mcpbr 0.4.16__py3-none-any.whl → 0.6.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mcpbr/__init__.py +20 -1
- mcpbr/config.py +37 -1
- mcpbr/config_migration.py +470 -0
- mcpbr/config_wizard.py +647 -0
- mcpbr/dashboard.py +619 -0
- mcpbr/dataset_streaming.py +491 -0
- mcpbr/docker_cache.py +539 -0
- mcpbr/docker_env.py +2 -1
- mcpbr/docker_prewarm.py +370 -0
- mcpbr/dry_run.py +533 -0
- mcpbr/formatting.py +444 -0
- mcpbr/gpu_support.py +2 -1
- mcpbr/graceful_degradation.py +277 -0
- mcpbr/harness.py +38 -4
- mcpbr/languages.py +228 -0
- mcpbr/logging_config.py +207 -0
- mcpbr/models.py +66 -0
- mcpbr/preflight.py +2 -1
- mcpbr/pricing.py +72 -0
- mcpbr/providers.py +316 -3
- mcpbr/resource_limits.py +487 -0
- mcpbr/result_streaming.py +519 -0
- mcpbr/sdk.py +264 -0
- mcpbr/smoke_test.py +2 -1
- mcpbr/task_batching.py +403 -0
- mcpbr/task_scheduler.py +468 -0
- {mcpbr-0.4.16.dist-info → mcpbr-0.6.0.dist-info}/METADATA +8 -1
- {mcpbr-0.4.16.dist-info → mcpbr-0.6.0.dist-info}/RECORD +38 -22
- {mcpbr-0.4.16.data → mcpbr-0.6.0.data}/data/mcpbr/data/templates/brave-search.yaml +0 -0
- {mcpbr-0.4.16.data → mcpbr-0.6.0.data}/data/mcpbr/data/templates/filesystem.yaml +0 -0
- {mcpbr-0.4.16.data → mcpbr-0.6.0.data}/data/mcpbr/data/templates/github.yaml +0 -0
- {mcpbr-0.4.16.data → mcpbr-0.6.0.data}/data/mcpbr/data/templates/google-maps.yaml +0 -0
- {mcpbr-0.4.16.data → mcpbr-0.6.0.data}/data/mcpbr/data/templates/postgres.yaml +0 -0
- {mcpbr-0.4.16.data → mcpbr-0.6.0.data}/data/mcpbr/data/templates/slack.yaml +0 -0
- {mcpbr-0.4.16.data → mcpbr-0.6.0.data}/data/mcpbr/data/templates/sqlite.yaml +0 -0
- {mcpbr-0.4.16.dist-info → mcpbr-0.6.0.dist-info}/WHEEL +0 -0
- {mcpbr-0.4.16.dist-info → mcpbr-0.6.0.dist-info}/entry_points.txt +0 -0
- {mcpbr-0.4.16.dist-info → mcpbr-0.6.0.dist-info}/licenses/LICENSE +0 -0
mcpbr/providers.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
|
1
1
|
"""Model provider abstractions for different LLM APIs."""
|
|
2
2
|
|
|
3
|
+
import json
|
|
3
4
|
import os
|
|
5
|
+
import uuid
|
|
4
6
|
from dataclasses import dataclass, field
|
|
5
7
|
from typing import Any, Protocol, runtime_checkable
|
|
6
8
|
|
|
@@ -142,8 +144,6 @@ class AnthropicProvider:
|
|
|
142
144
|
if block.type == "text":
|
|
143
145
|
content_text = block.text
|
|
144
146
|
elif block.type == "tool_use":
|
|
145
|
-
import json
|
|
146
|
-
|
|
147
147
|
tool_calls.append(
|
|
148
148
|
ToolCall(
|
|
149
149
|
id=block.id,
|
|
@@ -170,8 +170,321 @@ class AnthropicProvider:
|
|
|
170
170
|
)
|
|
171
171
|
|
|
172
172
|
|
|
173
|
+
class OpenAIProvider:
|
|
174
|
+
"""Provider for OpenAI API (GPT models)."""
|
|
175
|
+
|
|
176
|
+
def __init__(
|
|
177
|
+
self,
|
|
178
|
+
model: str,
|
|
179
|
+
api_key: str | None = None,
|
|
180
|
+
) -> None:
|
|
181
|
+
"""Initialize OpenAI provider.
|
|
182
|
+
|
|
183
|
+
Args:
|
|
184
|
+
model: OpenAI model ID (e.g., 'gpt-4o', 'gpt-4-turbo').
|
|
185
|
+
api_key: API key. If None, uses OPENAI_API_KEY env var.
|
|
186
|
+
"""
|
|
187
|
+
self._model = model
|
|
188
|
+
self._api_key = api_key or os.environ.get("OPENAI_API_KEY")
|
|
189
|
+
if not self._api_key:
|
|
190
|
+
raise ValueError(
|
|
191
|
+
"OpenAI API key required. Set OPENAI_API_KEY environment variable "
|
|
192
|
+
"or pass api_key parameter."
|
|
193
|
+
)
|
|
194
|
+
import openai
|
|
195
|
+
|
|
196
|
+
self._client = openai.OpenAI(api_key=self._api_key)
|
|
197
|
+
|
|
198
|
+
@property
|
|
199
|
+
def model(self) -> str:
|
|
200
|
+
return self._model
|
|
201
|
+
|
|
202
|
+
def get_tool_format(self) -> str:
|
|
203
|
+
return "openai"
|
|
204
|
+
|
|
205
|
+
def chat(
|
|
206
|
+
self,
|
|
207
|
+
messages: list[dict[str, Any]],
|
|
208
|
+
tools: list[dict[str, Any]] | None = None,
|
|
209
|
+
max_tokens: int = 4096,
|
|
210
|
+
) -> ChatResponse:
|
|
211
|
+
kwargs: dict[str, Any] = {
|
|
212
|
+
"model": self._model,
|
|
213
|
+
"messages": messages,
|
|
214
|
+
"max_tokens": max_tokens,
|
|
215
|
+
}
|
|
216
|
+
if tools:
|
|
217
|
+
kwargs["tools"] = tools
|
|
218
|
+
|
|
219
|
+
response = self._client.chat.completions.create(**kwargs)
|
|
220
|
+
|
|
221
|
+
if not response.choices:
|
|
222
|
+
raise RuntimeError("OpenAI API returned empty response choices")
|
|
223
|
+
|
|
224
|
+
choice = response.choices[0]
|
|
225
|
+
tool_calls = []
|
|
226
|
+
if choice.message.tool_calls:
|
|
227
|
+
for tc in choice.message.tool_calls:
|
|
228
|
+
tool_calls.append(
|
|
229
|
+
ToolCall(
|
|
230
|
+
id=tc.id,
|
|
231
|
+
name=tc.function.name,
|
|
232
|
+
arguments=tc.function.arguments,
|
|
233
|
+
)
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
return ChatResponse(
|
|
237
|
+
message=ChatMessage(
|
|
238
|
+
role="assistant",
|
|
239
|
+
content=choice.message.content,
|
|
240
|
+
tool_calls=tool_calls,
|
|
241
|
+
),
|
|
242
|
+
finish_reason=choice.finish_reason,
|
|
243
|
+
input_tokens=response.usage.prompt_tokens,
|
|
244
|
+
output_tokens=response.usage.completion_tokens,
|
|
245
|
+
)
|
|
246
|
+
|
|
247
|
+
|
|
248
|
+
class GeminiProvider:
|
|
249
|
+
"""Provider for Google Gemini API."""
|
|
250
|
+
|
|
251
|
+
def __init__(
|
|
252
|
+
self,
|
|
253
|
+
model: str,
|
|
254
|
+
api_key: str | None = None,
|
|
255
|
+
) -> None:
|
|
256
|
+
"""Initialize Gemini provider.
|
|
257
|
+
|
|
258
|
+
Args:
|
|
259
|
+
model: Gemini model ID (e.g., 'gemini-2.0-flash', 'gemini-1.5-pro').
|
|
260
|
+
api_key: API key. If None, uses GOOGLE_API_KEY env var.
|
|
261
|
+
"""
|
|
262
|
+
self._model = model
|
|
263
|
+
self._api_key = api_key or os.environ.get("GOOGLE_API_KEY")
|
|
264
|
+
if not self._api_key:
|
|
265
|
+
raise ValueError(
|
|
266
|
+
"Google API key required. Set GOOGLE_API_KEY environment variable "
|
|
267
|
+
"or pass api_key parameter."
|
|
268
|
+
)
|
|
269
|
+
import google.generativeai as genai
|
|
270
|
+
|
|
271
|
+
genai.configure(api_key=self._api_key)
|
|
272
|
+
self._genai = genai
|
|
273
|
+
self._client = genai.GenerativeModel(model)
|
|
274
|
+
|
|
275
|
+
@property
|
|
276
|
+
def model(self) -> str:
|
|
277
|
+
return self._model
|
|
278
|
+
|
|
279
|
+
def get_tool_format(self) -> str:
|
|
280
|
+
return "openai"
|
|
281
|
+
|
|
282
|
+
def _convert_messages(
|
|
283
|
+
self, messages: list[dict[str, Any]]
|
|
284
|
+
) -> tuple[list[dict[str, Any]], str | None]:
|
|
285
|
+
"""Convert OpenAI-style messages to Gemini content format.
|
|
286
|
+
|
|
287
|
+
Extracts system messages to use as system_instruction (Gemini's native
|
|
288
|
+
system prompt support), and converts the remaining messages.
|
|
289
|
+
|
|
290
|
+
Args:
|
|
291
|
+
messages: List of OpenAI-style message dicts.
|
|
292
|
+
|
|
293
|
+
Returns:
|
|
294
|
+
Tuple of (contents, system_instruction). system_instruction is None
|
|
295
|
+
if no system message was found.
|
|
296
|
+
"""
|
|
297
|
+
contents: list[dict[str, Any]] = []
|
|
298
|
+
system_instruction: str | None = None
|
|
299
|
+
for msg in messages:
|
|
300
|
+
role = msg.get("role", "user")
|
|
301
|
+
if role == "system":
|
|
302
|
+
system_instruction = msg.get("content", "")
|
|
303
|
+
elif role == "assistant":
|
|
304
|
+
contents.append({"role": "model", "parts": [msg.get("content", "")]})
|
|
305
|
+
else:
|
|
306
|
+
contents.append({"role": role, "parts": [msg.get("content", "")]})
|
|
307
|
+
return contents, system_instruction
|
|
308
|
+
|
|
309
|
+
def _convert_tools(self, tools: list[dict[str, Any]] | None) -> list[Any] | None:
|
|
310
|
+
"""Convert OpenAI-style tool definitions to Gemini function declarations.
|
|
311
|
+
|
|
312
|
+
Args:
|
|
313
|
+
tools: List of OpenAI-style tool dicts.
|
|
314
|
+
|
|
315
|
+
Returns:
|
|
316
|
+
List of Gemini Tool objects, or None.
|
|
317
|
+
"""
|
|
318
|
+
if not tools:
|
|
319
|
+
return None
|
|
320
|
+
|
|
321
|
+
function_declarations = []
|
|
322
|
+
for tool in tools:
|
|
323
|
+
func = tool.get("function", {})
|
|
324
|
+
function_declarations.append(
|
|
325
|
+
self._genai.protos.FunctionDeclaration(
|
|
326
|
+
name=func.get("name", ""),
|
|
327
|
+
description=func.get("description", ""),
|
|
328
|
+
parameters=func.get("parameters"),
|
|
329
|
+
)
|
|
330
|
+
)
|
|
331
|
+
return [self._genai.protos.Tool(function_declarations=function_declarations)]
|
|
332
|
+
|
|
333
|
+
def chat(
|
|
334
|
+
self,
|
|
335
|
+
messages: list[dict[str, Any]],
|
|
336
|
+
tools: list[dict[str, Any]] | None = None,
|
|
337
|
+
max_tokens: int = 4096,
|
|
338
|
+
) -> ChatResponse:
|
|
339
|
+
contents, system_instruction = self._convert_messages(messages)
|
|
340
|
+
gemini_tools = self._convert_tools(tools)
|
|
341
|
+
|
|
342
|
+
kwargs: dict[str, Any] = {
|
|
343
|
+
"contents": contents,
|
|
344
|
+
"generation_config": {"max_output_tokens": max_tokens},
|
|
345
|
+
}
|
|
346
|
+
if gemini_tools:
|
|
347
|
+
kwargs["tools"] = gemini_tools
|
|
348
|
+
if system_instruction:
|
|
349
|
+
kwargs["system_instruction"] = system_instruction
|
|
350
|
+
|
|
351
|
+
response = self._client.generate_content(**kwargs)
|
|
352
|
+
|
|
353
|
+
if not response.candidates:
|
|
354
|
+
raise RuntimeError("Gemini API returned empty candidates")
|
|
355
|
+
|
|
356
|
+
content_text = ""
|
|
357
|
+
tool_calls = []
|
|
358
|
+
candidate = response.candidates[0]
|
|
359
|
+
|
|
360
|
+
for part in candidate.content.parts:
|
|
361
|
+
if part.function_call and part.function_call.name:
|
|
362
|
+
args_dict = dict(part.function_call.args) if part.function_call.args else {}
|
|
363
|
+
tool_calls.append(
|
|
364
|
+
ToolCall(
|
|
365
|
+
id=f"call_{uuid.uuid4().hex[:24]}",
|
|
366
|
+
name=part.function_call.name,
|
|
367
|
+
arguments=json.dumps(args_dict),
|
|
368
|
+
)
|
|
369
|
+
)
|
|
370
|
+
elif part.text:
|
|
371
|
+
content_text = part.text
|
|
372
|
+
|
|
373
|
+
finish_reason = "stop"
|
|
374
|
+
if tool_calls:
|
|
375
|
+
finish_reason = "tool_calls"
|
|
376
|
+
elif hasattr(candidate.finish_reason, "name"):
|
|
377
|
+
reason_name = candidate.finish_reason.name
|
|
378
|
+
if reason_name == "STOP":
|
|
379
|
+
finish_reason = "stop"
|
|
380
|
+
elif reason_name == "MAX_TOKENS":
|
|
381
|
+
finish_reason = "length"
|
|
382
|
+
|
|
383
|
+
return ChatResponse(
|
|
384
|
+
message=ChatMessage(
|
|
385
|
+
role="assistant",
|
|
386
|
+
content=content_text if content_text else None,
|
|
387
|
+
tool_calls=tool_calls,
|
|
388
|
+
),
|
|
389
|
+
finish_reason=finish_reason,
|
|
390
|
+
input_tokens=getattr(response.usage_metadata, "prompt_token_count", 0)
|
|
391
|
+
if response.usage_metadata
|
|
392
|
+
else 0,
|
|
393
|
+
output_tokens=getattr(response.usage_metadata, "candidates_token_count", 0)
|
|
394
|
+
if response.usage_metadata
|
|
395
|
+
else 0,
|
|
396
|
+
)
|
|
397
|
+
|
|
398
|
+
|
|
399
|
+
class QwenProvider:
|
|
400
|
+
"""Provider for Alibaba Qwen API (OpenAI-compatible via DashScope).
|
|
401
|
+
|
|
402
|
+
Qwen models are accessed through the DashScope international API endpoint
|
|
403
|
+
which provides an OpenAI-compatible interface.
|
|
404
|
+
"""
|
|
405
|
+
|
|
406
|
+
DASHSCOPE_BASE_URL = "https://dashscope-intl.aliyuncs.com/compatible-mode/v1"
|
|
407
|
+
|
|
408
|
+
def __init__(
|
|
409
|
+
self,
|
|
410
|
+
model: str,
|
|
411
|
+
api_key: str | None = None,
|
|
412
|
+
) -> None:
|
|
413
|
+
"""Initialize Qwen provider.
|
|
414
|
+
|
|
415
|
+
Args:
|
|
416
|
+
model: Qwen model ID (e.g., 'qwen-plus', 'qwen-turbo', 'qwen-max').
|
|
417
|
+
api_key: API key. If None, uses DASHSCOPE_API_KEY env var.
|
|
418
|
+
"""
|
|
419
|
+
self._model = model
|
|
420
|
+
self._api_key = api_key or os.environ.get("DASHSCOPE_API_KEY")
|
|
421
|
+
if not self._api_key:
|
|
422
|
+
raise ValueError(
|
|
423
|
+
"DashScope API key required. Set DASHSCOPE_API_KEY environment variable "
|
|
424
|
+
"or pass api_key parameter."
|
|
425
|
+
)
|
|
426
|
+
import openai
|
|
427
|
+
|
|
428
|
+
self._client = openai.OpenAI(
|
|
429
|
+
api_key=self._api_key,
|
|
430
|
+
base_url=self.DASHSCOPE_BASE_URL,
|
|
431
|
+
)
|
|
432
|
+
|
|
433
|
+
@property
|
|
434
|
+
def model(self) -> str:
|
|
435
|
+
return self._model
|
|
436
|
+
|
|
437
|
+
def get_tool_format(self) -> str:
|
|
438
|
+
return "openai"
|
|
439
|
+
|
|
440
|
+
def chat(
|
|
441
|
+
self,
|
|
442
|
+
messages: list[dict[str, Any]],
|
|
443
|
+
tools: list[dict[str, Any]] | None = None,
|
|
444
|
+
max_tokens: int = 4096,
|
|
445
|
+
) -> ChatResponse:
|
|
446
|
+
kwargs: dict[str, Any] = {
|
|
447
|
+
"model": self._model,
|
|
448
|
+
"messages": messages,
|
|
449
|
+
"max_tokens": max_tokens,
|
|
450
|
+
}
|
|
451
|
+
if tools:
|
|
452
|
+
kwargs["tools"] = tools
|
|
453
|
+
|
|
454
|
+
response = self._client.chat.completions.create(**kwargs)
|
|
455
|
+
|
|
456
|
+
if not response.choices:
|
|
457
|
+
raise RuntimeError("Qwen API returned empty response choices")
|
|
458
|
+
|
|
459
|
+
choice = response.choices[0]
|
|
460
|
+
tool_calls = []
|
|
461
|
+
if choice.message.tool_calls:
|
|
462
|
+
for tc in choice.message.tool_calls:
|
|
463
|
+
tool_calls.append(
|
|
464
|
+
ToolCall(
|
|
465
|
+
id=tc.id,
|
|
466
|
+
name=tc.function.name,
|
|
467
|
+
arguments=tc.function.arguments,
|
|
468
|
+
)
|
|
469
|
+
)
|
|
470
|
+
|
|
471
|
+
return ChatResponse(
|
|
472
|
+
message=ChatMessage(
|
|
473
|
+
role="assistant",
|
|
474
|
+
content=choice.message.content,
|
|
475
|
+
tool_calls=tool_calls,
|
|
476
|
+
),
|
|
477
|
+
finish_reason=choice.finish_reason,
|
|
478
|
+
input_tokens=response.usage.prompt_tokens,
|
|
479
|
+
output_tokens=response.usage.completion_tokens,
|
|
480
|
+
)
|
|
481
|
+
|
|
482
|
+
|
|
173
483
|
PROVIDER_REGISTRY: dict[str, type] = {
|
|
174
484
|
"anthropic": AnthropicProvider,
|
|
485
|
+
"openai": OpenAIProvider,
|
|
486
|
+
"gemini": GeminiProvider,
|
|
487
|
+
"qwen": QwenProvider,
|
|
175
488
|
}
|
|
176
489
|
|
|
177
490
|
|
|
@@ -183,7 +496,7 @@ def create_provider(
|
|
|
183
496
|
"""Factory function to create a model provider.
|
|
184
497
|
|
|
185
498
|
Args:
|
|
186
|
-
provider_name: Name of the provider (
|
|
499
|
+
provider_name: Name of the provider ('anthropic', 'openai', 'gemini', 'qwen').
|
|
187
500
|
model: Model identifier for the provider.
|
|
188
501
|
api_key: Optional API key.
|
|
189
502
|
|