mct-nightly 1.10.0.20231025.post409__py3-none-any.whl → 1.10.0.20231026.post415__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-1.10.0.20231025.post409.dist-info → mct_nightly-1.10.0.20231026.post415.dist-info}/METADATA +1 -1
- {mct_nightly-1.10.0.20231025.post409.dist-info → mct_nightly-1.10.0.20231026.post415.dist-info}/RECORD +9 -9
- model_compression_toolkit/constants.py +1 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +30 -22
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +31 -21
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +30 -21
- {mct_nightly-1.10.0.20231025.post409.dist-info → mct_nightly-1.10.0.20231026.post415.dist-info}/LICENSE.md +0 -0
- {mct_nightly-1.10.0.20231025.post409.dist-info → mct_nightly-1.10.0.20231026.post415.dist-info}/WHEEL +0 -0
- {mct_nightly-1.10.0.20231025.post409.dist-info → mct_nightly-1.10.0.20231026.post415.dist-info}/top_level.txt +0 -0
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
model_compression_toolkit/__init__.py,sha256=HM7kIyeSnGNpCnoO8d6S5gF186LcHffHDj4HoesmGWM,3663
|
|
2
|
-
model_compression_toolkit/constants.py,sha256=
|
|
2
|
+
model_compression_toolkit/constants.py,sha256=lhwqcgu1o-wlKAOUPwO_KfrhdgLLAkB0DKvRPGxMx0s,4001
|
|
3
3
|
model_compression_toolkit/logger.py,sha256=b9DVktZ-LymFcRxv2aL_sdiE6S2sSrFGWltx6dgEuUY,4863
|
|
4
4
|
model_compression_toolkit/core/__init__.py,sha256=qnBA6aaojI7RpEQZU2vXWiELHfVJf-MnAP-4T0tcFDY,2008
|
|
5
5
|
model_compression_toolkit/core/analyzer.py,sha256=dbsD61pakp_9JXNyAScLdtJvcXny9jr_cMbET0Bd3Sg,2975
|
|
@@ -408,15 +408,15 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/tar
|
|
|
408
408
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=F5RG4MnuAwKcNXbfVbPFLQu30-lNax-7knqu20B6udQ,1522
|
|
409
409
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py,sha256=1mMOREEMoNHu_KTMGDp4crN61opKWX6aFn1DrDLvqcc,717
|
|
410
410
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=andraAMf9fXF4THt9PCp6edtK3hcB6JfgyUfJLXpP7I,8314
|
|
411
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=
|
|
411
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=aTmLEha4ZHqq2P9gQQP68KeuPbD6Hb-nPwqG0CvDSy4,5185
|
|
412
412
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py,sha256=4liNmjx5lKxlkekqRlkJ0CPUMlsFcuktLxkIBB8lrI0,4721
|
|
413
413
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py,sha256=vFDyiMymNZSRCdTgAyWn4A-tZD3vzze_PTLBSF2OYe8,721
|
|
414
414
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=-KYKgxLgUcldGHS30UUl5fDt4ZpwoVdVAyzPmk4f4Gw,8624
|
|
415
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py,sha256=
|
|
415
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py,sha256=2LT1u7D9N8dJurQx20P-yUQNTTs195AxoPav0aLIcFk,5193
|
|
416
416
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py,sha256=CsRgw4_QapBQ7Y1_QQ-kI_RewooBwqyRsMrmlB_k-kc,4729
|
|
417
417
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py,sha256=NUuczImqUxzdfflqSdqkeAN8aCU6Tuiu6U0Fnj9Tzmw,721
|
|
418
418
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=fSCta6vdznvRcDsqCLQrRM6txK6eoye6HLGehKGZpIs,8320
|
|
419
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py,sha256=
|
|
419
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py,sha256=N1agnOoW0lRm7QjH2LRfkjOw6PhbHIHEK1ftoy8VjKM,5205
|
|
420
420
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py,sha256=yGXYpxy0C6pJK0Jmm98bFZsyBBo2-ctwyMjx9GO3Ku8,4748
|
|
421
421
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
|
422
422
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py,sha256=lnhJcwvTF0t7ybeiTleIS1p0aD8xzFZxVPx4ISk5uWQ,2090
|
|
@@ -448,8 +448,8 @@ model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py,sha
|
|
|
448
448
|
model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py,sha256=MVwXNymmFRB2NXIBx4e2mdJ1RfoHxRPYRgjb1MQP5kY,1797
|
|
449
449
|
model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
|
|
450
450
|
model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py,sha256=SbvRlIdE32PEBsINt1bhSqvrKL_zbM9V-aeSkOn-sw4,3083
|
|
451
|
-
mct_nightly-1.10.0.
|
|
452
|
-
mct_nightly-1.10.0.
|
|
453
|
-
mct_nightly-1.10.0.
|
|
454
|
-
mct_nightly-1.10.0.
|
|
455
|
-
mct_nightly-1.10.0.
|
|
451
|
+
mct_nightly-1.10.0.20231026.post415.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
|
452
|
+
mct_nightly-1.10.0.20231026.post415.dist-info/METADATA,sha256=6O8FHiHVqP6FWoxGqpXIIlnxlOFe6taM2e9yBZTqImw,16303
|
|
453
|
+
mct_nightly-1.10.0.20231026.post415.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
|
|
454
|
+
mct_nightly-1.10.0.20231026.post415.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
|
455
|
+
mct_nightly-1.10.0.20231026.post415.dist-info/RECORD,,
|
|
@@ -22,6 +22,7 @@ FOUND_TF = importlib.util.find_spec(TENSORFLOW) is not None
|
|
|
22
22
|
FOUND_TORCH = importlib.util.find_spec("torch") is not None
|
|
23
23
|
FOUND_ONNX = importlib.util.find_spec("onnx") is not None
|
|
24
24
|
FOUND_ONNXRUNTIME = importlib.util.find_spec("onnxruntime") is not None
|
|
25
|
+
FOUND_SONY_CUSTOM_LAYERS = importlib.util.find_spec('sony_custom_layers') is not None
|
|
25
26
|
|
|
26
27
|
WEIGHTS_SIGNED = True
|
|
27
28
|
# Minimal threshold to use for quantization ranges:
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py
CHANGED
|
@@ -14,7 +14,10 @@
|
|
|
14
14
|
# ==============================================================================
|
|
15
15
|
import tensorflow as tf
|
|
16
16
|
from packaging import version
|
|
17
|
+
from model_compression_toolkit.constants import FOUND_SONY_CUSTOM_LAYERS
|
|
17
18
|
|
|
19
|
+
if FOUND_SONY_CUSTOM_LAYERS:
|
|
20
|
+
from sony_custom_layers.keras.object_detection.ssd_post_process import SSDPostProcess
|
|
18
21
|
|
|
19
22
|
if version.parse(tf.__version__) >= version.parse("2.13"):
|
|
20
23
|
from keras.src.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
|
|
@@ -54,29 +57,34 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
|
54
57
|
|
|
55
58
|
keras_tpc = tp.TargetPlatformCapabilities(tp_model, name=name, version=TPC_VERSION)
|
|
56
59
|
|
|
60
|
+
no_quant_list = [Reshape,
|
|
61
|
+
tf.reshape,
|
|
62
|
+
Permute,
|
|
63
|
+
tf.transpose,
|
|
64
|
+
Flatten,
|
|
65
|
+
Cropping2D,
|
|
66
|
+
ZeroPadding2D,
|
|
67
|
+
Dropout,
|
|
68
|
+
MaxPooling2D,
|
|
69
|
+
tf.split,
|
|
70
|
+
tf.quantization.fake_quant_with_min_max_vars,
|
|
71
|
+
tf.math.argmax,
|
|
72
|
+
tf.shape,
|
|
73
|
+
tf.math.equal,
|
|
74
|
+
tf.gather,
|
|
75
|
+
tf.cast,
|
|
76
|
+
tf.unstack,
|
|
77
|
+
tf.compat.v1.gather,
|
|
78
|
+
tf.nn.top_k,
|
|
79
|
+
tf.__operators__.getitem,
|
|
80
|
+
tf.image.combined_non_max_suppression,
|
|
81
|
+
tf.compat.v1.shape]
|
|
82
|
+
|
|
83
|
+
if FOUND_SONY_CUSTOM_LAYERS:
|
|
84
|
+
no_quant_list.append(SSDPostProcess)
|
|
85
|
+
|
|
57
86
|
with keras_tpc:
|
|
58
|
-
tp.OperationsSetToLayers("NoQuantization",
|
|
59
|
-
tf.reshape,
|
|
60
|
-
Permute,
|
|
61
|
-
tf.transpose,
|
|
62
|
-
Flatten,
|
|
63
|
-
Cropping2D,
|
|
64
|
-
ZeroPadding2D,
|
|
65
|
-
Dropout,
|
|
66
|
-
MaxPooling2D,
|
|
67
|
-
tf.split,
|
|
68
|
-
tf.quantization.fake_quant_with_min_max_vars,
|
|
69
|
-
tf.math.argmax,
|
|
70
|
-
tf.shape,
|
|
71
|
-
tf.math.equal,
|
|
72
|
-
tf.gather,
|
|
73
|
-
tf.cast,
|
|
74
|
-
tf.unstack,
|
|
75
|
-
tf.compat.v1.gather,
|
|
76
|
-
tf.nn.top_k,
|
|
77
|
-
tf.__operators__.getitem,
|
|
78
|
-
tf.image.combined_non_max_suppression,
|
|
79
|
-
tf.compat.v1.shape])
|
|
87
|
+
tp.OperationsSetToLayers("NoQuantization", no_quant_list)
|
|
80
88
|
|
|
81
89
|
tp.OperationsSetToLayers("Conv", [Conv2D,
|
|
82
90
|
DepthwiseConv2D,
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py
CHANGED
|
@@ -14,6 +14,10 @@
|
|
|
14
14
|
# ==============================================================================
|
|
15
15
|
import tensorflow as tf
|
|
16
16
|
from packaging import version
|
|
17
|
+
from model_compression_toolkit.constants import FOUND_SONY_CUSTOM_LAYERS
|
|
18
|
+
|
|
19
|
+
if FOUND_SONY_CUSTOM_LAYERS:
|
|
20
|
+
from sony_custom_layers.keras.object_detection.ssd_post_process import SSDPostProcess
|
|
17
21
|
|
|
18
22
|
if version.parse(tf.__version__) >= version.parse("2.13"):
|
|
19
23
|
from keras.src.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
|
|
@@ -53,28 +57,34 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
|
53
57
|
|
|
54
58
|
keras_tpc = tp.TargetPlatformCapabilities(tp_model, name=name, version=TPC_VERSION)
|
|
55
59
|
|
|
60
|
+
no_quant_list = [Reshape,
|
|
61
|
+
tf.reshape,
|
|
62
|
+
Permute,
|
|
63
|
+
tf.transpose,
|
|
64
|
+
Flatten,
|
|
65
|
+
Cropping2D,
|
|
66
|
+
ZeroPadding2D,
|
|
67
|
+
Dropout,
|
|
68
|
+
MaxPooling2D,
|
|
69
|
+
tf.split,
|
|
70
|
+
tf.quantization.fake_quant_with_min_max_vars,
|
|
71
|
+
tf.math.argmax,
|
|
72
|
+
tf.shape,
|
|
73
|
+
tf.math.equal,
|
|
74
|
+
tf.gather,
|
|
75
|
+
tf.cast,
|
|
76
|
+
tf.unstack,
|
|
77
|
+
tf.compat.v1.gather,
|
|
78
|
+
tf.nn.top_k,
|
|
79
|
+
tf.__operators__.getitem,
|
|
80
|
+
tf.image.combined_non_max_suppression,
|
|
81
|
+
tf.compat.v1.shape]
|
|
82
|
+
|
|
83
|
+
if FOUND_SONY_CUSTOM_LAYERS:
|
|
84
|
+
no_quant_list.append(SSDPostProcess)
|
|
85
|
+
|
|
56
86
|
with keras_tpc:
|
|
57
|
-
tp.OperationsSetToLayers("NoQuantization",
|
|
58
|
-
tf.reshape,
|
|
59
|
-
Permute,
|
|
60
|
-
tf.transpose,
|
|
61
|
-
Flatten,
|
|
62
|
-
Cropping2D,
|
|
63
|
-
ZeroPadding2D,
|
|
64
|
-
Dropout,
|
|
65
|
-
MaxPooling2D,
|
|
66
|
-
tf.split,
|
|
67
|
-
tf.quantization.fake_quant_with_min_max_vars,
|
|
68
|
-
tf.math.argmax,
|
|
69
|
-
tf.shape,
|
|
70
|
-
tf.math.equal,
|
|
71
|
-
tf.gather,
|
|
72
|
-
tf.cast,
|
|
73
|
-
tf.unstack,
|
|
74
|
-
tf.compat.v1.gather,
|
|
75
|
-
tf.nn.top_k,
|
|
76
|
-
tf.__operators__.getitem,
|
|
77
|
-
tf.compat.v1.shape])
|
|
87
|
+
tp.OperationsSetToLayers("NoQuantization", no_quant_list)
|
|
78
88
|
|
|
79
89
|
tp.OperationsSetToLayers("Conv", [Conv2D,
|
|
80
90
|
DepthwiseConv2D,
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py
CHANGED
|
@@ -14,7 +14,10 @@
|
|
|
14
14
|
# ==============================================================================
|
|
15
15
|
import tensorflow as tf
|
|
16
16
|
from packaging import version
|
|
17
|
+
from model_compression_toolkit.constants import FOUND_SONY_CUSTOM_LAYERS
|
|
17
18
|
|
|
19
|
+
if FOUND_SONY_CUSTOM_LAYERS:
|
|
20
|
+
from sony_custom_layers.keras.object_detection.ssd_post_process import SSDPostProcess
|
|
18
21
|
|
|
19
22
|
if version.parse(tf.__version__) >= version.parse("2.13"):
|
|
20
23
|
from keras.src.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
|
|
@@ -54,28 +57,34 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
|
54
57
|
|
|
55
58
|
keras_tpc = tp.TargetPlatformCapabilities(tp_model, name=name, version=TPC_VERSION)
|
|
56
59
|
|
|
60
|
+
no_quant_list = [Reshape,
|
|
61
|
+
tf.reshape,
|
|
62
|
+
Permute,
|
|
63
|
+
tf.transpose,
|
|
64
|
+
Flatten,
|
|
65
|
+
Cropping2D,
|
|
66
|
+
ZeroPadding2D,
|
|
67
|
+
Dropout,
|
|
68
|
+
MaxPooling2D,
|
|
69
|
+
tf.split,
|
|
70
|
+
tf.quantization.fake_quant_with_min_max_vars,
|
|
71
|
+
tf.math.argmax,
|
|
72
|
+
tf.shape,
|
|
73
|
+
tf.math.equal,
|
|
74
|
+
tf.gather,
|
|
75
|
+
tf.cast,
|
|
76
|
+
tf.unstack,
|
|
77
|
+
tf.compat.v1.gather,
|
|
78
|
+
tf.nn.top_k,
|
|
79
|
+
tf.__operators__.getitem,
|
|
80
|
+
tf.image.combined_non_max_suppression,
|
|
81
|
+
tf.compat.v1.shape]
|
|
82
|
+
|
|
83
|
+
if FOUND_SONY_CUSTOM_LAYERS:
|
|
84
|
+
no_quant_list.append(SSDPostProcess)
|
|
85
|
+
|
|
57
86
|
with keras_tpc:
|
|
58
|
-
tp.OperationsSetToLayers("NoQuantization",
|
|
59
|
-
tf.reshape,
|
|
60
|
-
Permute,
|
|
61
|
-
tf.transpose,
|
|
62
|
-
Flatten,
|
|
63
|
-
Cropping2D,
|
|
64
|
-
ZeroPadding2D,
|
|
65
|
-
Dropout,
|
|
66
|
-
MaxPooling2D,
|
|
67
|
-
tf.split,
|
|
68
|
-
tf.quantization.fake_quant_with_min_max_vars,
|
|
69
|
-
tf.math.argmax,
|
|
70
|
-
tf.shape,
|
|
71
|
-
tf.math.equal,
|
|
72
|
-
tf.gather,
|
|
73
|
-
tf.cast,
|
|
74
|
-
tf.unstack,
|
|
75
|
-
tf.compat.v1.gather,
|
|
76
|
-
tf.nn.top_k,
|
|
77
|
-
tf.__operators__.getitem,
|
|
78
|
-
tf.compat.v1.shape])
|
|
87
|
+
tp.OperationsSetToLayers("NoQuantization", no_quant_list)
|
|
79
88
|
|
|
80
89
|
tp.OperationsSetToLayers("Conv", [Conv2D,
|
|
81
90
|
DepthwiseConv2D,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|