
def power_of_two_max(max_tensor: torch.Tensor) -> torch.Tensor:
|
|
@@ -27,7 +27,7 @@ from model_compression_toolkit.core.pytorch.utils import to_torch_tensor, torch_
|
|
|
27
27
|
from model_compression_toolkit.gptq.pytorch.quantizer import quant_utils as qutils
|
|
28
28
|
from model_compression_toolkit.gptq.common.gptq_constants import PTQ_THRESHOLD, SCALE_PTQ, \
|
|
29
29
|
SOFT_ROUNDING_GAMMA, SOFT_ROUNDING_ZETA, AUXVAR
|
|
30
|
-
from model_compression_toolkit.
|
|
30
|
+
from model_compression_toolkit.constants import THRESHOLD, MIN_THRESHOLD
|
|
31
31
|
from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig
|
|
32
32
|
from model_compression_toolkit.quantizers_infrastructure.inferable_infrastructure.common.base_inferable_quantizer import mark_quantizer
|
|
33
33
|
from model_compression_toolkit.quantizers_infrastructure.trainable_infrastructure.common.quant_utils import \
|
|
@@ -18,6 +18,7 @@ from typing import Dict
|
|
|
18
18
|
import numpy as np
|
|
19
19
|
|
|
20
20
|
from model_compression_toolkit import quantizers_infrastructure as qi
|
|
21
|
+
from model_compression_toolkit.quantizers_infrastructure.constants import FQ_MIN, FQ_MAX
|
|
21
22
|
from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
|
|
22
23
|
from model_compression_toolkit.gptq.common.gptq_config import RoundingType
|
|
23
24
|
from model_compression_toolkit.gptq.pytorch.quantizer.base_pytorch_gptq_quantizer import \
|
|
@@ -31,8 +32,7 @@ from model_compression_toolkit.quantizers_infrastructure.inferable_infrastructur
|
|
|
31
32
|
mark_quantizer
|
|
32
33
|
from model_compression_toolkit.quantizers_infrastructure.trainable_infrastructure.common.base_trainable_quantizer import \
|
|
33
34
|
VariableGroup
|
|
34
|
-
from model_compression_toolkit.
|
|
35
|
-
from model_compression_toolkit.qat.common.constants import FQ_MIN, FQ_MAX
|
|
35
|
+
from model_compression_toolkit.constants import RANGE_MAX, RANGE_MIN
|
|
36
36
|
|
|
37
37
|
|
|
38
38
|
def soft_rounding_unifrom_quantizer(input_tensor: torch.Tensor,
|
|
@@ -26,7 +26,7 @@ from model_compression_toolkit.gptq.pytorch.quantizer.base_pytorch_gptq_quantize
|
|
|
26
26
|
from model_compression_toolkit.core.pytorch.utils import to_torch_tensor, torch_tensor_to_numpy
|
|
27
27
|
from model_compression_toolkit.gptq.pytorch.quantizer import quant_utils as qutils
|
|
28
28
|
from model_compression_toolkit.gptq.common.gptq_constants import AUXVAR, PTQ_THRESHOLD, MAX_LSB_CHANGE
|
|
29
|
-
from model_compression_toolkit.
|
|
29
|
+
from model_compression_toolkit.constants import THRESHOLD
|
|
30
30
|
from model_compression_toolkit.quantizers_infrastructure import TrainableQuantizerWeightsConfig
|
|
31
31
|
from model_compression_toolkit.quantizers_infrastructure.inferable_infrastructure.common.base_inferable_quantizer import \
|
|
32
32
|
mark_quantizer
|
|
@@ -15,7 +15,7 @@
|
|
|
15
15
|
|
|
16
16
|
from typing import Callable
|
|
17
17
|
|
|
18
|
-
from model_compression_toolkit import CoreConfig
|
|
18
|
+
from model_compression_toolkit.core import CoreConfig
|
|
19
19
|
from model_compression_toolkit.core import common
|
|
20
20
|
from model_compression_toolkit.core.common.statistics_correction.statistics_correction import \
|
|
21
21
|
apply_statistics_correction
|
|
@@ -28,6 +28,7 @@ from model_compression_toolkit.gptq.common.gptq_training import gptq_training
|
|
|
28
28
|
from model_compression_toolkit.core.common.visualization.tensorboard_writer import TensorboardWriter
|
|
29
29
|
from model_compression_toolkit.core.common.statistics_correction.apply_bias_correction_to_graph import \
|
|
30
30
|
apply_bias_correction_to_graph
|
|
31
|
+
from model_compression_toolkit.logger import Logger
|
|
31
32
|
|
|
32
33
|
|
|
33
34
|
def _apply_gptq(gptq_config: GradientPTQConfigV2,
|
|
@@ -55,7 +56,7 @@ def _apply_gptq(gptq_config: GradientPTQConfigV2,
|
|
|
55
56
|
|
|
56
57
|
"""
|
|
57
58
|
if gptq_config is not None and gptq_config.n_epochs > 0:
|
|
58
|
-
|
|
59
|
+
Logger.info("Using experimental Gradient Based PTQ: If you encounter an issue "
|
|
59
60
|
"please file a bug. To disable it, do not pass a gptq configuration.")
|
|
60
61
|
|
|
61
62
|
tg_bias = gptq_training(tg,
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Copyright
|
|
1
|
+
# Copyright 2023 Sony Semiconductor Israel, Inc. All rights reserved.
|
|
2
2
|
#
|
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
4
|
# you may not use this file except in compliance with the License.
|
model_compression_toolkit/{core/keras/quantization_facade.py → legacy/keras_quantization_facade.py}
RENAMED
|
@@ -15,9 +15,8 @@
|
|
|
15
15
|
|
|
16
16
|
from typing import Callable, List, Tuple
|
|
17
17
|
|
|
18
|
-
from model_compression_toolkit.
|
|
19
|
-
from model_compression_toolkit.
|
|
20
|
-
from model_compression_toolkit.core.common.constants import TENSORFLOW
|
|
18
|
+
from model_compression_toolkit.logger import Logger
|
|
19
|
+
from model_compression_toolkit.constants import TENSORFLOW
|
|
21
20
|
from model_compression_toolkit.core.common.user_info import UserInformation
|
|
22
21
|
from model_compression_toolkit.gptq import GradientPTQConfig, GradientPTQConfigV2
|
|
23
22
|
from model_compression_toolkit.core.common.mixed_precision.kpi_tools.kpi import KPI
|
|
@@ -36,14 +35,14 @@ from model_compression_toolkit.core.exporter import export_model
|
|
|
36
35
|
from model_compression_toolkit.core.analyzer import analyzer_model_quantization
|
|
37
36
|
|
|
38
37
|
from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import TargetPlatformCapabilities
|
|
39
|
-
from model_compression_toolkit.
|
|
38
|
+
from model_compression_toolkit.constants import FOUND_TF
|
|
40
39
|
|
|
41
40
|
if FOUND_TF:
|
|
42
41
|
from model_compression_toolkit.core.keras.default_framework_info import DEFAULT_KERAS_INFO
|
|
43
42
|
from model_compression_toolkit.core.keras.keras_implementation import KerasImplementation
|
|
44
43
|
from model_compression_toolkit.core.keras.keras_model_validation import KerasModelValidation
|
|
45
44
|
from tensorflow.keras.models import Model
|
|
46
|
-
from model_compression_toolkit.
|
|
45
|
+
from model_compression_toolkit.target_platform_capabilities.constants import DEFAULT_TP_MODEL
|
|
47
46
|
|
|
48
47
|
from model_compression_toolkit import get_target_platform_capabilities
|
|
49
48
|
|
|
@@ -209,13 +208,13 @@ if FOUND_TF:
|
|
|
209
208
|
Create a mixed-precision configuration, to quantize a model with different bitwidths for different layers.
|
|
210
209
|
The candidates bitwidth for quantization should be defined in the target platform model:
|
|
211
210
|
|
|
212
|
-
>>> config = mct.MixedPrecisionQuantizationConfig()
|
|
211
|
+
>>> config = mct.core.MixedPrecisionQuantizationConfig()
|
|
213
212
|
|
|
214
213
|
Create a KPI object to limit our returned model's size. Note that this value affects only coefficients
|
|
215
214
|
that should be quantized (for example, the kernel of Conv2D in Keras will be affected by this value,
|
|
216
215
|
while the bias will not):
|
|
217
216
|
|
|
218
|
-
>>> kpi = mct.KPI(model.count_params() * 0.75) # About 0.75 of the model size when quantized with 8 bits.
|
|
217
|
+
>>> kpi = mct.core.KPI(model.count_params() * 0.75) # About 0.75 of the model size when quantized with 8 bits.
|
|
219
218
|
|
|
220
219
|
Pass the model, the representative dataset generator, the configuration and the target KPI to get a
|
|
221
220
|
quantized model:
|
|
@@ -229,11 +228,11 @@ if FOUND_TF:
|
|
|
229
228
|
fw_info=fw_info).validate()
|
|
230
229
|
|
|
231
230
|
if not isinstance(quant_config, MixedPrecisionQuantizationConfig):
|
|
232
|
-
|
|
231
|
+
Logger.error("Given quantization config to mixed-precision facade is not of type "
|
|
233
232
|
"MixedPrecisionQuantizationConfig. Please use keras_post_training_quantization API,"
|
|
234
233
|
"or pass a valid mixed precision configuration.")
|
|
235
234
|
|
|
236
|
-
|
|
235
|
+
Logger.info("Using experimental mixed-precision quantization. "
|
|
237
236
|
"If you encounter an issue please file a bug.")
|
|
238
237
|
|
|
239
238
|
quantization_config, mp_config = quant_config.separate_configs()
|