mcli-framework 7.8.3__py3-none-any.whl → 7.8.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mcli-framework might be problematic. Click here for more details.

Files changed (81) hide show
  1. mcli/__init__.py +160 -0
  2. mcli/__main__.py +14 -0
  3. mcli/app/__init__.py +23 -0
  4. mcli/app/commands_cmd.py +942 -199
  5. mcli/app/main.py +5 -21
  6. mcli/app/model/__init__.py +0 -0
  7. mcli/app/model_cmd.py +57 -472
  8. mcli/app/video/__init__.py +5 -0
  9. mcli/chat/__init__.py +34 -0
  10. mcli/lib/__init__.py +0 -0
  11. mcli/lib/api/__init__.py +0 -0
  12. mcli/lib/auth/__init__.py +1 -0
  13. mcli/lib/config/__init__.py +1 -0
  14. mcli/lib/erd/__init__.py +25 -0
  15. mcli/lib/files/__init__.py +0 -0
  16. mcli/lib/fs/__init__.py +1 -0
  17. mcli/lib/logger/__init__.py +3 -0
  18. mcli/lib/performance/__init__.py +17 -0
  19. mcli/lib/pickles/__init__.py +1 -0
  20. mcli/lib/shell/__init__.py +0 -0
  21. mcli/lib/toml/__init__.py +1 -0
  22. mcli/lib/watcher/__init__.py +0 -0
  23. mcli/ml/__init__.py +16 -0
  24. mcli/ml/api/__init__.py +30 -0
  25. mcli/ml/api/routers/__init__.py +27 -0
  26. mcli/ml/auth/__init__.py +41 -0
  27. mcli/ml/backtesting/__init__.py +33 -0
  28. mcli/ml/cli/__init__.py +5 -0
  29. mcli/ml/config/__init__.py +33 -0
  30. mcli/ml/configs/__init__.py +16 -0
  31. mcli/ml/dashboard/__init__.py +12 -0
  32. mcli/ml/dashboard/app_supabase.py +57 -12
  33. mcli/ml/dashboard/components/__init__.py +7 -0
  34. mcli/ml/dashboard/pages/__init__.py +6 -0
  35. mcli/ml/dashboard/pages/predictions_enhanced.py +82 -38
  36. mcli/ml/dashboard/utils.py +39 -11
  37. mcli/ml/data_ingestion/__init__.py +29 -0
  38. mcli/ml/database/__init__.py +40 -0
  39. mcli/ml/experimentation/__init__.py +29 -0
  40. mcli/ml/features/__init__.py +39 -0
  41. mcli/ml/mlops/__init__.py +19 -0
  42. mcli/ml/models/__init__.py +90 -0
  43. mcli/ml/monitoring/__init__.py +25 -0
  44. mcli/ml/optimization/__init__.py +27 -0
  45. mcli/ml/predictions/__init__.py +5 -0
  46. mcli/ml/preprocessing/__init__.py +24 -0
  47. mcli/ml/scripts/__init__.py +1 -0
  48. mcli/ml/trading/__init__.py +63 -0
  49. mcli/ml/training/__init__.py +7 -0
  50. mcli/mygroup/__init__.py +3 -0
  51. mcli/public/__init__.py +1 -0
  52. mcli/public/commands/__init__.py +2 -0
  53. mcli/self/__init__.py +3 -0
  54. mcli/self/self_cmd.py +4 -253
  55. mcli/self/store_cmd.py +5 -3
  56. mcli/workflow/__init__.py +0 -0
  57. mcli/workflow/daemon/__init__.py +15 -0
  58. mcli/workflow/dashboard/__init__.py +5 -0
  59. mcli/workflow/dashboard/dashboard_cmd.py +1 -0
  60. mcli/workflow/docker/__init__.py +0 -0
  61. mcli/workflow/file/__init__.py +0 -0
  62. mcli/workflow/gcloud/__init__.py +1 -0
  63. mcli/workflow/git_commit/__init__.py +0 -0
  64. mcli/workflow/interview/__init__.py +0 -0
  65. mcli/workflow/politician_trading/__init__.py +4 -0
  66. mcli/workflow/registry/__init__.py +0 -0
  67. mcli/workflow/repo/__init__.py +0 -0
  68. mcli/workflow/scheduler/__init__.py +25 -0
  69. mcli/workflow/search/__init__.py +0 -0
  70. mcli/workflow/sync/__init__.py +5 -0
  71. mcli/workflow/videos/__init__.py +1 -0
  72. mcli/workflow/wakatime/__init__.py +80 -0
  73. {mcli_framework-7.8.3.dist-info → mcli_framework-7.8.5.dist-info}/METADATA +1 -1
  74. {mcli_framework-7.8.3.dist-info → mcli_framework-7.8.5.dist-info}/RECORD +78 -18
  75. mcli/app/chat_cmd.py +0 -42
  76. mcli/test/cron_test_cmd.py +0 -697
  77. mcli/test/test_cmd.py +0 -30
  78. {mcli_framework-7.8.3.dist-info → mcli_framework-7.8.5.dist-info}/WHEEL +0 -0
  79. {mcli_framework-7.8.3.dist-info → mcli_framework-7.8.5.dist-info}/entry_points.txt +0 -0
  80. {mcli_framework-7.8.3.dist-info → mcli_framework-7.8.5.dist-info}/licenses/LICENSE +0 -0
  81. {mcli_framework-7.8.3.dist-info → mcli_framework-7.8.5.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,17 @@
1
+ """
2
+ Performance optimization utilities for mcli
3
+ """
4
+
5
+ from .uvloop_config import (
6
+ configure_event_loop_for_performance,
7
+ get_event_loop_info,
8
+ install_uvloop,
9
+ should_use_uvloop,
10
+ )
11
+
12
+ __all__ = [
13
+ "install_uvloop",
14
+ "should_use_uvloop",
15
+ "get_event_loop_info",
16
+ "configure_event_loop_for_performance",
17
+ ]
@@ -0,0 +1 @@
1
+ from .pickles import ObjectCache
File without changes
@@ -0,0 +1 @@
1
+ from .toml import read_from_toml
File without changes
mcli/ml/__init__.py ADDED
@@ -0,0 +1,16 @@
1
+ """MCLI Machine Learning Module for Stock Recommendation System"""
2
+
3
+ from .configs.dvc_config import get_dvc_config, setup_dvc
4
+ from .configs.mlflow_config import get_mlflow_config, setup_mlflow
5
+ from .configs.mlops_manager import MLOpsManager, get_mlops_manager
6
+
7
+ __version__ = "0.1.0"
8
+
9
+ __all__ = [
10
+ "get_mlops_manager",
11
+ "MLOpsManager",
12
+ "get_mlflow_config",
13
+ "setup_mlflow",
14
+ "get_dvc_config",
15
+ "setup_dvc",
16
+ ]
@@ -0,0 +1,30 @@
1
+ """API routes and endpoints for ML system"""
2
+
3
+ from .app import create_app, get_application
4
+ from .routers import (
5
+ admin_router,
6
+ auth_router,
7
+ backtest_router,
8
+ data_router,
9
+ model_router,
10
+ monitoring_router,
11
+ portfolio_router,
12
+ prediction_router,
13
+ trade_router,
14
+ websocket_router,
15
+ )
16
+
17
+ __all__ = [
18
+ "auth_router",
19
+ "model_router",
20
+ "prediction_router",
21
+ "portfolio_router",
22
+ "data_router",
23
+ "trade_router",
24
+ "backtest_router",
25
+ "monitoring_router",
26
+ "admin_router",
27
+ "websocket_router",
28
+ "create_app",
29
+ "get_application",
30
+ ]
@@ -0,0 +1,27 @@
1
+ """API routers"""
2
+
3
+ from . import (
4
+ admin_router,
5
+ auth_router,
6
+ backtest_router,
7
+ data_router,
8
+ model_router,
9
+ monitoring_router,
10
+ portfolio_router,
11
+ prediction_router,
12
+ trade_router,
13
+ websocket_router,
14
+ )
15
+
16
+ __all__ = [
17
+ "auth_router",
18
+ "model_router",
19
+ "prediction_router",
20
+ "portfolio_router",
21
+ "data_router",
22
+ "trade_router",
23
+ "backtest_router",
24
+ "monitoring_router",
25
+ "admin_router",
26
+ "websocket_router",
27
+ ]
@@ -0,0 +1,41 @@
1
+ """Authentication and authorization system"""
2
+
3
+ from .auth_manager import (
4
+ AuthManager,
5
+ create_access_token,
6
+ get_current_active_user,
7
+ get_current_user,
8
+ hash_password,
9
+ require_role,
10
+ verify_access_token,
11
+ verify_password,
12
+ )
13
+ from .models import (
14
+ PasswordChange,
15
+ PasswordReset,
16
+ TokenResponse,
17
+ UserCreate,
18
+ UserLogin,
19
+ UserResponse,
20
+ )
21
+ from .permissions import Permission, check_permission, has_permission
22
+
23
+ __all__ = [
24
+ "AuthManager",
25
+ "create_access_token",
26
+ "verify_access_token",
27
+ "get_current_user",
28
+ "get_current_active_user",
29
+ "require_role",
30
+ "hash_password",
31
+ "verify_password",
32
+ "UserCreate",
33
+ "UserLogin",
34
+ "UserResponse",
35
+ "TokenResponse",
36
+ "PasswordReset",
37
+ "PasswordChange",
38
+ "Permission",
39
+ "check_permission",
40
+ "has_permission",
41
+ ]
@@ -0,0 +1,33 @@
1
+ """Backtesting framework for trading strategies"""
2
+
3
+ from .backtest_engine import (
4
+ BacktestConfig,
5
+ BacktestEngine,
6
+ BacktestResult,
7
+ PositionManager,
8
+ TradingStrategy,
9
+ )
10
+ from .performance_metrics import (
11
+ PerformanceAnalyzer,
12
+ PortfolioMetrics,
13
+ RiskMetrics,
14
+ plot_performance,
15
+ )
16
+ from .trading_simulator import MarketSimulator, Order, Portfolio, Position, TradingSimulator
17
+
18
+ __all__ = [
19
+ "BacktestEngine",
20
+ "BacktestConfig",
21
+ "BacktestResult",
22
+ "TradingStrategy",
23
+ "PositionManager",
24
+ "PerformanceAnalyzer",
25
+ "PortfolioMetrics",
26
+ "RiskMetrics",
27
+ "plot_performance",
28
+ "TradingSimulator",
29
+ "Order",
30
+ "Position",
31
+ "Portfolio",
32
+ "MarketSimulator",
33
+ ]
@@ -0,0 +1,5 @@
1
+ """CLI interface for ML system"""
2
+
3
+ from .main import app
4
+
5
+ __all__ = ["app"]
@@ -0,0 +1,33 @@
1
+ """Configuration management for ML system"""
2
+
3
+ from .settings import (
4
+ APISettings,
5
+ DatabaseSettings,
6
+ DataSettings,
7
+ MLflowSettings,
8
+ ModelSettings,
9
+ MonitoringSettings,
10
+ RedisSettings,
11
+ SecuritySettings,
12
+ Settings,
13
+ create_settings,
14
+ get_settings,
15
+ settings,
16
+ update_settings,
17
+ )
18
+
19
+ __all__ = [
20
+ "Settings",
21
+ "DatabaseSettings",
22
+ "RedisSettings",
23
+ "MLflowSettings",
24
+ "ModelSettings",
25
+ "DataSettings",
26
+ "APISettings",
27
+ "MonitoringSettings",
28
+ "SecuritySettings",
29
+ "settings",
30
+ "get_settings",
31
+ "update_settings",
32
+ "create_settings",
33
+ ]
@@ -0,0 +1,16 @@
1
+ """ML Configuration Module"""
2
+
3
+ from .dvc_config import DVCConfig, get_dvc_config, setup_dvc
4
+ from .mlflow_config import MLflowConfig, get_mlflow_config, setup_mlflow
5
+ from .mlops_manager import MLOpsManager, get_mlops_manager
6
+
7
+ __all__ = [
8
+ "MLflowConfig",
9
+ "get_mlflow_config",
10
+ "setup_mlflow",
11
+ "DVCConfig",
12
+ "get_dvc_config",
13
+ "setup_dvc",
14
+ "MLOpsManager",
15
+ "get_mlops_manager",
16
+ ]
@@ -0,0 +1,12 @@
1
+ """ML Dashboard for real-time monitoring"""
2
+
3
+ from .app import main
4
+ from .cli import app as cli_app
5
+
6
+
7
+ def main():
8
+ """Main entry point for dashboard CLI"""
9
+ cli_app()
10
+
11
+
12
+ __all__ = ["main", "cli_app"]
@@ -49,7 +49,7 @@ def get_politicians_data():
49
49
 
50
50
  @st.cache_data(ttl=30)
51
51
  def get_disclosures_data():
52
- """Get trading disclosures from Supabase"""
52
+ """Get trading disclosures from Supabase with politician details"""
53
53
  client = get_supabase_client()
54
54
  if not client:
55
55
  return pd.DataFrame()
@@ -65,6 +65,40 @@ def get_disclosures_data():
65
65
  )
66
66
  df = pd.DataFrame(response.data)
67
67
 
68
+ if df.empty:
69
+ return df
70
+
71
+ # Get all unique politician IDs
72
+ politician_ids = df["politician_id"].dropna().unique()
73
+
74
+ # Fetch politician details
75
+ politicians = {}
76
+ if len(politician_ids) > 0:
77
+ pol_response = (
78
+ client.table("politicians")
79
+ .select("id, full_name, party, state_or_country")
80
+ .in_("id", list(politician_ids))
81
+ .execute()
82
+ )
83
+ politicians = {p["id"]: p for p in pol_response.data}
84
+
85
+ # Add politician details to disclosures
86
+ df["politician_name"] = df["politician_id"].map(
87
+ lambda x: politicians.get(x, {}).get("full_name", "Unknown")
88
+ )
89
+ df["politician_party"] = df["politician_id"].map(
90
+ lambda x: politicians.get(x, {}).get("party", "Unknown")
91
+ )
92
+ df["politician_state"] = df["politician_id"].map(
93
+ lambda x: politicians.get(x, {}).get("state_or_country", "Unknown")
94
+ )
95
+
96
+ # Rename columns for compatibility
97
+ df["ticker_symbol"] = df["asset_ticker"]
98
+ df["amount"] = df["amount_exact"].fillna(
99
+ (df["amount_range_min"] + df["amount_range_max"]) / 2
100
+ )
101
+
68
102
  # Convert datetime columns to proper datetime format
69
103
  date_columns = ["transaction_date", "disclosure_date", "created_at", "updated_at"]
70
104
  for col in date_columns:
@@ -347,21 +381,29 @@ def show_politicians():
347
381
  )
348
382
  with col2:
349
383
  state_filter = st.multiselect(
350
- "State",
351
- options=politicians["state"].dropna().unique() if "state" in politicians else [],
384
+ "State/Country",
385
+ options=(
386
+ politicians["state_or_country"].dropna().unique()
387
+ if "state_or_country" in politicians
388
+ else []
389
+ ),
352
390
  default=[],
353
391
  )
354
392
  with col3:
355
- active_only = st.checkbox("Active Only", value=True)
393
+ active_only = st.checkbox("Active Only", value=False)
356
394
 
357
395
  # Apply filters
358
396
  filtered = politicians.copy()
359
397
  if party_filter and "party" in filtered:
360
398
  filtered = filtered[filtered["party"].isin(party_filter)]
361
- if state_filter and "state" in filtered:
362
- filtered = filtered[filtered["state"].isin(state_filter)]
363
- if active_only and "is_active" in filtered:
364
- filtered = filtered[filtered["is_active"] == True]
399
+ if state_filter and "state_or_country" in filtered:
400
+ filtered = filtered[filtered["state_or_country"].isin(state_filter)]
401
+ if active_only and "term_end" in filtered:
402
+ # Filter for active (term_end is in the future or null)
403
+ filtered = filtered[
404
+ (filtered["term_end"].isna())
405
+ | (pd.to_datetime(filtered["term_end"]) > pd.Timestamp.now())
406
+ ]
365
407
 
366
408
  # Display data
367
409
  st.dataframe(filtered, width="stretch")
@@ -369,17 +411,20 @@ def show_politicians():
369
411
  # Stats
370
412
  col1, col2 = st.columns(2)
371
413
  with col1:
372
- if "party" in filtered:
414
+ if "party" in filtered and not filtered["party"].dropna().empty:
373
415
  party_dist = filtered["party"].value_counts()
374
416
  fig = px.pie(
375
417
  values=party_dist.values, names=party_dist.index, title="Party Distribution"
376
418
  )
377
419
  st.plotly_chart(fig, width="stretch", config={"responsive": True})
378
420
  with col2:
379
- if "state" in filtered:
380
- state_dist = filtered["state"].value_counts().head(10)
421
+ if "state_or_country" in filtered and not filtered["state_or_country"].dropna().empty:
422
+ state_dist = filtered["state_or_country"].value_counts().head(10)
381
423
  fig = px.bar(
382
- x=state_dist.values, y=state_dist.index, orientation="h", title="Top States"
424
+ x=state_dist.values,
425
+ y=state_dist.index,
426
+ orientation="h",
427
+ title="Top States/Countries",
383
428
  )
384
429
  st.plotly_chart(fig, width="stretch", config={"responsive": True})
385
430
  else:
@@ -0,0 +1,7 @@
1
+ """Reusable Streamlit dashboard components"""
2
+
3
+ from .charts import *
4
+ from .metrics import *
5
+ from .tables import *
6
+
7
+ __all__ = ["charts", "tables", "metrics"]
@@ -0,0 +1,6 @@
1
+ """Dashboard page modules"""
2
+
3
+ from .cicd import show_cicd_dashboard
4
+ from .workflows import show_workflows_dashboard
5
+
6
+ __all__ = ["show_cicd_dashboard", "show_workflows_dashboard"]
@@ -158,54 +158,83 @@ def generate_mock_historical_performance() -> pd.DataFrame:
158
158
 
159
159
 
160
160
  def get_real_predictions() -> pd.DataFrame:
161
- """Get real predictions from ML pipeline"""
161
+ """Get real predictions from ML pipeline - REQUIRES SUPABASE CONNECTION"""
162
162
  if not HAS_REAL_DATA:
163
- st.warning("⚠️ Supabase connection not configured. Using demo data.")
164
- return generate_mock_predictions()
163
+ st.error(" **CONFIGURATION ERROR**: Real data functions not available!")
164
+ st.error(
165
+ "Cannot import Supabase utilities. Check that `src/mcli/ml/dashboard/utils.py` exists."
166
+ )
167
+ st.stop()
165
168
 
166
169
  try:
167
170
  # Get real disclosure data
168
171
  disclosures = get_disclosures_data()
169
172
 
170
173
  if disclosures.empty:
171
- st.info(
172
- "No disclosure data available. Click 'Run ML Pipeline' in sidebar to generate predictions."
174
+ st.error("❌ **DATABASE ERROR**: No trading disclosure data available!")
175
+ st.error("Supabase connection may not be configured. Check secrets configuration.")
176
+ st.code(
177
+ """
178
+ # Required Streamlit Secrets:
179
+ SUPABASE_URL = "your_supabase_url"
180
+ SUPABASE_KEY = "your_supabase_key"
181
+ SUPABASE_SERVICE_ROLE_KEY = "your_service_role_key"
182
+ """,
183
+ language="toml",
184
+ )
185
+ st.stop()
186
+
187
+ # Check if we have enough data for ML
188
+ if len(disclosures) < 10:
189
+ st.error(
190
+ f"❌ **INSUFFICIENT DATA**: Found only {len(disclosures)} disclosures. "
191
+ f"Need at least 10 for ML predictions."
173
192
  )
174
- return generate_mock_predictions()
193
+ st.info("Please run data collection workflows to populate the database.")
194
+ st.stop()
175
195
 
176
196
  # Run ML pipeline to generate predictions
177
- _, _, predictions = run_ml_pipeline(disclosures)
178
-
179
- if predictions is not None and not predictions.empty:
180
- # Ensure all required columns exist
181
- required_cols = [
182
- "ticker",
183
- "predicted_return",
184
- "confidence",
185
- "risk_score",
186
- "recommendation",
187
- "sector",
188
- "politician",
189
- ]
190
-
191
- for col in required_cols:
192
- if col not in predictions.columns:
193
- if col == "sector":
194
- predictions[col] = "Technology" # Default
195
- elif col == "politician":
196
- predictions[col] = "Unknown"
197
- elif col == "ticker":
198
- predictions[col] = "UNK"
199
-
200
- return predictions
201
- else:
202
- st.info("ML pipeline did not generate predictions. Using demo data for display.")
203
- return generate_mock_predictions()
197
+ st.success(f"✅ Loaded {len(disclosures)} real trading disclosures from database!")
198
+
199
+ try:
200
+ _, _, predictions = run_ml_pipeline(disclosures)
201
+
202
+ if predictions is not None and not predictions.empty:
203
+ # Ensure all required columns exist
204
+ required_cols = [
205
+ "ticker",
206
+ "predicted_return",
207
+ "confidence",
208
+ "risk_score",
209
+ "recommendation",
210
+ "sector",
211
+ "politician",
212
+ ]
213
+
214
+ for col in required_cols:
215
+ if col not in predictions.columns:
216
+ if col == "sector":
217
+ predictions[col] = "Technology" # Default
218
+ elif col == "politician":
219
+ predictions[col] = "Unknown"
220
+ elif col == "ticker":
221
+ predictions[col] = "UNK"
222
+
223
+ st.success("✅ Generated ML predictions from real data!")
224
+ return predictions
225
+ else:
226
+ st.error("❌ **ML PIPELINE ERROR**: Predictions returned empty!")
227
+ st.error("ML pipeline ran but produced no predictions.")
228
+ st.stop()
229
+ except Exception as ml_error:
230
+ st.error(f"❌ **ML PIPELINE ERROR**: {ml_error}")
231
+ st.exception(ml_error)
232
+ st.stop()
204
233
 
205
234
  except Exception as e:
206
- st.error(f"Error loading predictions: {e}")
207
- st.info("Falling back to demo data")
208
- return generate_mock_predictions()
235
+ st.error(f" **FATAL ERROR**: {e}")
236
+ st.exception(e)
237
+ st.stop()
209
238
 
210
239
 
211
240
  def show_predictions_enhanced():
@@ -659,12 +688,27 @@ def show_prediction_generator():
659
688
 
660
689
 
661
690
  def show_performance_tracker():
662
- """Show prediction performance over time"""
691
+ """Show prediction performance over time - REQUIRES REAL ML PREDICTION HISTORY"""
663
692
 
664
693
  st.subheader("📈 Prediction Performance Tracker")
665
694
  st.markdown("Track the accuracy and ROI of our ML predictions over time")
666
695
 
667
- # Generate historical data
696
+ # TODO: Implement real performance tracking from database
697
+ st.error(
698
+ "❌ **FEATURE NOT IMPLEMENTED**: Performance tracking requires ML prediction history database."
699
+ )
700
+ st.info(
701
+ """
702
+ This feature requires:
703
+ 1. A prediction_history table in Supabase
704
+ 2. Automated prediction tracking and validation
705
+ 3. Historical performance metrics calculation
706
+
707
+ Currently showing mock data for demonstration only.
708
+ """
709
+ )
710
+
711
+ # Generate historical data (mock for now)
668
712
  performance_df = generate_mock_historical_performance()
669
713
 
670
714
  # KPIs
@@ -69,17 +69,11 @@ def get_disclosures_data() -> pd.DataFrame:
69
69
  """Get trading disclosures from Supabase with proper schema mapping"""
70
70
  client = get_supabase_client()
71
71
  if not client:
72
- return _generate_demo_disclosures()
72
+ st.warning("⚠️ Supabase connection not available. Configure SUPABASE_URL and SUPABASE_KEY.")
73
+ return pd.DataFrame() # Return empty instead of demo data
73
74
 
74
75
  try:
75
- # First, get total count
76
- count_response = client.table("trading_disclosures").select("*", count="exact").execute()
77
- total_count = count_response.count
78
-
79
- if total_count == 0:
80
- return _generate_demo_disclosures()
81
-
82
- # Get the data
76
+ # Get the data with politician details joined
83
77
  response = (
84
78
  client.table("trading_disclosures")
85
79
  .select("*")
@@ -89,14 +83,48 @@ def get_disclosures_data() -> pd.DataFrame:
89
83
  )
90
84
 
91
85
  if not response.data:
92
- return _generate_demo_disclosures()
86
+ st.info(
87
+ "📊 No trading disclosures found in database. Data collection may be in progress."
88
+ )
89
+ return pd.DataFrame()
93
90
 
94
91
  df = pd.DataFrame(response.data)
92
+
93
+ # Get politician details and join
94
+ if not df.empty and "politician_id" in df.columns:
95
+ politician_ids = df["politician_id"].dropna().unique()
96
+ if len(politician_ids) > 0:
97
+ pol_response = (
98
+ client.table("politicians")
99
+ .select("id, full_name, party, state_or_country")
100
+ .in_("id", list(politician_ids))
101
+ .execute()
102
+ )
103
+ politicians = {p["id"]: p for p in pol_response.data}
104
+
105
+ # Add politician details
106
+ df["politician_name"] = df["politician_id"].map(
107
+ lambda x: politicians.get(x, {}).get("full_name", "Unknown")
108
+ )
109
+ df["politician_party"] = df["politician_id"].map(
110
+ lambda x: politicians.get(x, {}).get("party", "Unknown")
111
+ )
112
+ df["politician_state"] = df["politician_id"].map(
113
+ lambda x: politicians.get(x, {}).get("state_or_country", "Unknown")
114
+ )
115
+
116
+ # Map column names for compatibility
117
+ df["ticker_symbol"] = df["asset_ticker"]
118
+ df["amount"] = df["amount_exact"].fillna(
119
+ (df["amount_range_min"] + df["amount_range_max"]) / 2
120
+ )
121
+
95
122
  return df
96
123
 
97
124
  except Exception as e:
125
+ st.error(f"❌ Error fetching disclosures: {e}")
98
126
  logger.error(f"Failed to fetch disclosures: {e}")
99
- return _generate_demo_disclosures()
127
+ return pd.DataFrame()
100
128
 
101
129
 
102
130
  def _generate_demo_disclosures() -> pd.DataFrame:
@@ -0,0 +1,29 @@
1
+ """Real-time data ingestion pipeline"""
2
+
3
+ from .api_connectors import (
4
+ AlphaVantageConnector,
5
+ CongressionalDataAPI,
6
+ PolygonIOConnector,
7
+ QuiverQuantConnector,
8
+ StockMarketAPI,
9
+ YahooFinanceConnector,
10
+ )
11
+ from .data_pipeline import DataLoader, DataTransformer, DataValidator, IngestionPipeline
12
+ from .stream_processor import DataStream, KafkaConsumer, StreamProcessor, WebSocketConsumer
13
+
14
+ __all__ = [
15
+ "StreamProcessor",
16
+ "DataStream",
17
+ "KafkaConsumer",
18
+ "WebSocketConsumer",
19
+ "CongressionalDataAPI",
20
+ "StockMarketAPI",
21
+ "AlphaVantageConnector",
22
+ "YahooFinanceConnector",
23
+ "PolygonIOConnector",
24
+ "QuiverQuantConnector",
25
+ "IngestionPipeline",
26
+ "DataValidator",
27
+ "DataTransformer",
28
+ "DataLoader",
29
+ ]