mct-nightly 1.10.0.20231003.post413__py3-none-any.whl → 1.10.0.20231004.post404__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 1.10.0.20231003.post413
3
+ Version: 1.10.0.20231004.post404
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -53,7 +53,7 @@ model_compression_toolkit/core/common/matchers/function.py,sha256=kMwcinxn_PInve
53
53
  model_compression_toolkit/core/common/matchers/node_matcher.py,sha256=63cMwa5YbQ5LKZy8-KFmdchVc3N7mpDJ6fNDt_uAQsk,2745
54
54
  model_compression_toolkit/core/common/matchers/walk_matcher.py,sha256=xqfLKk6xZt72hSnND_HoX5ESOooNMypb5VOZkVsJ_nw,1111
55
55
  model_compression_toolkit/core/common/mixed_precision/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
56
- model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py,sha256=u8sbqlnTnMHZ4Oox1iLpqylAgqiaawHsew0Hw-9Upb8,6704
56
+ model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py,sha256=_qwE1RlvDx4eGUfxpFHfM1Jo1pA6gSUUrswdgfs6YU8,6774
57
57
  model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py,sha256=LLDguK7afsbN742ucLpmJr5TUfTyFpK1vbf2bpVr1v0,882
58
58
  model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py,sha256=kmyBcqGh3qYqo42gIZzouQEljTNpF9apQt6cXEVkTQ0,3871
59
59
  model_compression_toolkit/core/common/mixed_precision/distance_weighting.py,sha256=x0cweemRG3_7FlvAbxFK5Zi77qpoKAGqtGndY8MtgwM,2222
@@ -429,8 +429,8 @@ model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py,sha
429
429
  model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py,sha256=MVwXNymmFRB2NXIBx4e2mdJ1RfoHxRPYRgjb1MQP5kY,1797
430
430
  model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
431
431
  model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py,sha256=SbvRlIdE32PEBsINt1bhSqvrKL_zbM9V-aeSkOn-sw4,3083
432
- mct_nightly-1.10.0.20231003.post413.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
433
- mct_nightly-1.10.0.20231003.post413.dist-info/METADATA,sha256=Y-NOoU-MuXsulUP9qZsxw5fMm4MbQXChsjjG8wowfzo,16303
434
- mct_nightly-1.10.0.20231003.post413.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
435
- mct_nightly-1.10.0.20231003.post413.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
436
- mct_nightly-1.10.0.20231003.post413.dist-info/RECORD,,
432
+ mct_nightly-1.10.0.20231004.post404.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
433
+ mct_nightly-1.10.0.20231004.post404.dist-info/METADATA,sha256=6imuKBIiVkvsgOisTy671wf6-OChPZOr7D8ai_J2sVo,16303
434
+ mct_nightly-1.10.0.20231004.post404.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
435
+ mct_nightly-1.10.0.20231004.post404.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
436
+ mct_nightly-1.10.0.20231004.post404.dist-info/RECORD,,
@@ -50,20 +50,21 @@ def set_bit_widths(mixed_precision_enable: bool,
50
50
  _set_node_final_qc(bit_widths_config,
51
51
  node,
52
52
  node_index_in_graph)
53
- elif node.is_activation_quantization_enabled():
54
- # If we are here, this means that we are in weights-only mixed-precision
55
- # (i.e., activations are quantized with fixed bitwidth or not quantized)
56
- # and that this node doesn't have weights to quantize
57
- assert len(node.candidates_quantization_cfg) > 0, \
58
- "Node need to have at least one quantization configuration in order to quantize its activation"
59
- node.final_activation_quantization_cfg = copy.deepcopy(node.candidates_quantization_cfg[0].activation_quantization_cfg)
60
- elif node.is_weights_quantization_enabled():
61
- # If we are here, this means that we are in activation-only mixed-precision
62
- # (i.e., weights are quantized with fixed bitwidth or not quantized)
63
- # and that this node doesn't have activations to quantize
64
- assert len(node.candidates_quantization_cfg) > 0, \
65
- "Node need to have at least one quantization configuration in order to quantize its activation"
66
- node.final_weights_quantization_cfg = copy.deepcopy(node.candidates_quantization_cfg[0].weights_quantization_cfg)
53
+ else:
54
+ if node.is_activation_quantization_enabled():
55
+ # If we are here, this means that we are in weights-only mixed-precision
56
+ # (i.e., activations are quantized with fixed bitwidth or not quantized)
57
+ # and that this node doesn't have weights to quantize
58
+ assert len(node.candidates_quantization_cfg) > 0, \
59
+ "Node need to have at least one quantization configuration in order to quantize its activation"
60
+ node.final_activation_quantization_cfg = copy.deepcopy(node.candidates_quantization_cfg[0].activation_quantization_cfg)
61
+ if node.is_weights_quantization_enabled():
62
+ # If we are here, this means that we are in activation-only mixed-precision
63
+ # (i.e., weights are quantized with fixed bitwidth or not quantized)
64
+ # and that this node doesn't have activations to quantize
65
+ assert len(node.candidates_quantization_cfg) > 0, \
66
+ "Node need to have at least one quantization configuration in order to quantize its activation"
67
+ node.final_weights_quantization_cfg = copy.deepcopy(node.candidates_quantization_cfg[0].weights_quantization_cfg)
67
68
 
68
69
  # When working in non-mixed-precision mode, there's only one bitwidth, and we simply set the
69
70
  # only candidate of the node as its final weight and activation quantization configuration.