mct-nightly 1.10.0.20231128.post5436__py3-none-any.whl → 1.10.0.20231129.post414__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-1.10.0.20231128.post5436.dist-info → mct_nightly-1.10.0.20231129.post414.dist-info}/METADATA +1 -1
- {mct_nightly-1.10.0.20231128.post5436.dist-info → mct_nightly-1.10.0.20231129.post414.dist-info}/RECORD +7 -7
- model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py +1 -1
- model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py +2 -2
- {mct_nightly-1.10.0.20231128.post5436.dist-info → mct_nightly-1.10.0.20231129.post414.dist-info}/LICENSE.md +0 -0
- {mct_nightly-1.10.0.20231128.post5436.dist-info → mct_nightly-1.10.0.20231129.post414.dist-info}/WHEEL +0 -0
- {mct_nightly-1.10.0.20231128.post5436.dist-info → mct_nightly-1.10.0.20231129.post414.dist-info}/top_level.txt +0 -0
|
@@ -168,7 +168,7 @@ model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_s
|
|
|
168
168
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py,sha256=wH9ocMLL725-uUPU-zCxdd8NwT5nyd0ZShmI7iuTwF8,1462
|
|
169
169
|
model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py,sha256=rjIheZW7LbSPv9bzMSmC8wl6UUxaTkd4J2IHinObT-Y,1814
|
|
170
170
|
model_compression_toolkit/core/keras/hessian/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
|
|
171
|
-
model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py,sha256=
|
|
171
|
+
model_compression_toolkit/core/keras/hessian/activation_trace_hessian_calculator_keras.py,sha256=RL2c7JkvdK37Mgzq2CdSS_1Cg0R1cJ0Gv0Q3cRgV4H4,9642
|
|
172
172
|
model_compression_toolkit/core/keras/hessian/trace_hessian_calculator_keras.py,sha256=uwDcC6Fr0H-NKaX0NERRkF6rrnPRbxuo9PsapnuPsRo,3952
|
|
173
173
|
model_compression_toolkit/core/keras/hessian/weights_trace_hessian_calculator_keras.py,sha256=SIi7_wChifkulp6aoc-v7v4I1NrQAwvU4ymG2HI66Yk,10478
|
|
174
174
|
model_compression_toolkit/core/keras/mixed_precision/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
|
|
@@ -226,7 +226,7 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax
|
|
|
226
226
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py,sha256=WmEa8Xjji-_tIbthDxlLAGSr69nWk-YKcHNaVqLa7sg,1375
|
|
227
227
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py,sha256=tp78axmUQc0Zpj3KwVmV0PGYHvCf7sAW_sRmXXw7gsY,1616
|
|
228
228
|
model_compression_toolkit/core/pytorch/hessian/__init__.py,sha256=lNJ29DYxaLUPDstRDA1PGI5r9Fulq_hvrZMlhst1Z5g,697
|
|
229
|
-
model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py,sha256=
|
|
229
|
+
model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py,sha256=6EHwxuOdb57DEBHiYfFODCQHWlUQDArEHLaym19Ml5A,8297
|
|
230
230
|
model_compression_toolkit/core/pytorch/hessian/trace_hessian_calculator_pytorch.py,sha256=c80LiFbY06mosfZI4yjigiqDsF1ZFdRZ14Xox0kD_94,3480
|
|
231
231
|
model_compression_toolkit/core/pytorch/hessian/weights_trace_hessian_calculator_pytorch.py,sha256=4TsL-27I672758_B742Zbe-_Ro4OLp7ISxWtWD4oKD8,6899
|
|
232
232
|
model_compression_toolkit/core/pytorch/mixed_precision/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
|
@@ -447,8 +447,8 @@ model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py,sha
|
|
|
447
447
|
model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py,sha256=MVwXNymmFRB2NXIBx4e2mdJ1RfoHxRPYRgjb1MQP5kY,1797
|
|
448
448
|
model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
|
|
449
449
|
model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py,sha256=SbvRlIdE32PEBsINt1bhSqvrKL_zbM9V-aeSkOn-sw4,3083
|
|
450
|
-
mct_nightly-1.10.0.
|
|
451
|
-
mct_nightly-1.10.0.
|
|
452
|
-
mct_nightly-1.10.0.
|
|
453
|
-
mct_nightly-1.10.0.
|
|
454
|
-
mct_nightly-1.10.0.
|
|
450
|
+
mct_nightly-1.10.0.20231129.post414.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
|
451
|
+
mct_nightly-1.10.0.20231129.post414.dist-info/METADATA,sha256=BlcFLeMfxtrdsyKQxgLa5xkorVHJlwwK7qGId7PKegQ,16232
|
|
452
|
+
mct_nightly-1.10.0.20231129.post414.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
|
453
|
+
mct_nightly-1.10.0.20231129.post414.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
|
454
|
+
mct_nightly-1.10.0.20231129.post414.dist-info/RECORD,,
|
|
@@ -152,7 +152,7 @@ class ActivationTraceHessianCalculatorKeras(TraceHessianCalculatorKeras):
|
|
|
152
152
|
# Compute the final approximation for each output index
|
|
153
153
|
num_node_outputs = len(interest_point_scores[0])
|
|
154
154
|
for output_idx in range(num_node_outputs):
|
|
155
|
-
final_approx_per_output.append(
|
|
155
|
+
final_approx_per_output.append(tf.reduce_mean([x[output_idx] for x in interest_point_scores]))
|
|
156
156
|
|
|
157
157
|
# final_approx_per_output is a list of all approximations (one per output), thus we average them to
|
|
158
158
|
# get the final score of a node.
|
model_compression_toolkit/core/pytorch/hessian/activation_trace_hessian_calculator_pytorch.py
CHANGED
|
@@ -131,8 +131,8 @@ class ActivationTraceHessianCalculatorPytorch(TraceHessianCalculatorPytorch):
|
|
|
131
131
|
break
|
|
132
132
|
|
|
133
133
|
trace_hv.append(hessian_trace_approx)
|
|
134
|
-
|
|
135
|
-
|
|
134
|
+
|
|
135
|
+
ipts_hessian_trace_approx.append(torch.mean(torch.stack(trace_hv))) # Get averaged Hessian trace approximation
|
|
136
136
|
|
|
137
137
|
# If a node has multiple outputs, it means that multiple approximations were computed
|
|
138
138
|
# (one per output since granularity is per-tensor). In this case we average the approximations.
|
|
File without changes
|
|
File without changes
|
|
File without changes
|