mct-nightly 1.8.0.20052023.post401__py3-none-any.whl → 1.8.0.20230610.post356__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (115) hide show
  1. {mct_nightly-1.8.0.20052023.post401.dist-info → mct_nightly-1.8.0.20230610.post356.dist-info}/METADATA +10 -7
  2. {mct_nightly-1.8.0.20052023.post401.dist-info → mct_nightly-1.8.0.20230610.post356.dist-info}/RECORD +68 -115
  3. model_compression_toolkit/__init__.py +23 -3
  4. model_compression_toolkit/core/common/framework_info.py +1 -1
  5. model_compression_toolkit/core/keras/back2framework/instance_builder.py +16 -9
  6. model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +8 -34
  7. model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +5 -1
  8. model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +103 -28
  9. model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +39 -44
  10. model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +1 -1
  11. model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +20 -18
  12. model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +3 -3
  13. model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +1 -1
  14. model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +36 -9
  15. model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +4 -4
  16. model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +24 -32
  17. model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +31 -8
  18. model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +5 -5
  19. model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +34 -8
  20. model_compression_toolkit/gptq/keras/gptq_training.py +15 -16
  21. model_compression_toolkit/gptq/keras/graph_info.py +2 -2
  22. model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +4 -5
  23. model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +5 -7
  24. model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +1 -1
  25. model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +6 -6
  26. model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +7 -7
  27. model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +6 -6
  28. model_compression_toolkit/gptq/pytorch/gptq_training.py +30 -10
  29. model_compression_toolkit/gptq/pytorch/graph_info.py +5 -2
  30. model_compression_toolkit/gptq/pytorch/quantization_facade.py +4 -2
  31. model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +4 -4
  32. model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +5 -7
  33. model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +1 -1
  34. model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +7 -7
  35. model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +7 -8
  36. model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +7 -8
  37. model_compression_toolkit/qat/common/__init__.py +2 -1
  38. model_compression_toolkit/qat/common/qat_config.py +2 -2
  39. model_compression_toolkit/qat/keras/quantization_facade.py +18 -8
  40. model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +1 -1
  41. model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +11 -11
  42. model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +11 -12
  43. model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +12 -13
  44. model_compression_toolkit/qat/pytorch/quantization_facade.py +27 -16
  45. model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py +2 -2
  46. model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +31 -4
  47. model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +10 -9
  48. model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +11 -10
  49. model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +2 -1
  50. model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +1 -25
  51. model_compression_toolkit/{quantizers_infrastructure/inferable_infrastructure/keras/quantizers/constants.py → trainable_infrastructure/__init__.py} +3 -10
  52. model_compression_toolkit/{quantizers_infrastructure/trainable_infrastructure → trainable_infrastructure}/common/base_trainable_quantizer.py +3 -3
  53. model_compression_toolkit/{quantizers_infrastructure/trainable_infrastructure → trainable_infrastructure}/common/get_quantizer_config.py +1 -1
  54. model_compression_toolkit/{quantizers_infrastructure/trainable_infrastructure → trainable_infrastructure}/common/get_quantizers.py +3 -3
  55. model_compression_toolkit/{quantizers_infrastructure/trainable_infrastructure → trainable_infrastructure}/keras/base_keras_quantizer.py +4 -4
  56. model_compression_toolkit/{quantizers_infrastructure/trainable_infrastructure → trainable_infrastructure}/keras/config_serialization.py +2 -2
  57. model_compression_toolkit/{quantizers_infrastructure/inferable_infrastructure → trainable_infrastructure}/keras/load_model.py +16 -23
  58. model_compression_toolkit/{quantizers_infrastructure/trainable_infrastructure → trainable_infrastructure}/pytorch/base_pytorch_quantizer.py +3 -3
  59. model_compression_toolkit/quantizers_infrastructure/__init__.py +0 -23
  60. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/base_inferable_quantizer.py +0 -87
  61. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/constants.py +0 -46
  62. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/get_all_subclasses.py +0 -31
  63. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/get_quantizers.py +0 -53
  64. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/quant_utils.py +0 -49
  65. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/activation_quantization_holder.py +0 -147
  66. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantize_wrapper.py +0 -345
  67. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizer_utils.py +0 -85
  68. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/__init__.py +0 -27
  69. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/__init__.py +0 -14
  70. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_lut_pot_inferable_quantizer.py +0 -148
  71. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_pot_inferable_quantizer.py +0 -65
  72. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_symmetric_inferable_quantizer.py +0 -86
  73. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_uniform_inferable_quantizer.py +0 -111
  74. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/base_keras_inferable_quantizer.py +0 -56
  75. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/__init__.py +0 -14
  76. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_lut_pot_inferable_quantizer.py +0 -79
  77. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_lut_symmetric_inferable_quantizer.py +0 -179
  78. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_pot_inferable_quantizer.py +0 -67
  79. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_symmetric_inferable_quantizer.py +0 -87
  80. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_uniform_inferable_quantizer.py +0 -163
  81. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/validation_functions.py +0 -66
  82. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/__init__.py +0 -14
  83. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantize_wrapper.py +0 -269
  84. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizer_utils.py +0 -152
  85. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/__init__.py +0 -35
  86. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/__init__.py +0 -14
  87. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_lut_pot_inferable_quantizer.py +0 -96
  88. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_pot_inferable_quantizer.py +0 -62
  89. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_symmetric_inferable_quantizer.py +0 -83
  90. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_uniform_inferable_quantizer.py +0 -100
  91. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_lut_symmetric_inferable_quantizer.py +0 -95
  92. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_pytorch_inferable_quantizer.py +0 -48
  93. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_symmetric_inferable_quantizer.py +0 -70
  94. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_uniform_inferable_quantizer.py +0 -57
  95. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/constants.py +0 -26
  96. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/__init__.py +0 -14
  97. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_lut_pot_inferable_quantizer.py +0 -77
  98. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_lut_symmetric_inferable_quantizer.py +0 -106
  99. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_pot_inferable_quantizer.py +0 -66
  100. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_symmetric_inferable_quantizer.py +0 -104
  101. model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_uniform_inferable_quantizer.py +0 -109
  102. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/__init__.py +0 -14
  103. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/__init__.py +0 -14
  104. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/keras/__init__.py +0 -14
  105. model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/pytorch/__init__.py +0 -14
  106. {mct_nightly-1.8.0.20052023.post401.dist-info → mct_nightly-1.8.0.20230610.post356.dist-info}/LICENSE.md +0 -0
  107. {mct_nightly-1.8.0.20052023.post401.dist-info → mct_nightly-1.8.0.20230610.post356.dist-info}/WHEEL +0 -0
  108. {mct_nightly-1.8.0.20052023.post401.dist-info → mct_nightly-1.8.0.20230610.post356.dist-info}/top_level.txt +0 -0
  109. /model_compression_toolkit/{quantizers_infrastructure/inferable_infrastructure → trainable_infrastructure/common}/__init__.py +0 -0
  110. /model_compression_toolkit/{quantizers_infrastructure → trainable_infrastructure/common}/constants.py +0 -0
  111. /model_compression_toolkit/{quantizers_infrastructure/trainable_infrastructure → trainable_infrastructure}/common/quant_utils.py +0 -0
  112. /model_compression_toolkit/{quantizers_infrastructure/trainable_infrastructure → trainable_infrastructure}/common/trainable_quantizer_config.py +0 -0
  113. /model_compression_toolkit/{quantizers_infrastructure/inferable_infrastructure/common → trainable_infrastructure/keras}/__init__.py +0 -0
  114. /model_compression_toolkit/{quantizers_infrastructure/trainable_infrastructure → trainable_infrastructure}/keras/quantizer_utils.py +0 -0
  115. /model_compression_toolkit/{quantizers_infrastructure/inferable_infrastructure/keras → trainable_infrastructure/pytorch}/__init__.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 1.8.0.20052023.post401
3
+ Version: 1.8.0.20230610.post356
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -23,6 +23,7 @@ Requires-Dist: PuLP
23
23
  Requires-Dist: matplotlib
24
24
  Requires-Dist: scipy
25
25
  Requires-Dist: protobuf
26
+ Requires-Dist: mct-quantizers-nightly
26
27
 
27
28
  # Model Compression Toolkit (MCT)
28
29
 
@@ -89,15 +90,17 @@ For more details, we highly recommend visiting our project website where experim
89
90
 
90
91
  This section provides a quick starting guide. We begin with installation via source code or pip server. Then, we provide a short usage example.
91
92
 
92
- ### Installation
93
- See the MCT install guide for the pip package, and build from the source.
94
-
95
-
96
- #### From Source
93
+ ### Setting up work environment
94
+ Clone the repository and install the required packages (via [requirements](requirements.txt)).
97
95
  ```
98
96
  git clone https://github.com/sony/model_optimization.git
99
- python setup.py install
97
+ cd model_optimization
98
+ pip install -r requirements.txt
100
99
  ```
100
+
101
+ ### Installation
102
+ See the MCT install guide for the pip package.
103
+
101
104
  #### From PyPi - latest stable release
102
105
  ```
103
106
  pip install model-compression-toolkit
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=4Vo4-pmldUF_XNhM1lARg0TjmI6pobbHQgiLeDHCYPw,1666
1
+ model_compression_toolkit/__init__.py,sha256=q5Yg5hY1LHrHUMA0oAP2YZK_7FpEoPY2pyqnjHbHgCI,3608
2
2
  model_compression_toolkit/constants.py,sha256=9AIjCQuTlfS4M45Jw1r_KK4u--18DhvVNMK-DZDof7w,3949
3
3
  model_compression_toolkit/logger.py,sha256=b9DVktZ-LymFcRxv2aL_sdiE6S2sSrFGWltx6dgEuUY,4863
4
4
  model_compression_toolkit/core/__init__.py,sha256=qnBA6aaojI7RpEQZU2vXWiELHfVJf-MnAP-4T0tcFDY,2008
@@ -10,7 +10,7 @@ model_compression_toolkit/core/common/base_substitutions.py,sha256=xDFSmVVs_iFSZ
10
10
  model_compression_toolkit/core/common/data_loader.py,sha256=7YF5Mqz64Xb4rVwY3knrdIZ4JEHybXxiQqx0deR_c5k,4017
11
11
  model_compression_toolkit/core/common/defaultdict.py,sha256=n-F3dP-VTMnGy9KfCwp7D_WBlvFxe3waX4LpnOX8FH0,2281
12
12
  model_compression_toolkit/core/common/framework_implementation.py,sha256=spFDFM31jH1Cz8t4why1LvL1TOIAJAIltNvzz2T5tNI,22391
13
- model_compression_toolkit/core/common/framework_info.py,sha256=gfU-Iz2hkF2DMU7IGLjXOzVh5mdqlRva-hRPxk07em4,6447
13
+ model_compression_toolkit/core/common/framework_info.py,sha256=hwmstv7IuBRfa6IxDbeG4y-7AxKx4bwCyI_Exi2C7mo,6424
14
14
  model_compression_toolkit/core/common/memory_computation.py,sha256=ixoSpV5ZYZGyzhre3kQcvR2sNA8KBsPZ3lgbkDnw9Cs,1205
15
15
  model_compression_toolkit/core/common/model_builder_mode.py,sha256=jll9-59OPaE3ug7Y9-lLyV99_FoNHxkGZMgcm0Vkpss,1324
16
16
  model_compression_toolkit/core/common/model_collector.py,sha256=pNmJsU7QPCQ8-YUrzz__85YwF7Mk4Q27gozDSYCpzrg,5005
@@ -134,8 +134,8 @@ model_compression_toolkit/core/keras/tf_tensor_numpy.py,sha256=BauH-Ssoiuv5wu81f
134
134
  model_compression_toolkit/core/keras/back2framework/__init__.py,sha256=rhIiXg_nBgUZ-baE3M6SzCuQbcnq4iebY1jtJBvKHOM,808
135
135
  model_compression_toolkit/core/keras/back2framework/factory_model_builder.py,sha256=GSh1Piz5qpA7IlvHTMqUvPn7WBDa0IHEDZdd_TzY9XA,2226
136
136
  model_compression_toolkit/core/keras/back2framework/float_model_builder.py,sha256=9SFHhX-JnkB8PvYIIHRYlReBDI_RkZY9LditzW_ElLk,2444
137
- model_compression_toolkit/core/keras/back2framework/instance_builder.py,sha256=V_7jxsA8jbBRNMVVazWeXNDhXeQFBkJORlM0TS5FN4Y,3837
138
- model_compression_toolkit/core/keras/back2framework/keras_model_builder.py,sha256=f3HRptjaejNKl1owVNJliM7bRVhKd7Npu0XOCPi8nwI,17970
137
+ model_compression_toolkit/core/keras/back2framework/instance_builder.py,sha256=DzfVbu4T4argPB1093ZGAk16GgjKcbuufukXtymF30A,4078
138
+ model_compression_toolkit/core/keras/back2framework/keras_model_builder.py,sha256=8EWpPCDVAruF1G0hE29qfW-FHA6jWazFosJcPSVCrEg,16452
139
139
  model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py,sha256=6I4AIR4WUZ84vm1tjFef-VKNIk5qnAxPc1H_VVqzjbk,7150
140
140
  model_compression_toolkit/core/keras/back2framework/model_gradients.py,sha256=E_VHcRXkgaQv_pJbqNs1L68fzkplDZNEk_qdgWsFdp4,15316
141
141
  model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py,sha256=5wFb4nx_F0Wu4c8pLf6n6OzxOHtpOJ6_3mQsNSXIudU,2481
@@ -192,10 +192,10 @@ model_compression_toolkit/core/pytorch/utils.py,sha256=rBQMAbWluyIMjVfeghzq6FZv3
192
192
  model_compression_toolkit/core/pytorch/back2framework/__init__.py,sha256=H_WixgN0elVWf3exgGYsi58imPoYDj5eYPeh6x4yfug,813
193
193
  model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py,sha256=aSmU5MKbqZLylZbaZDlUWPa_jfJoaRhqz_6v_zeLc7o,2274
194
194
  model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py,sha256=tLrlUyYhxVKVjkad1ZAtbRra0HedB3iVfIkZ_dYnQ-4,3419
195
- model_compression_toolkit/core/pytorch/back2framework/instance_builder.py,sha256=OkGH_MkrffaxADCbw75WKPtqVRQSi6AxOeNWoNgzOq0,1680
195
+ model_compression_toolkit/core/pytorch/back2framework/instance_builder.py,sha256=B67awxkYKpjmNUcEgzgsav59Dken0t360ozpCd6BQVA,1848
196
196
  model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py,sha256=BWNYDNA7-y1aVR6w6ECFwgF0NEl-W4OvCWrmHYqeQI4,5157
197
197
  model_compression_toolkit/core/pytorch/back2framework/model_gradients.py,sha256=f3vXyJ-b4Xo_oczxK0rT0Rnkyo7hVIOtfvDPR5iK9-Y,18214
198
- model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py,sha256=6irAutzsIj3JaUZ1NZi3YZm6bb5MIzXZsubvJwIlySo,12690
198
+ model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py,sha256=Jag1zAEtrhGldPrzMRN3V8g-5-MMBqY_so49Vc1DuS0,16642
199
199
  model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py,sha256=MHP8SWXEqT4a5pWOELJZhqS_orYa8zWiKkOliczfrNc,3709
200
200
  model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
201
201
  model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py,sha256=q2JDw10NKng50ee2i9faGzWZ-IydnR2aOMGSn9RoZmc,5773
@@ -236,28 +236,28 @@ model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py,sha256
236
236
  model_compression_toolkit/exporter/model_exporter/keras/__init__.py,sha256=uZ2RigbY9O2PJ0Il8wPpS_s7frgg9WUGd_SHeKGyl1A,699
237
237
  model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py,sha256=93UkXZEm6sTCATUwLu4exVyIFAFBzbA4Yg_Tr89Rb9U,1495
238
238
  model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py,sha256=HnRVLGc7dyQvtDxUNuo9gU3huuQQTB5hFRUGfvzI5AY,797
239
- model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py,sha256=KelUkhF9cb1b2haFv6HCo7RCs6XjbedvedznOJgf77E,6017
240
- model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py,sha256=neAkIyPXU5L-WY3MLyf8K1YlCVCmu0slbyUHpnJgABk,3069
241
- model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py,sha256=I_qdxClFYHUssV-eML5XXy1Kl3z8HLW591kCcRF2uRI,8164
239
+ model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py,sha256=OmVgzRugXKQ9WItEDxWSxsSC0PEWdaa3DcFec7FVWlM,5550
240
+ model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py,sha256=sgTlqNjHSf0vVzQpq2811WL6k7SIo_QZaV7TxUtIC8I,3043
241
+ model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py,sha256=RR-GPsMvEBHmkJEXCIA-bW_ULUcDeSGG9h0gX4YZ2Vw,8144
242
242
  model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py,sha256=fuJEwMo6r2Y3_vBMCSXtMbJ-Y98R4uE6WNRJJNG3kYc,6057
243
243
  model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py,sha256=uZ2RigbY9O2PJ0Il8wPpS_s7frgg9WUGd_SHeKGyl1A,699
244
244
  model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py,sha256=ahgT4EQDSrOyzEBfKqWCNJWsH6RCJOCSRxzlsqaObYA,1600
245
245
  model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py,sha256=el2QRZTz2jLGj7x0eWQuzyVW6u6xXSNV-mKoEtneTLY,800
246
- model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py,sha256=BlQDkhWXyH3f2u6V3mZz_G3MdutjLEc7GSheL8YuXeg,4071
247
- model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py,sha256=01_7yEu0jCxofSbN0WZQarmrkSaKIfdBJgU_ljaEgMo,2887
246
+ model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py,sha256=drAJc0nBGqYXpWdMDRjbkGR8CdkO1QZ-amMMgOpxidE,3923
247
+ model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py,sha256=QUQZ60OkzbaElE94EFJVH9qiHHU7V8SC3RiJoVPeT0s,2843
248
248
  model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py,sha256=rzUd377eyHHo0dD6z0efTTR-8Bo6Ebqo0X8ECL-Q7Gw,5866
249
249
  model_compression_toolkit/exporter/model_wrapper/__init__.py,sha256=7CF2zvpTrIEm8qnbuHnLZyTZkwBBxV24V8QA0oxGbh0,1187
250
250
  model_compression_toolkit/exporter/model_wrapper/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
251
- model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py,sha256=JlHj7dxEASspaTLBBiOH3aFwjt7t55X_wVz3DODdwJo,3865
251
+ model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py,sha256=ihcMbqi_UGYnDZNnTS3XouKF7dmrrBGIZbfFEzW6KXE,3543
252
252
  model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
253
- model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py,sha256=1cLz89eJU6wfSruhZqimIWtPZW06DQlMGFTFbQtJLIc,3137
254
- model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py,sha256=VFKnphU9p6b6TR5yx7TpehWkpwNqqo3MWBxRkN_F4Wk,8646
253
+ model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py,sha256=iuo76cqmoHpF9eAc3Sqz4W-i6nnY1eeySBOdzh8bY5g,4287
254
+ model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py,sha256=prOosEwrTEUsg4gvnZwgyLtDu2id-eMsZ97pEHHBGwM,8318
255
255
  model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizers.py,sha256=n7VTA-a9TrLFpfdYAqrAKj6PGlAyLq8-xdwnMMpX71k,2077
256
256
  model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
257
- model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py,sha256=6hnhTtWR-iE8Adp82Bf7RYSTABF-pxnqtF_FRn0XZ9s,2019
257
+ model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py,sha256=gvX5ILs5vjQ_F_dq5KaFs0GOQEq9gYXO5a6YZlYY8h4,3449
258
258
  model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
259
- model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py,sha256=v2NZCy2nZUUVJ9BEKBEPoTGDWIQkE9J4vFQ8V_M7SLk,2528
260
- model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py,sha256=JUSbmH9mWfWoDG-vwKNr8M_Ip1lWiLGKz2ll2oVr2Ug,7723
259
+ model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py,sha256=SJ5fetbUMkmB0tkHkmVhMrLksh7eqMQJLFuMD08ZKWM,3921
260
+ model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py,sha256=gNURwKHO5C3fez_SPZ9lxfp7FamN5A6W6Jp4AaGQJBE,7582
261
261
  model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizers.py,sha256=hinP-wtyxZyoW860GdJAk6M3iPjmwwPXQTUxd56yhq8,2086
262
262
  model_compression_toolkit/gptq/__init__.py,sha256=tPxlcYl8JwK-EWVTy5IVgGOaUJsnG-6PnOKeYNeGJjQ,1250
263
263
  model_compression_toolkit/gptq/runner.py,sha256=vWd7cWKgTGc9oPcTtwTQZoI3MArCx19Y61uteLFCxVo,5534
@@ -270,37 +270,37 @@ model_compression_toolkit/gptq/common/gptq_training.py,sha256=U24sNWiVzXEfnk4ePO
270
270
  model_compression_toolkit/gptq/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
271
271
  model_compression_toolkit/gptq/keras/gptq_keras_implementation.py,sha256=axBwnCSjq5xk-xGymOwSOqjp39It-CVtGcCTRTf0E_4,1248
272
272
  model_compression_toolkit/gptq/keras/gptq_loss.py,sha256=rbRkF15MYd6nq4G49kcjb_dPTa-XNq9cTkrb93mXawo,6241
273
- model_compression_toolkit/gptq/keras/gptq_training.py,sha256=j_XQgudPv7B3U9IdYx1li2aQvOcNg7uxjBD8wAPqFxo,17449
274
- model_compression_toolkit/gptq/keras/graph_info.py,sha256=OU-T3wdrCR3YfQ1iYxF_v0XaiSw4oNaM4z9fYUt5NwQ,4627
273
+ model_compression_toolkit/gptq/keras/gptq_training.py,sha256=49HM4zj5BMlTzEtFGLdEqk0upvuKTYlvCMx9okzNyNk,17319
274
+ model_compression_toolkit/gptq/keras/graph_info.py,sha256=B9wMdlnUNHaFog6UsE3bEZrcB6j1ySNYaU4o_kI91H0,4564
275
275
  model_compression_toolkit/gptq/keras/quantization_facade.py,sha256=bb_Rakbw2PQjK9R_ocxSHZy-lGjXBVXJ-Kht-lTKLsA,14583
276
276
  model_compression_toolkit/gptq/keras/quantizer/__init__.py,sha256=-DK1CDXvlsnEbki4lukZLpl6Xrbo91_jcqxXlG5Eg6Q,963
277
- model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py,sha256=19Q5nbgMFhDMjk5-RF7p4OEpXxL9BYD3CyBoBVMV_YM,4765
277
+ model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py,sha256=RWmsUXCw051shsPZ6igkSJBzqp7r4ddW1zYzZd3g0Xs,4751
278
278
  model_compression_toolkit/gptq/keras/quantizer/quant_utils.py,sha256=Vt7Qb8i4JsE4sFtcjpfM4FTXTtfV1t6SwfoNH8a_Iaw,5055
279
- model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py,sha256=Ngqk6rAfS5tWwF2DkpVE_u69Q1Kf15aaSuZ37bwOpBs,4392
279
+ model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py,sha256=fh5CNTs0S47txLn8pWJfnif4CJEb1PsQbYFGBWhOp1Q,4136
280
280
  model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py,sha256=iKzHnxl2ZSEp09oatfJVoiDuu6Q_iN36mOxQzDr1cy8,2087
281
281
  model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
282
- model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py,sha256=ZnzDyoPHOCk3QLinOKBgf2vJ6uMs6L3i8pqGGp4ZAt4,3999
283
- model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py,sha256=Bjx6jojuPwpRPZ6QrMdgJGTmn83D8bKeKXKlmGHrvlU,12065
284
- model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py,sha256=gR0FsHQsxNIlCwM1nAGrKH6-ZSHaIk2fYs8zqQcu3BA,10549
282
+ model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py,sha256=t9-CQZE9AgnQ_Lq4SPd5uemvNcbtUHnU0qTHnx-QxZc,3962
283
+ model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py,sha256=fOEN27K5SWZV1-NOrOXkFqOMtU8FgDCw5l0Il2VtERQ,11891
284
+ model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py,sha256=ctjaKNPjGAt-SiU4QhL9Aewkz7KP2VlUxGxzyyJpym8,10381
285
285
  model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
286
- model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py,sha256=NpC_SoL-g5rLIQvLdmeYCadWD9uFkWgIwDtnRBnQkFk,8544
286
+ model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py,sha256=dLyCe8kTEWTUrorRBJs0RUmWddwELqToTyyx2mLT8_8,8370
287
287
  model_compression_toolkit/gptq/pytorch/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
288
288
  model_compression_toolkit/gptq/pytorch/gptq_loss.py,sha256=kDuWw-6zh17wZpYWh4Xa94rpoodf82DksgjQCnL7nBc,2719
289
289
  model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py,sha256=tECPTavxn8EEwgLaP2zvxdJH6Vg9jC0YOIMJ7857Sdc,1268
290
- model_compression_toolkit/gptq/pytorch/gptq_training.py,sha256=7lf3zXRyi1XxesC3XCsJ9N6Lm459atblMUtQFgW_YhU,13504
291
- model_compression_toolkit/gptq/pytorch/graph_info.py,sha256=Sphpr5wKADgwZ-sLxNqMAcsEiP_jaFEL7q2-zcrtUx8,3791
292
- model_compression_toolkit/gptq/pytorch/quantization_facade.py,sha256=q6LMY6GwiFalX-dXctFpKJ1452Iz9NZ8DFJqsw97iGE,12319
290
+ model_compression_toolkit/gptq/pytorch/gptq_training.py,sha256=pcFj5rywszU264jTJVM3X1_qN5BEcxMzCj1-I6DKoHY,14668
291
+ model_compression_toolkit/gptq/pytorch/graph_info.py,sha256=-0GDC2cr-XXS7cTFTnDflJivGN7VaPnzVPsxCE-vZNU,3955
292
+ model_compression_toolkit/gptq/pytorch/quantization_facade.py,sha256=sZvbP4RJMMbiwDz0QMVj0h_FKrG-R6SO7hsznpZQLwM,12554
293
293
  model_compression_toolkit/gptq/pytorch/quantizer/__init__.py,sha256=ZHNHo1yzye44m9_ht4UUZfTpK01RiVR3Tr74-vtnOGI,968
294
- model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py,sha256=G1z7tO1SiHqSCIvbnkHM1D1_6EnM1LWg_ygDTA_UYtI,4261
294
+ model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py,sha256=Zb-P0yRyZHHBlDvUBdRwxDpdduEJyJp6OT9pfKFF5ks,4171
295
295
  model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py,sha256=OocYYRqvl7rZ37QT0hTzfJnWGiNCPskg7cziTlR7TRk,3893
296
- model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py,sha256=qprTfTkqqcAijNKsHwKsOlju75Ihu_PDEJxny_A5AD0,4221
296
+ model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py,sha256=PHbfJf7qdqWMmTGxxdGGoGFsQhhSqTELa6Sv3jeS9sQ,3996
297
297
  model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py,sha256=9owTzSu_xz29dsjONB-AYXuCZoPo_4nqxTk3yH18a0g,2089
298
298
  model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
299
- model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py,sha256=b0MHzJJy_Liekb7Qu5gq5u6LI_HynvGvyZ0E7oeoqoo,4169
300
- model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py,sha256=qaUoydbCVJZ6HuN28k4HCLkCXiig0uuzk_zbhwqTVWI,12185
301
- model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py,sha256=6d9lJturuIjDl_-ryaPE4dfhGsTWGhrs2yt9qWpfFWw,9226
299
+ model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py,sha256=oO7WgsAHMnWoXNm_gTKAAe-Nd79mGL_m677ai-ui424,4132
300
+ model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py,sha256=_WiXyXmx-nb8uD55CQDh405YHD_6dxLGsF1aQcDw1pU,12036
301
+ model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py,sha256=I4Nw3k_UbU6IZdtlZ7PgUsDrJK0wxtdY6mTQsWBwtyc,9103
302
302
  model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
303
- model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py,sha256=j6nIW1aceC5k2SFa2sL8XmCMz-3QO1TF1Hx_JP3GfAQ,8937
303
+ model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py,sha256=-s9pegYOCsW1UXOn7pIi4vRY5m2Kq46sbYh43gsC55k,8782
304
304
  model_compression_toolkit/legacy/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
305
305
  model_compression_toolkit/legacy/keras_quantization_facade.py,sha256=GMVq3pYW3oWx6LYtO8xPBVU3wpzYHJ0gvdUANc8E584,17682
306
306
  model_compression_toolkit/legacy/pytorch_quantization_facade.py,sha256=ngRtDGOj672ezuSo05OrI4fewz7oMXIgkpLIC7qJLZs,17223
@@ -311,95 +311,33 @@ model_compression_toolkit/ptq/keras/quantization_facade.py,sha256=ZW-Eofgmdqrtyk
311
311
  model_compression_toolkit/ptq/pytorch/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
312
312
  model_compression_toolkit/ptq/pytorch/quantization_facade.py,sha256=2KZKp8UBPbAgYAiw-vISLRGhH4BJPuUCMh8wsueL2pg,8375
313
313
  model_compression_toolkit/qat/__init__.py,sha256=BYKgH1NwB9fqF1TszULQ5tDfLI-GqgZV5sao-lDN9EM,1091
314
- model_compression_toolkit/qat/common/__init__.py,sha256=FA0x-LjZ-C2Z08Jyej3xAtSUyxrHut81NEjUSD_tKDY,817
315
- model_compression_toolkit/qat/common/qat_config.py,sha256=pd9nvsqpczvenkaq3leD-mAq1b2abwJ7SGYLJWToivU,3295
314
+ model_compression_toolkit/qat/common/__init__.py,sha256=6tLZ4R4pYP6QVztLVQC_jik2nES3l4uhML0qUxZrezk,829
315
+ model_compression_toolkit/qat/common/qat_config.py,sha256=zMbyAmIQ5S5fmFHA8OjFy2CppT7ZdXxApXgNJJ8EELc,3293
316
316
  model_compression_toolkit/qat/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
317
- model_compression_toolkit/qat/keras/quantization_facade.py,sha256=kDtn_PLAHbLT3iyC5vHb9kFOkISWjgKQFuekWf3czZc,15305
317
+ model_compression_toolkit/qat/keras/quantization_facade.py,sha256=a3p8i8hdW28lAsuC9BeFTYLwWboA7JXxNyuU8KxVMcY,16043
318
318
  model_compression_toolkit/qat/keras/quantizer/__init__.py,sha256=fWDCj0kIWttYn0sV04Uwih-RAe0vJfz71cxYWeX9qWA,856
319
- model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py,sha256=Bb93y8MziArldPWmv9bWdHsw5u4Jo2KH2YfB_zHuvso,2139
319
+ model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py,sha256=ABhft_begf8lAlxxV3IxykHs8qYVfWCoNE4VEN4i_1c,2138
320
320
  model_compression_toolkit/qat/keras/quantizer/quant_utils.py,sha256=rS2z_ozyjzQ07MMczaAFNZ7K6RKwAnBOKyRac4UvF44,2123
321
- model_compression_toolkit/qat/keras/quantizer/quantization_builder.py,sha256=XFQ-Scxi174UJVosUImK_aCf1LM7fN2a2_0ZBbiVUkE,5734
321
+ model_compression_toolkit/qat/keras/quantizer/quantization_builder.py,sha256=mZwghAnKagL7916CJycFHgJdD5aY6At1A_IBkmYqae4,5635
322
322
  model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
323
- model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py,sha256=f4pkm_VosRFll5Uwr5zD59dRN1K2TSsqAZYME3Gwd74,13618
324
- model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py,sha256=ZWfgZdogMgg-rBrBaNBq1A3kXQ8WYCE8RJN1JtOCIjk,10971
323
+ model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py,sha256=GJmGjMbzn3lN9pGzdFpuHyhJSNbwStR06hHrDVMA-H4,13436
324
+ model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py,sha256=BOIkOUb1WG9MsnzNrr41N9pP0kYWL7qa4kW5ZguVWdo,10708
325
325
  model_compression_toolkit/qat/pytorch/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
326
- model_compression_toolkit/qat/pytorch/quantization_facade.py,sha256=YFHdqAHCWilr99DisgtMDv-0oHpEWMb3vYHuwP9iiso,11892
326
+ model_compression_toolkit/qat/pytorch/quantization_facade.py,sha256=9s0u1L9GyWzf2SSHDyzpsavPVWplb52fk_UJKpGKnN0,12377
327
327
  model_compression_toolkit/qat/pytorch/quantizer/__init__.py,sha256=R4vwVcbg6QprCTNzibyF9PtbKKKBsfu9ffypKDNscJQ,859
328
- model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py,sha256=aBz431g4l1W7pqlOKMCQfJhFbj5mKjWboILuzlXgIhc,2240
329
- model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py,sha256=V-oF596RdXW8W8nF8g57bEGsvB8ORvRIFoyrXBwyaWc,4086
328
+ model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_quantizer.py,sha256=FnhuFCuQoSf78FM1z1UZgXXd3k-mKSM7i9dYOuJUmeA,2213
329
+ model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py,sha256=GOYRDXvQSGe_iUFVmvDy5BqC952hu_-rQO06n8QCyw0,5491
330
330
  model_compression_toolkit/qat/pytorch/quantizer/quantizer_utils.py,sha256=5XswoF-5aaFangkHssWKAQTsk6lf_zzndzfCsBWBVMs,5004
331
331
  model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
332
- model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py,sha256=3L7CUpw-2TrHiuFrMY_1iC4ww-VSGdvG9vsDvBKwxgQ,9776
333
- model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py,sha256=BiMHlxcEMDFVR2LSPj8zfsTbV0uV0Tst6jGjwsCuqQI,8824
334
- model_compression_toolkit/quantizers_infrastructure/__init__.py,sha256=_NfdFxpFw21mocnBN2nR4otYSvZ9zNnQGnzJpXXJIiU,1764
335
- model_compression_toolkit/quantizers_infrastructure/constants.py,sha256=HN120boJxAnEXNrLSj-o_s-VX4o6C-1ap_KZ4840sd0,875
336
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
337
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
338
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/base_inferable_quantizer.py,sha256=T1AJCHt2DozYLojpX3u0r6PfJlzQzbuYr80fP9oB9H4,3158
339
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/constants.py,sha256=FRoAiEOR5zh-_onKwTWbH9wRpiBWqOK-TdyyoV1DFtA,1913
340
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/get_all_subclasses.py,sha256=6KqemyFcM4a6KoCZ-6dm46iIZ_kusPnj5crH8RTAvuo,1213
341
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/get_quantizers.py,sha256=-oQkpnMYzv2P1p2C6ULuCLq6CK7yXOm8qPzpiYO3LuQ,2979
342
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/common/quant_utils.py,sha256=SDzQuh3q9ugSD80Z9IuaWOPskH5VsRRyuBOeIeWJDdQ,2153
343
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
344
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/activation_quantization_holder.py,sha256=KUbiNoMaC-gMrgt_L0kXXsFrQbtc4m30fXG2GV7mv5I,5867
345
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/load_model.py,sha256=nUrK7WX2Oi3N8IzN1W1vJI_TEd442dc0-Ggi1ttL11E,4353
346
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantize_wrapper.py,sha256=CxIMtDYZjCdhzp6zq2y6lhbmkhZ7y4-MIGMAVSkrvH4,14622
347
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizer_utils.py,sha256=Z0SoHkTl5dC0y3hrcj0bC5fSa-oU7IYuGN5sBTb4THA,3440
348
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/validation_functions.py,sha256=BQI6wYwieNSJyUJMgETa028vmqYAchxwZneeZGrwakA,2937
349
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/__init__.py,sha256=Xg2t9VH61BIvqYtJg6GBKkAnDmFe1u4K0i0r2OBAK-I,2742
350
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/base_keras_inferable_quantizer.py,sha256=wqM2oGRoZ9IO-NtrEId7KhMHfdB_0yLXj2MOzjGlDlc,2216
351
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/constants.py,sha256=ItUEs8c7LVxBPMopLD5BO2Ry9DIxFIrk_M7AdSEyBFg,979
352
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
353
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_lut_pot_inferable_quantizer.py,sha256=NcYCx0Iy-3uWw2taiiws6nIvk2xDbv5qoshKNI0yS4A,7478
354
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_pot_inferable_quantizer.py,sha256=sk78WMZe3RMl_5HsZwPHImLyAElDKGQeHt1dltThaTs,3184
355
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_symmetric_inferable_quantizer.py,sha256=3XYwmH3uPaBDFAz9a8_usa6CYlFfxp40eSG6r2sFdcM,3966
356
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/activation_inferable_quantizers/activation_uniform_inferable_quantizer.py,sha256=e19l4ldW93f_DvUOAN15bXuEkEIfuSRoyY2fVMqO89U,5241
357
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
358
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_lut_pot_inferable_quantizer.py,sha256=V0B_LAgk2nQGlcRJY2LqxEbVIOrGZyOdaX0t6fMoJLo,4202
359
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_lut_symmetric_inferable_quantizer.py,sha256=INUo-hIS9GCBgkEVTRVPxRlA71aBlgzcqUF2S8k7Oi8,9464
360
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_pot_inferable_quantizer.py,sha256=AjOOdA1Ebe6YuhziauJG6_f7Pmq4Cg_gPbo0a1q424s,3479
361
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_symmetric_inferable_quantizer.py,sha256=qTtAqd7ndfLZHPiwM1St9hQ03fesLGfWRe6B6IxCW-g,4381
362
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/keras/quantizers/weights_inferable_quantizers/weights_uniform_inferable_quantizer.py,sha256=pMXijWxu_4MSZu0O2qMJS04DfgQBDu55yJKdNkXHO4c,8669
363
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
364
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantize_wrapper.py,sha256=m7ar9v3FW_O4pCvFwh4rOku_tiwyfAHwOHmjmBNT70k,11248
365
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizer_utils.py,sha256=2KN976TZTObiaEhoUL0-Rpceui-Nifw5LdKLdU7SRY0,5929
366
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/__init__.py,sha256=-hiXng1pF3wjI-YYYZqZ-NZ1TStGuec4bci3jxvYVY0,2820
367
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_lut_symmetric_inferable_quantizer.py,sha256=degWqM_rXiLorirgigGkpWKXhJUembhOBMFzMGQXbtM,4876
368
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_pytorch_inferable_quantizer.py,sha256=2Kmmafr601njD0zICBzOfmIUtdBDHDK7-06phwKBSPc,1907
369
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_symmetric_inferable_quantizer.py,sha256=Ppvihr5ahqFv7E-lzEP9yylH7CRRQTf9S-50tsOem3E,3075
370
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/base_uniform_inferable_quantizer.py,sha256=gfoVvpvZlPdEjV68YLs0RINb0fYZPx1Loahv-M0cGss,2506
371
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/constants.py,sha256=9bxo6snEJkRv5XWmhBGsV6g8LCe_1NgAE5ufIq2ewYU,1007
372
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
373
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_lut_pot_inferable_quantizer.py,sha256=MBCNIfiBSgnBhOPTv6Vu8mXgzBmycDpNJ0roTCXHnTw,4563
374
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_pot_inferable_quantizer.py,sha256=zoj54sAIyzJ1pHKdKroxTfWPEOaqQzq4Bk-XRc0L4IM,2933
375
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_symmetric_inferable_quantizer.py,sha256=jVI_Nn1IreIT1j81jqxIaTAsCue26lmYzbZMpdPJ3V4,3636
376
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/activation_inferable_quantizers/activation_uniform_inferable_quantizer.py,sha256=X-76l77Af57VSrOXnnCmLQY9FhCMoPW3cjJBEWnjVTg,4860
377
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
378
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_lut_pot_inferable_quantizer.py,sha256=cibtTfgdlaq33cZLor9DHuphmlNz9STcYSc77V-sjMQ,3977
379
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_lut_symmetric_inferable_quantizer.py,sha256=45W3lKvFlLi5U8J82HHeK6pkeVyvLSy3_vdwU7zpskU,5186
380
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_pot_inferable_quantizer.py,sha256=PJkWUiG2KusYn_OZZVkbYy1juKrl7txiLb_2Wch8KLs,3152
381
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_symmetric_inferable_quantizer.py,sha256=lwHyby6x50DuFZJkAVChrb7dlESincOGRHwHZO-z_M8,5019
382
- model_compression_toolkit/quantizers_infrastructure/inferable_infrastructure/pytorch/quantizers/weights_inferable_quantizers/weights_uniform_inferable_quantizer.py,sha256=NDQHtw-6IFIcbA8cAPx4K3RsyyF_Q1Lmw-Xxupy6b2E,5387
383
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
384
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
385
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/base_trainable_quantizer.py,sha256=u4F4BvT-SmEOw8ZtsF32hcMvs3qWgLK4mWFNP0hKMA0,7714
386
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/get_quantizer_config.py,sha256=iG7hfmJkHZshQk5_x5NieUeOpGX0P0iXhaMISr9GDRU,6377
387
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/get_quantizers.py,sha256=2kJyzVI4OllWMEXRyy9oKqtLSr7l7sI2QATgt8K2zs4,3719
388
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/quant_utils.py,sha256=zdiew1jwR7tUKm9XWlHnAPxIZsAdKqbzzC2vH02j5wA,1505
389
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/common/trainable_quantizer_config.py,sha256=My5Wz34jPOyh8z33OTpKnOobRB0cpO_Qgmtsd5lizHo,4791
390
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/keras/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
391
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/keras/base_keras_quantizer.py,sha256=1vGWP73ydXMAuLELJb4zo_ZIxrJeGfCccIiD3ylLRag,4290
392
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/keras/config_serialization.py,sha256=mAyWYG5sXuUi8freOA3NC9GvDUaOycz2kPDTnpvvNPA,4079
393
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/keras/quantizer_utils.py,sha256=MVwXNymmFRB2NXIBx4e2mdJ1RfoHxRPYRgjb1MQP5kY,1797
394
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/pytorch/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
395
- model_compression_toolkit/quantizers_infrastructure/trainable_infrastructure/pytorch/base_pytorch_quantizer.py,sha256=JXLKUihyZ9e27BlTIq2vkl2pKP1pFlcRKJT-cW1QjL8,3137
332
+ model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py,sha256=C7jsd4nU13jIf6o4t9RmZH4buPBVNCD7jHUCxbxZ_mk,9629
333
+ model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py,sha256=UjdPi30P25lpYMqKP3St9PwQwPIws7_sAyupZHhBKEY,8651
396
334
  model_compression_toolkit/target_platform_capabilities/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
397
335
  model_compression_toolkit/target_platform_capabilities/constants.py,sha256=mYUESjXeN7EPomZKgqHZE031KNOO4wmFdRB8gA4m50U,920
398
336
  model_compression_toolkit/target_platform_capabilities/immutable.py,sha256=rSPd3Xpx4Rzt6-EwDA9tXvKygrrt4xvmq01JVCXY0hQ,1723
399
- model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=g3WZ_KFM_aIqPNmXA3Szx2Orr4X_8XKBlkiB-Dg5itg,1548
337
+ model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=_LzyDupsTDiJvIsVA-L-M_fRrW8ePcul8mr60L8DW9g,1574
400
338
  model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py,sha256=5Bu5MkOYYDGzZgTu-PBQ4xVCnso1mtssc9zz1pZjl7o,2010
401
339
  model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py,sha256=NIKUE2AtRv4CFOhpwjVvfG3rLfvd6p7DYBSuK0SKo4s,2353
402
- model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py,sha256=NyKOwNCe8Z8PFKSGNae-DVqQNrfkJfgpdCl-Iw6oTTM,9107
340
+ model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py,sha256=Nh04rizl8D_qu_DvRacvmDwY9UjI53Jbcfjk1Rq6nD4,8538
403
341
  model_compression_toolkit/target_platform_capabilities/target_platform/operators.py,sha256=rRmrmPBY4rxCWVpEc6FxeOPUFh8MkfwgQsqD82U9a7w,3108
404
342
  model_compression_toolkit/target_platform_capabilities/target_platform/quantization_format.py,sha256=3UIZtGTV0WX3dbfiIMUFWID5W68vtKfiVoPWUbpQFzM,787
405
343
  model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py,sha256=dFauUrY7BejPDVX8HcSotoHKcT7S9kk65jgzZdPis2E,9206
@@ -465,8 +403,23 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/
465
403
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=u8KAytDvkXAbgqpVEKynSqag3Wrc7TAtCP9Ru9Y0hR8,8048
466
404
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py,sha256=EQ69-jzEUjSHITrX7-f3lIWsRsVt-QWPlVs03PsVxGE,6131
467
405
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py,sha256=d31s294euI4q0AH814qYiV-j8nYtQVIDR7zhhSfjRYw,5002
468
- mct_nightly-1.8.0.20052023.post401.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
469
- mct_nightly-1.8.0.20052023.post401.dist-info/METADATA,sha256=IPYX9S3ZgiSo_NhKfYgFZrsiKZqxZT3xcLHGk9r3r2E,11243
470
- mct_nightly-1.8.0.20052023.post401.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
471
- mct_nightly-1.8.0.20052023.post401.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
472
- mct_nightly-1.8.0.20052023.post401.dist-info/RECORD,,
406
+ model_compression_toolkit/trainable_infrastructure/__init__.py,sha256=O0J24JDzwdo-p9yf1oVtDnK1ZoZ1K8iPAp7WJ40bcTQ,1104
407
+ model_compression_toolkit/trainable_infrastructure/common/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
408
+ model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py,sha256=ON5X6a4p46ofXzRcXyIgOGSgO7JXG85frE9vTjOZu2o,7564
409
+ model_compression_toolkit/trainable_infrastructure/common/constants.py,sha256=HN120boJxAnEXNrLSj-o_s-VX4o6C-1ap_KZ4840sd0,875
410
+ model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py,sha256=3_CfuMjUa6ttDwersLGbMRZ6h5KHRfGC1qAPM-5yQtw,6351
411
+ model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py,sha256=fUpe1bjuhKiJRsXT1oVfpqml_bzfZo6G0uVkrB2lTEI,3558
412
+ model_compression_toolkit/trainable_infrastructure/common/quant_utils.py,sha256=zdiew1jwR7tUKm9XWlHnAPxIZsAdKqbzzC2vH02j5wA,1505
413
+ model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py,sha256=My5Wz34jPOyh8z33OTpKnOobRB0cpO_Qgmtsd5lizHo,4791
414
+ model_compression_toolkit/trainable_infrastructure/keras/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
415
+ model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py,sha256=5bme26QavYSur9iOzLc6XokWeymO50s5GEnmEs11DhE,4211
416
+ model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py,sha256=PpyM0u8fsvv5xw5Gmt-3Z1UFATX5KLJzLbsXaquuyuk,3991
417
+ model_compression_toolkit/trainable_infrastructure/keras/load_model.py,sha256=VqIkh-DHxtR1mkqncsfPUIuITR4m9S9eAWep5H-xsvc,3480
418
+ model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py,sha256=MVwXNymmFRB2NXIBx4e2mdJ1RfoHxRPYRgjb1MQP5kY,1797
419
+ model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
420
+ model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py,sha256=gmXTw94ylCZ2V3lVh16EZxHVyKqAaM0YlJlPTINiQrA,3084
421
+ mct_nightly-1.8.0.20230610.post356.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
422
+ mct_nightly-1.8.0.20230610.post356.dist-info/METADATA,sha256=uvZkxcaEieIAaD9RHVQKdF5mSCg3dC4RbJsrKDN9GSo,11394
423
+ mct_nightly-1.8.0.20230610.post356.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
424
+ mct_nightly-1.8.0.20230610.post356.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
425
+ mct_nightly-1.8.0.20230610.post356.dist-info/RECORD,,
@@ -13,19 +13,39 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
-
17
16
  from model_compression_toolkit.target_platform_capabilities import target_platform
18
17
  from model_compression_toolkit.target_platform_capabilities.tpc_models.get_target_platform_capabilities import get_target_platform_capabilities
19
18
  from model_compression_toolkit import core
20
19
  from model_compression_toolkit.logger import set_log_folder
21
20
  from model_compression_toolkit.legacy.keras_quantization_facade import keras_post_training_quantization, keras_post_training_quantization_mixed_precision
22
21
  from model_compression_toolkit.legacy.pytorch_quantization_facade import pytorch_post_training_quantization, pytorch_post_training_quantization_mixed_precision
23
- from model_compression_toolkit import quantizers_infrastructure
22
+ from model_compression_toolkit import trainable_infrastructure
24
23
  from model_compression_toolkit import ptq
25
24
  from model_compression_toolkit import qat
26
25
  from model_compression_toolkit import exporter
27
26
  from model_compression_toolkit import gptq
28
- from model_compression_toolkit.gptq import GradientPTQConfig
27
+ from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
28
+
29
29
 
30
+ # Old API (will not be accessible in future releases)
31
+ from model_compression_toolkit.core.common import network_editors as network_editor
32
+ from model_compression_toolkit.core.common.quantization import quantization_config
33
+ from model_compression_toolkit.core.common.mixed_precision import mixed_precision_quantization_config
34
+ from model_compression_toolkit.core.common.quantization.debug_config import DebugConfig
35
+ from model_compression_toolkit.core.common.quantization.quantization_config import QuantizationConfig, QuantizationErrorMethod, DEFAULTCONFIG
36
+ from model_compression_toolkit.core.common.mixed_precision.kpi_tools.kpi import KPI
37
+ from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import MixedPrecisionQuantizationConfig
38
+ from model_compression_toolkit.logger import set_log_folder
39
+ from model_compression_toolkit.core.common.data_loader import FolderImageLoader
40
+ from model_compression_toolkit.core.common.framework_info import FrameworkInfo, ChannelAxis
41
+ from model_compression_toolkit.core.common.defaultdict import DefaultDict
42
+ from model_compression_toolkit.legacy.keras_quantization_facade import keras_post_training_quantization, keras_post_training_quantization_mixed_precision
43
+ from model_compression_toolkit.legacy.pytorch_quantization_facade import pytorch_post_training_quantization, pytorch_post_training_quantization_mixed_precision
44
+ from model_compression_toolkit.core.keras.kpi_data_facade import keras_kpi_data
45
+ from model_compression_toolkit.core.pytorch.kpi_data_facade import pytorch_kpi_data
46
+ from model_compression_toolkit.gptq.common.gptq_config import GradientPTQConfig
47
+ from model_compression_toolkit.gptq.common.gptq_config import RoundingType
48
+ from model_compression_toolkit.gptq.keras.quantization_facade import get_keras_gptq_config
49
+ from model_compression_toolkit.gptq.pytorch.quantization_facade import get_pytorch_gptq_config
30
50
 
31
51
  __version__ = "1.8.0"
@@ -22,7 +22,7 @@ from typing import Dict, Any, List
22
22
 
23
23
  from model_compression_toolkit.core.common.defaultdict import DefaultDict
24
24
  from model_compression_toolkit.core.common.graph.base_node import BaseNode
25
- from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import QuantizationMethod
25
+ from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
26
26
 
27
27
 
28
28
  class ChannelAxis(Enum):
@@ -31,14 +31,22 @@ class OperationHandler:
31
31
  Class to handle conversions from graph nodes to Keras operators and retrieving them.
32
32
  """
33
33
 
34
- def __init__(self, graph: Graph):
34
+ def __init__(self, graph: Graph, wrapper: Callable = None):
35
+ """
36
+
37
+ Args:
38
+ graph: Graph to build its layers based on its nodes.
39
+ wrapper: Wrapper to use for wrapping the layers.
40
+ """
41
+
35
42
  # hold nodes after sorting them
36
43
  self.node_sort = list(topological_sort(graph))
37
44
 
38
45
  self.layer_to_node_dict = {}
39
46
 
40
47
  # hold dictionary from node to its equivalent Keras layer
41
- self.node_to_fw_op_dict = instance_builder(self.node_sort)
48
+ self.node_to_fw_op_dict = instance_builder(self.node_sort,
49
+ wrapper)
42
50
 
43
51
  def get_node_op_function(self, n: BaseNode) -> Layer:
44
52
  """
@@ -74,12 +82,7 @@ def node_builder(n: common.BaseNode) -> Layer:
74
82
  Keras layer that was built from the node.
75
83
  """
76
84
  framework_attr = copy.copy(n.framework_attr)
77
- if n.layer_class is InputLayer:
78
- # replace input node with identity, so can wrap it with QuantizationWrapper
79
- _layer_class = Layer # Identity
80
- framework_attr = {}
81
- else:
82
- _layer_class = n.layer_class
85
+ _layer_class = n.layer_class
83
86
  framework_attr[LAYER_NAME] = n.name # Overwrite framework name to identical graph node name
84
87
  node_instance = _layer_class.from_config(framework_attr) # Build layer from node's configuration.
85
88
  with tf.name_scope(n.name):
@@ -90,13 +93,15 @@ def node_builder(n: common.BaseNode) -> Layer:
90
93
  return node_instance
91
94
 
92
95
 
93
- def instance_builder(toposort: List[BaseNode]) -> Dict[BaseNode, Layer]:
96
+ def instance_builder(toposort: List[BaseNode],
97
+ wrapper: Callable = None) -> Dict[BaseNode, Layer]:
94
98
  """
95
99
  Build a dictionary of nodes to their corresponding Keras
96
100
  layers, given a list of nodes.
97
101
 
98
102
  Args:
99
103
  toposort: List of nodes sorted topological to build their layers.
104
+ wrapper: Wrapper to use for wrapping the layers.
100
105
 
101
106
  Returns:
102
107
  A dictionary of nodes to their corresponding Keras layers.
@@ -106,6 +111,8 @@ def instance_builder(toposort: List[BaseNode]) -> Dict[BaseNode, Layer]:
106
111
  for n in toposort:
107
112
  if not n.reuse: # Hold a single node in dictionary for all reused nodes from the same layer.
108
113
  keras_node = node_builder(n)
114
+ if wrapper is not None:
115
+ keras_node = wrapper(n, keras_node)
109
116
  nodes_dict.update({n: keras_node})
110
117
 
111
118
  return nodes_dict
@@ -21,7 +21,7 @@ from packaging import version
21
21
  from model_compression_toolkit.constants import INPUT_BASE_NAME
22
22
  from model_compression_toolkit.core.common.back2framework.base_model_builder import BaseModelBuilder
23
23
  from model_compression_toolkit.core.common.user_info import UserInformation
24
- from model_compression_toolkit.quantizers_infrastructure.inferable_infrastructure.keras.activation_quantization_holder import ActivationQuantizationHolder
24
+ from mct_quantizers import KerasActivationQuantizationHolder
25
25
 
26
26
  # As from Tensorflow 2.6, keras is a separate package and some classes should be imported differently.
27
27
  if version.parse(tf.__version__) < version.parse("2.6"):
@@ -113,7 +113,8 @@ class KerasModelBuilder(BaseModelBuilder):
113
113
  return_float_outputs)
114
114
 
115
115
  # Build an OperationHandler to handle conversions from graph nodes to Keras operators.
116
- self.oh = OperationHandler(self.graph)
116
+ self.oh = OperationHandler(self.graph,
117
+ wrapper=wrapper)
117
118
  self.wrapper = wrapper
118
119
  self.get_activation_quantizer_holder = get_activation_quantizer_holder_fn
119
120
 
@@ -121,7 +122,7 @@ class KerasModelBuilder(BaseModelBuilder):
121
122
  def use_activation_holder_during_model_building(self) -> bool:
122
123
  """
123
124
 
124
- Returns: Whether the model builder uses ActivationQuantizationHolder during
125
+ Returns: Whether the model builder uses KerasActivationQuantizationHolder during
125
126
  model building (by adding it as a layer when converting the graph to the Keras model)
126
127
  or not. If so - the model builder expects the activation quantizers to not be wrapped
127
128
  in KerasQuantizeWrapper that was received in its init.
@@ -172,11 +173,6 @@ class KerasModelBuilder(BaseModelBuilder):
172
173
  for
173
174
  inode in self.graph.get_inputs()}
174
175
 
175
- # Support adding Layer after input layers require us to store it in layer_to_node_dict
176
- # dict offline (unlike other layers which stored during running).
177
- for node, layer in self.oh.node_to_fw_op_dict.items():
178
- if node.type == InputLayer:
179
- self.oh.layer_to_node_dict[layer] = node
180
176
 
181
177
  # Build a list of the model's input tensors. Switching from a dictionary to a list
182
178
  # to keep the tensors input order, since inputs in Graph are ordered by their indices.
@@ -186,7 +182,8 @@ class KerasModelBuilder(BaseModelBuilder):
186
182
 
187
183
  # Build a dictionary from node to its output tensors, by applying the layers sequentially.
188
184
  for n in self.oh.node_sort:
189
- op_func = self.oh.get_node_op_function(n) # Get node operation function
185
+ op_func = self.oh.get_node_op_function(n) # Get node operation function
186
+
190
187
  input_tensors = self._build_input_tensors_list(n,
191
188
  node_to_output_tensors_dict) # Fetch Node inputs
192
189
  out_tensors_of_n, out_tensors_of_n_float = self._run_operation(n, # Run node operation and fetch outputs
@@ -223,22 +220,6 @@ class KerasModelBuilder(BaseModelBuilder):
223
220
  # Build the model.
224
221
  model = tf.keras.Model(inputs=inputs_list, outputs=model_output_tensors)
225
222
 
226
- if self.wrapper is not None:
227
- def _wrap(layer):
228
- _node = self.oh.layer_to_node_dict.get(layer)
229
- if _node is not None:
230
- return self.wrapper(_node,
231
- layer)
232
-
233
- elif is_layer_fake_quant(layer) or isinstance(layer, ActivationQuantizationHolder):
234
- return layer
235
-
236
- raise Exception( # pragma: no cover
237
- f'Mismatch between keras model and graph cant find node named: '
238
- f'{get_node_name_from_layer(layer)}')
239
-
240
- model = clone_model(model, clone_function=_wrap)
241
-
242
223
  return model, self.graph.user_info
243
224
 
244
225
  def _convert_node2name(self, in_node_to_output_tensors_dict):
@@ -295,8 +276,7 @@ class KerasModelBuilder(BaseModelBuilder):
295
276
  if len(input_tensors) == 0: # Placeholder handling
296
277
  out_tensors_of_n_float = input_nodes_to_input_tensors[n]
297
278
  out_tensors_of_n = self._run_operation_activation_quantization(n,
298
- out_tensors_of_n_float,
299
- op_func)
279
+ out_tensors_of_n_float)
300
280
  else:
301
281
  input_tensors = [tensor for tensor_list in input_tensors for tensor in tensor_list] # flat list of lists
302
282
  # Build a functional node using its args
@@ -331,24 +311,18 @@ class KerasModelBuilder(BaseModelBuilder):
331
311
 
332
312
  def _run_operation_activation_quantization(self,
333
313
  node: BaseNode,
334
- node_outputs: List[TFReference],
335
- identity_layer: Layer = None):
314
+ node_outputs: List[TFReference]):
336
315
  """
337
316
  Quantize node's activations
338
317
 
339
318
  Args:
340
319
  node: Node to quantize its activations
341
320
  node_outputs: Output tensors of the float node.
342
- identity_layer: Identity layer (should be passed only when quantizing input layers)
343
321
 
344
322
  Returns:
345
323
  Quantized node's outputs.
346
324
  """
347
325
  if self.wrapper is not None:
348
- # If identity layer was passed, use it for inference
349
- # (needed since wrapping an Input layer can not be wrapped)
350
- if identity_layer is not None:
351
- node_outputs = identity_layer(node_outputs)
352
326
 
353
327
  # In case the activation quantizer is attached out of the wrapper we use get_activation_quantizer_holder
354
328
  # for the activation quantization holder (if the node's activations are quantized)
@@ -38,12 +38,16 @@ def node_builder(n: BaseNode) -> Module:
38
38
  return node_instance
39
39
 
40
40
 
41
- def identity_wrapper(node: BaseNode, module: Module):
41
+ # todo: remove. It is not used anymore
42
+ def identity_wrapper(node: BaseNode,
43
+ module: Module,
44
+ include_activation_quantizers: bool):
42
45
  """
43
46
  A function which takes a computational graph node and a pytorch module and return an identity wrapping which return the layer itself
44
47
  Args:
45
48
  node: A node of mct graph.
46
49
  layer: A pytorch module
50
+ include_activation_quantizers: bool flag.
47
51
  Returns: pytorch module
48
52
  """
49
53
  return module