mb-rag 1.1.47__py3-none-any.whl → 1.1.56.post0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mb-rag might be problematic. Click here for more details.
- mb_rag/basic.py +306 -0
- mb_rag/chatbot/chains.py +206 -206
- mb_rag/chatbot/conversation.py +185 -0
- mb_rag/chatbot/prompts.py +58 -58
- mb_rag/rag/embeddings.py +810 -810
- mb_rag/utils/all_data_extract.py +64 -64
- mb_rag/utils/bounding_box.py +231 -231
- mb_rag/utils/document_extract.py +354 -354
- mb_rag/utils/extra.py +73 -73
- mb_rag/utils/pdf_extract.py +428 -428
- mb_rag/version.py +1 -1
- {mb_rag-1.1.47.dist-info → mb_rag-1.1.56.post0.dist-info}/METADATA +11 -11
- mb_rag-1.1.56.post0.dist-info/RECORD +19 -0
- mb_rag/chatbot/basic.py +0 -644
- mb_rag-1.1.47.dist-info/RECORD +0 -18
- {mb_rag-1.1.47.dist-info → mb_rag-1.1.56.post0.dist-info}/WHEEL +0 -0
- {mb_rag-1.1.47.dist-info → mb_rag-1.1.56.post0.dist-info}/top_level.txt +0 -0
mb_rag/chatbot/chains.py
CHANGED
|
@@ -1,206 +1,206 @@
|
|
|
1
|
-
## file for chaining functions in chatbot
|
|
2
|
-
|
|
3
|
-
from typing import Optional, List, Dict, Any, Union
|
|
4
|
-
from dataclasses import dataclass
|
|
5
|
-
from langchain.schema.output_parser import StrOutputParser
|
|
6
|
-
from mb_rag.chatbot.prompts import invoke_prompt
|
|
7
|
-
from langchain.schema.runnable import RunnableLambda, RunnableSequence
|
|
8
|
-
from mb_rag.utils.extra import check_package
|
|
9
|
-
|
|
10
|
-
__all__ = ['Chain', 'ChainConfig']
|
|
11
|
-
|
|
12
|
-
def check_langchain_dependencies() -> None:
|
|
13
|
-
"""
|
|
14
|
-
Check if required LangChain packages are installed
|
|
15
|
-
Raises:
|
|
16
|
-
ImportError: If any required package is missing
|
|
17
|
-
"""
|
|
18
|
-
if not check_package("langchain"):
|
|
19
|
-
raise ImportError("LangChain package not found. Please install it using: pip install langchain")
|
|
20
|
-
if not check_package("langchain_core"):
|
|
21
|
-
raise ImportError("LangChain Core package not found. Please install it using: pip install langchain-core")
|
|
22
|
-
|
|
23
|
-
# Check dependencies before importing
|
|
24
|
-
check_langchain_dependencies()
|
|
25
|
-
|
|
26
|
-
@dataclass
|
|
27
|
-
class ChainConfig:
|
|
28
|
-
"""Configuration for chain operations"""
|
|
29
|
-
prompt: Optional[str] = None
|
|
30
|
-
prompt_template: Optional[str] = None
|
|
31
|
-
input_dict: Optional[Dict[str, Any]] = None
|
|
32
|
-
|
|
33
|
-
class Chain:
|
|
34
|
-
"""
|
|
35
|
-
Class to chain functions in chatbot with improved OOP design
|
|
36
|
-
"""
|
|
37
|
-
def __init__(self, model: Any, config: Optional[ChainConfig] = None, **kwargs):
|
|
38
|
-
"""
|
|
39
|
-
Initialize chain
|
|
40
|
-
Args:
|
|
41
|
-
model: The language model to use
|
|
42
|
-
config: Chain configuration
|
|
43
|
-
**kwargs: Additional arguments
|
|
44
|
-
"""
|
|
45
|
-
self.model = model
|
|
46
|
-
self._output_parser = StrOutputParser()
|
|
47
|
-
self._initialize_config(config, **kwargs)
|
|
48
|
-
|
|
49
|
-
@classmethod
|
|
50
|
-
def from_template(cls, model: Any, template: str, input_dict: Dict[str, Any], **kwargs) -> 'Chain':
|
|
51
|
-
"""
|
|
52
|
-
Create chain from template
|
|
53
|
-
Args:
|
|
54
|
-
model: The language model
|
|
55
|
-
template: Prompt template
|
|
56
|
-
input_dict: Input dictionary for template
|
|
57
|
-
**kwargs: Additional arguments
|
|
58
|
-
Returns:
|
|
59
|
-
Chain: New chain instance
|
|
60
|
-
"""
|
|
61
|
-
config = ChainConfig(
|
|
62
|
-
prompt_template=template,
|
|
63
|
-
input_dict=input_dict
|
|
64
|
-
)
|
|
65
|
-
return cls(model, config, **kwargs)
|
|
66
|
-
|
|
67
|
-
@classmethod
|
|
68
|
-
def from_prompt(cls, model: Any, prompt: str, **kwargs) -> 'Chain':
|
|
69
|
-
"""
|
|
70
|
-
Create chain from direct prompt
|
|
71
|
-
Args:
|
|
72
|
-
model: The language model
|
|
73
|
-
prompt: Direct prompt
|
|
74
|
-
**kwargs: Additional arguments
|
|
75
|
-
Returns:
|
|
76
|
-
Chain: New chain instance
|
|
77
|
-
"""
|
|
78
|
-
config = ChainConfig(prompt=prompt)
|
|
79
|
-
return cls(model, config, **kwargs)
|
|
80
|
-
|
|
81
|
-
def _initialize_config(self, config: Optional[ChainConfig], **kwargs) -> None:
|
|
82
|
-
"""Initialize chain configuration"""
|
|
83
|
-
if config:
|
|
84
|
-
self.input_dict = config.input_dict
|
|
85
|
-
if config.prompt_template:
|
|
86
|
-
self.prompt = invoke_prompt(config.prompt_template, self.input_dict)
|
|
87
|
-
else:
|
|
88
|
-
self.prompt = config.prompt
|
|
89
|
-
else:
|
|
90
|
-
self.input_dict = kwargs.get('input_dict')
|
|
91
|
-
if prompt_template := kwargs.get('prompt_template'):
|
|
92
|
-
self.prompt = invoke_prompt(prompt_template, self.input_dict)
|
|
93
|
-
else:
|
|
94
|
-
self.prompt = kwargs.get('prompt')
|
|
95
|
-
|
|
96
|
-
@property
|
|
97
|
-
def output_parser(self) -> StrOutputParser:
|
|
98
|
-
"""Get the output parser"""
|
|
99
|
-
return self._output_parser
|
|
100
|
-
|
|
101
|
-
@staticmethod
|
|
102
|
-
def _validate_chain_components(prompt: Any, middle_chain: Optional[List] = None) -> None:
|
|
103
|
-
"""
|
|
104
|
-
Validate chain components
|
|
105
|
-
Args:
|
|
106
|
-
prompt: The prompt to validate
|
|
107
|
-
middle_chain: Optional middle chain to validate
|
|
108
|
-
Raises:
|
|
109
|
-
ValueError: If validation fails
|
|
110
|
-
"""
|
|
111
|
-
if prompt is None:
|
|
112
|
-
raise ValueError("Prompt is not provided")
|
|
113
|
-
if middle_chain is not None and not isinstance(middle_chain, list):
|
|
114
|
-
raise ValueError("middle_chain should be a list")
|
|
115
|
-
|
|
116
|
-
def invoke(self) -> Any:
|
|
117
|
-
"""
|
|
118
|
-
Invoke the chain
|
|
119
|
-
Returns:
|
|
120
|
-
Any: Output from the chain
|
|
121
|
-
Raises:
|
|
122
|
-
Exception: If prompt is not provided
|
|
123
|
-
"""
|
|
124
|
-
self._validate_chain_components(self.prompt)
|
|
125
|
-
chain_output = self.prompt | self.model | self.output_parser
|
|
126
|
-
return chain_output
|
|
127
|
-
|
|
128
|
-
def chain_sequence_invoke(self,
|
|
129
|
-
middle_chain: Optional[List] = None,
|
|
130
|
-
final_chain: Optional[RunnableLambda] = None) -> Any:
|
|
131
|
-
"""
|
|
132
|
-
Chain invoke the sequence
|
|
133
|
-
Args:
|
|
134
|
-
middle_chain: List of functions/Prompts/RunnableLambda to chain
|
|
135
|
-
final_chain: Final chain to run
|
|
136
|
-
Returns:
|
|
137
|
-
Any: Output from the chain
|
|
138
|
-
"""
|
|
139
|
-
self._validate_chain_components(self.prompt, middle_chain)
|
|
140
|
-
|
|
141
|
-
final = final_chain if final_chain is not None else self.output_parser
|
|
142
|
-
|
|
143
|
-
if middle_chain:
|
|
144
|
-
func_chain = RunnableSequence(self.prompt, middle_chain, final)
|
|
145
|
-
return func_chain.invoke()
|
|
146
|
-
return None
|
|
147
|
-
|
|
148
|
-
def chain_parallel_invoke(self, parallel_chain: List) -> Any:
|
|
149
|
-
"""
|
|
150
|
-
Chain invoke in parallel
|
|
151
|
-
Args:
|
|
152
|
-
parallel_chain: List of chains to run in parallel
|
|
153
|
-
Returns:
|
|
154
|
-
Any: Output from the parallel chains
|
|
155
|
-
Raises:
|
|
156
|
-
ImportError: If LangChain is not installed
|
|
157
|
-
"""
|
|
158
|
-
if not check_package("langchain"):
|
|
159
|
-
raise ImportError("LangChain package not found. Please install it using: pip install langchain")
|
|
160
|
-
return parallel_chain.invoke()
|
|
161
|
-
|
|
162
|
-
def chain_branch_invoke(self, branch_chain: Dict) -> Any:
|
|
163
|
-
"""
|
|
164
|
-
Chain invoke with branching
|
|
165
|
-
Args:
|
|
166
|
-
branch_chain: Dictionary of branch chains
|
|
167
|
-
Returns:
|
|
168
|
-
Any: Output from the branch chain
|
|
169
|
-
Raises:
|
|
170
|
-
ImportError: If LangChain is not installed
|
|
171
|
-
"""
|
|
172
|
-
if not check_package("langchain"):
|
|
173
|
-
raise ImportError("LangChain package not found. Please install it using: pip install langchain")
|
|
174
|
-
return branch_chain.invoke()
|
|
175
|
-
|
|
176
|
-
@staticmethod
|
|
177
|
-
def create_parallel_chain(prompt_template: str, model: Any, branches: Dict[str, Any]) -> Any:
|
|
178
|
-
"""
|
|
179
|
-
Create a parallel chain
|
|
180
|
-
Args:
|
|
181
|
-
prompt_template: Template for the prompt
|
|
182
|
-
model: The language model
|
|
183
|
-
branches: Dictionary of branch configurations
|
|
184
|
-
Returns:
|
|
185
|
-
Any: Configured parallel chain
|
|
186
|
-
"""
|
|
187
|
-
from langchain.schema.runnable import RunnableParallel
|
|
188
|
-
return (
|
|
189
|
-
prompt_template
|
|
190
|
-
| model
|
|
191
|
-
| StrOutputParser()
|
|
192
|
-
| RunnableParallel(branches=branches)
|
|
193
|
-
)
|
|
194
|
-
|
|
195
|
-
@staticmethod
|
|
196
|
-
def create_branch_chain(conditions: List[tuple], default_chain: Any) -> Any:
|
|
197
|
-
"""
|
|
198
|
-
Create a branch chain
|
|
199
|
-
Args:
|
|
200
|
-
conditions: List of condition-chain tuples
|
|
201
|
-
default_chain: Default chain to use
|
|
202
|
-
Returns:
|
|
203
|
-
Any: Configured branch chain
|
|
204
|
-
"""
|
|
205
|
-
from langchain.schema.runnable import RunnableBranch
|
|
206
|
-
return RunnableBranch(*conditions, default_chain)
|
|
1
|
+
## file for chaining functions in chatbot
|
|
2
|
+
|
|
3
|
+
from typing import Optional, List, Dict, Any, Union
|
|
4
|
+
from dataclasses import dataclass
|
|
5
|
+
from langchain.schema.output_parser import StrOutputParser
|
|
6
|
+
from mb_rag.chatbot.prompts import invoke_prompt
|
|
7
|
+
from langchain.schema.runnable import RunnableLambda, RunnableSequence
|
|
8
|
+
from mb_rag.utils.extra import check_package
|
|
9
|
+
|
|
10
|
+
__all__ = ['Chain', 'ChainConfig']
|
|
11
|
+
|
|
12
|
+
def check_langchain_dependencies() -> None:
|
|
13
|
+
"""
|
|
14
|
+
Check if required LangChain packages are installed
|
|
15
|
+
Raises:
|
|
16
|
+
ImportError: If any required package is missing
|
|
17
|
+
"""
|
|
18
|
+
if not check_package("langchain"):
|
|
19
|
+
raise ImportError("LangChain package not found. Please install it using: pip install langchain")
|
|
20
|
+
if not check_package("langchain_core"):
|
|
21
|
+
raise ImportError("LangChain Core package not found. Please install it using: pip install langchain-core")
|
|
22
|
+
|
|
23
|
+
# Check dependencies before importing
|
|
24
|
+
check_langchain_dependencies()
|
|
25
|
+
|
|
26
|
+
@dataclass
|
|
27
|
+
class ChainConfig:
|
|
28
|
+
"""Configuration for chain operations"""
|
|
29
|
+
prompt: Optional[str] = None
|
|
30
|
+
prompt_template: Optional[str] = None
|
|
31
|
+
input_dict: Optional[Dict[str, Any]] = None
|
|
32
|
+
|
|
33
|
+
class Chain:
|
|
34
|
+
"""
|
|
35
|
+
Class to chain functions in chatbot with improved OOP design
|
|
36
|
+
"""
|
|
37
|
+
def __init__(self, model: Any, config: Optional[ChainConfig] = None, **kwargs):
|
|
38
|
+
"""
|
|
39
|
+
Initialize chain
|
|
40
|
+
Args:
|
|
41
|
+
model: The language model to use
|
|
42
|
+
config: Chain configuration
|
|
43
|
+
**kwargs: Additional arguments
|
|
44
|
+
"""
|
|
45
|
+
self.model = model
|
|
46
|
+
self._output_parser = StrOutputParser()
|
|
47
|
+
self._initialize_config(config, **kwargs)
|
|
48
|
+
|
|
49
|
+
@classmethod
|
|
50
|
+
def from_template(cls, model: Any, template: str, input_dict: Dict[str, Any], **kwargs) -> 'Chain':
|
|
51
|
+
"""
|
|
52
|
+
Create chain from template
|
|
53
|
+
Args:
|
|
54
|
+
model: The language model
|
|
55
|
+
template: Prompt template
|
|
56
|
+
input_dict: Input dictionary for template
|
|
57
|
+
**kwargs: Additional arguments
|
|
58
|
+
Returns:
|
|
59
|
+
Chain: New chain instance
|
|
60
|
+
"""
|
|
61
|
+
config = ChainConfig(
|
|
62
|
+
prompt_template=template,
|
|
63
|
+
input_dict=input_dict
|
|
64
|
+
)
|
|
65
|
+
return cls(model, config, **kwargs)
|
|
66
|
+
|
|
67
|
+
@classmethod
|
|
68
|
+
def from_prompt(cls, model: Any, prompt: str, **kwargs) -> 'Chain':
|
|
69
|
+
"""
|
|
70
|
+
Create chain from direct prompt
|
|
71
|
+
Args:
|
|
72
|
+
model: The language model
|
|
73
|
+
prompt: Direct prompt
|
|
74
|
+
**kwargs: Additional arguments
|
|
75
|
+
Returns:
|
|
76
|
+
Chain: New chain instance
|
|
77
|
+
"""
|
|
78
|
+
config = ChainConfig(prompt=prompt)
|
|
79
|
+
return cls(model, config, **kwargs)
|
|
80
|
+
|
|
81
|
+
def _initialize_config(self, config: Optional[ChainConfig], **kwargs) -> None:
|
|
82
|
+
"""Initialize chain configuration"""
|
|
83
|
+
if config:
|
|
84
|
+
self.input_dict = config.input_dict
|
|
85
|
+
if config.prompt_template:
|
|
86
|
+
self.prompt = invoke_prompt(config.prompt_template, self.input_dict)
|
|
87
|
+
else:
|
|
88
|
+
self.prompt = config.prompt
|
|
89
|
+
else:
|
|
90
|
+
self.input_dict = kwargs.get('input_dict')
|
|
91
|
+
if prompt_template := kwargs.get('prompt_template'):
|
|
92
|
+
self.prompt = invoke_prompt(prompt_template, self.input_dict)
|
|
93
|
+
else:
|
|
94
|
+
self.prompt = kwargs.get('prompt')
|
|
95
|
+
|
|
96
|
+
@property
|
|
97
|
+
def output_parser(self) -> StrOutputParser:
|
|
98
|
+
"""Get the output parser"""
|
|
99
|
+
return self._output_parser
|
|
100
|
+
|
|
101
|
+
@staticmethod
|
|
102
|
+
def _validate_chain_components(prompt: Any, middle_chain: Optional[List] = None) -> None:
|
|
103
|
+
"""
|
|
104
|
+
Validate chain components
|
|
105
|
+
Args:
|
|
106
|
+
prompt: The prompt to validate
|
|
107
|
+
middle_chain: Optional middle chain to validate
|
|
108
|
+
Raises:
|
|
109
|
+
ValueError: If validation fails
|
|
110
|
+
"""
|
|
111
|
+
if prompt is None:
|
|
112
|
+
raise ValueError("Prompt is not provided")
|
|
113
|
+
if middle_chain is not None and not isinstance(middle_chain, list):
|
|
114
|
+
raise ValueError("middle_chain should be a list")
|
|
115
|
+
|
|
116
|
+
def invoke(self) -> Any:
|
|
117
|
+
"""
|
|
118
|
+
Invoke the chain
|
|
119
|
+
Returns:
|
|
120
|
+
Any: Output from the chain
|
|
121
|
+
Raises:
|
|
122
|
+
Exception: If prompt is not provided
|
|
123
|
+
"""
|
|
124
|
+
self._validate_chain_components(self.prompt)
|
|
125
|
+
chain_output = self.prompt | self.model | self.output_parser
|
|
126
|
+
return chain_output
|
|
127
|
+
|
|
128
|
+
def chain_sequence_invoke(self,
|
|
129
|
+
middle_chain: Optional[List] = None,
|
|
130
|
+
final_chain: Optional[RunnableLambda] = None) -> Any:
|
|
131
|
+
"""
|
|
132
|
+
Chain invoke the sequence
|
|
133
|
+
Args:
|
|
134
|
+
middle_chain: List of functions/Prompts/RunnableLambda to chain
|
|
135
|
+
final_chain: Final chain to run
|
|
136
|
+
Returns:
|
|
137
|
+
Any: Output from the chain
|
|
138
|
+
"""
|
|
139
|
+
self._validate_chain_components(self.prompt, middle_chain)
|
|
140
|
+
|
|
141
|
+
final = final_chain if final_chain is not None else self.output_parser
|
|
142
|
+
|
|
143
|
+
if middle_chain:
|
|
144
|
+
func_chain = RunnableSequence(self.prompt, middle_chain, final)
|
|
145
|
+
return func_chain.invoke()
|
|
146
|
+
return None
|
|
147
|
+
|
|
148
|
+
def chain_parallel_invoke(self, parallel_chain: List) -> Any:
|
|
149
|
+
"""
|
|
150
|
+
Chain invoke in parallel
|
|
151
|
+
Args:
|
|
152
|
+
parallel_chain: List of chains to run in parallel
|
|
153
|
+
Returns:
|
|
154
|
+
Any: Output from the parallel chains
|
|
155
|
+
Raises:
|
|
156
|
+
ImportError: If LangChain is not installed
|
|
157
|
+
"""
|
|
158
|
+
if not check_package("langchain"):
|
|
159
|
+
raise ImportError("LangChain package not found. Please install it using: pip install langchain")
|
|
160
|
+
return parallel_chain.invoke()
|
|
161
|
+
|
|
162
|
+
def chain_branch_invoke(self, branch_chain: Dict) -> Any:
|
|
163
|
+
"""
|
|
164
|
+
Chain invoke with branching
|
|
165
|
+
Args:
|
|
166
|
+
branch_chain: Dictionary of branch chains
|
|
167
|
+
Returns:
|
|
168
|
+
Any: Output from the branch chain
|
|
169
|
+
Raises:
|
|
170
|
+
ImportError: If LangChain is not installed
|
|
171
|
+
"""
|
|
172
|
+
if not check_package("langchain"):
|
|
173
|
+
raise ImportError("LangChain package not found. Please install it using: pip install langchain")
|
|
174
|
+
return branch_chain.invoke()
|
|
175
|
+
|
|
176
|
+
@staticmethod
|
|
177
|
+
def create_parallel_chain(prompt_template: str, model: Any, branches: Dict[str, Any]) -> Any:
|
|
178
|
+
"""
|
|
179
|
+
Create a parallel chain
|
|
180
|
+
Args:
|
|
181
|
+
prompt_template: Template for the prompt
|
|
182
|
+
model: The language model
|
|
183
|
+
branches: Dictionary of branch configurations
|
|
184
|
+
Returns:
|
|
185
|
+
Any: Configured parallel chain
|
|
186
|
+
"""
|
|
187
|
+
from langchain.schema.runnable import RunnableParallel
|
|
188
|
+
return (
|
|
189
|
+
prompt_template
|
|
190
|
+
| model
|
|
191
|
+
| StrOutputParser()
|
|
192
|
+
| RunnableParallel(branches=branches)
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
@staticmethod
|
|
196
|
+
def create_branch_chain(conditions: List[tuple], default_chain: Any) -> Any:
|
|
197
|
+
"""
|
|
198
|
+
Create a branch chain
|
|
199
|
+
Args:
|
|
200
|
+
conditions: List of condition-chain tuples
|
|
201
|
+
default_chain: Default chain to use
|
|
202
|
+
Returns:
|
|
203
|
+
Any: Configured branch chain
|
|
204
|
+
"""
|
|
205
|
+
from langchain.schema.runnable import RunnableBranch
|
|
206
|
+
return RunnableBranch(*conditions, default_chain)
|
|
@@ -0,0 +1,185 @@
|
|
|
1
|
+
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
|
|
2
|
+
from typing import Optional, List, Any, Union
|
|
3
|
+
|
|
4
|
+
__all__ = [
|
|
5
|
+
'ConversationModel'
|
|
6
|
+
]
|
|
7
|
+
|
|
8
|
+
class ConversationModel:
|
|
9
|
+
"""
|
|
10
|
+
A class to handle conversation with AI models
|
|
11
|
+
|
|
12
|
+
Attributes:
|
|
13
|
+
chatbot: The AI model for conversation
|
|
14
|
+
message_list (List): List of conversation messages
|
|
15
|
+
file_path (str): Path to save/load conversations. Can be local or S3
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
def __init__(self,
|
|
19
|
+
llm: Any,
|
|
20
|
+
message_list: Optional[List[Any]] = None,
|
|
21
|
+
file_path: Optional[str] = None,
|
|
22
|
+
**kwargs) -> None:
|
|
23
|
+
"""Initialize conversation model"""
|
|
24
|
+
self.chatbot = llm
|
|
25
|
+
if message_list:
|
|
26
|
+
self.message_list = message_list
|
|
27
|
+
else:
|
|
28
|
+
self.message_list = []
|
|
29
|
+
if file_path:
|
|
30
|
+
self.file_path = file_path
|
|
31
|
+
else:
|
|
32
|
+
self.file_path = None
|
|
33
|
+
|
|
34
|
+
def initialize_conversation(self,context_message: str = "") -> None:
|
|
35
|
+
"""Initialize conversation state.
|
|
36
|
+
Getting the content from file_path if provided"""
|
|
37
|
+
if self.file_path:
|
|
38
|
+
self.load_conversation()
|
|
39
|
+
|
|
40
|
+
if context_message:
|
|
41
|
+
self.message_list.append(SystemMessage(content=context_message))
|
|
42
|
+
else:
|
|
43
|
+
self.message_list.append(SystemMessage(content="""This is conversation model.
|
|
44
|
+
Look into the conversation history and answer the question if provided.
|
|
45
|
+
Give a brief introduction of the conversation history."""))
|
|
46
|
+
message_list_content = "".join(self.all_messages_content)
|
|
47
|
+
return self.add_message(message_list_content,get_content_only=True)
|
|
48
|
+
|
|
49
|
+
def _ask_question(self,query: str,images: list = None,
|
|
50
|
+
get_content_only: bool = True) -> str:
|
|
51
|
+
"""
|
|
52
|
+
Ask a question and get response
|
|
53
|
+
Args:
|
|
54
|
+
query: Question to ask
|
|
55
|
+
get_content_only: Whether to return only content
|
|
56
|
+
Returns:
|
|
57
|
+
str: Response from the model
|
|
58
|
+
"""
|
|
59
|
+
if images:
|
|
60
|
+
res = self.chatbot.invoke_query(query,images=images,get_content_only=get_content_only)
|
|
61
|
+
else:
|
|
62
|
+
res = self.chatbot.invoke_query(query,get_content_only=get_content_only)
|
|
63
|
+
return res
|
|
64
|
+
|
|
65
|
+
def add_message(self, query: str,images: list = None,get_content_only: bool = True) -> str:
|
|
66
|
+
"""
|
|
67
|
+
Add a message to the conversation
|
|
68
|
+
Args:
|
|
69
|
+
query (str): Question to ask
|
|
70
|
+
images (list): List of images to send to the model
|
|
71
|
+
get_content_only (bool): Whether to return only content
|
|
72
|
+
Returns:
|
|
73
|
+
str: Response from the chatbot
|
|
74
|
+
"""
|
|
75
|
+
self.message_list.append(HumanMessage(content=query))
|
|
76
|
+
res = self._ask_question(query,images=images,get_content_only=get_content_only)
|
|
77
|
+
self.message_list.append(AIMessage(content=res))
|
|
78
|
+
return res
|
|
79
|
+
|
|
80
|
+
@property
|
|
81
|
+
def all_messages(self) -> List[Union[SystemMessage, HumanMessage, AIMessage]]:
|
|
82
|
+
"""Get all messages"""
|
|
83
|
+
return self.message_list
|
|
84
|
+
|
|
85
|
+
@property
|
|
86
|
+
def last_message(self) -> str:
|
|
87
|
+
"""Get the last message"""
|
|
88
|
+
return self.message_list[-1].content
|
|
89
|
+
|
|
90
|
+
@property
|
|
91
|
+
def all_messages_content(self) -> List[str]:
|
|
92
|
+
"""Get content of all messages"""
|
|
93
|
+
return [message.content for message in self.message_list]
|
|
94
|
+
|
|
95
|
+
def _is_s3_path(self, path: str) -> bool:
|
|
96
|
+
"""
|
|
97
|
+
Check if path is an S3 path
|
|
98
|
+
Args:
|
|
99
|
+
path (str): Path to check
|
|
100
|
+
Returns:
|
|
101
|
+
bool: True if S3 path
|
|
102
|
+
"""
|
|
103
|
+
return path.startswith("s3://")
|
|
104
|
+
|
|
105
|
+
def save_conversation(self, file_path: Optional[str] = None, **kwargs) -> bool:
|
|
106
|
+
"""
|
|
107
|
+
Save the conversation
|
|
108
|
+
Args:
|
|
109
|
+
file_path: Path to save the conversation
|
|
110
|
+
**kwargs: Additional arguments for S3
|
|
111
|
+
Returns:
|
|
112
|
+
bool: Success status
|
|
113
|
+
"""
|
|
114
|
+
if self._is_s3_path(file_path or self.file_path):
|
|
115
|
+
print("Saving conversation to S3.")
|
|
116
|
+
self.save_file_path = file_path
|
|
117
|
+
return self._save_to_s3(self.file_path,**kwargs)
|
|
118
|
+
return self._save_to_file(file_path or self.file_path)
|
|
119
|
+
|
|
120
|
+
def _save_to_s3(self,**kwargs) -> bool:
|
|
121
|
+
"""Save conversation to S3"""
|
|
122
|
+
try:
|
|
123
|
+
client = kwargs.get('client', self.client)
|
|
124
|
+
bucket = kwargs.get('bucket', self.bucket)
|
|
125
|
+
client.put_object(
|
|
126
|
+
Body=str(self.message_list),
|
|
127
|
+
Bucket=bucket,
|
|
128
|
+
Key=self.save_file_path
|
|
129
|
+
)
|
|
130
|
+
print(f"Conversation saved to s3_path: {self.s3_path}")
|
|
131
|
+
return True
|
|
132
|
+
except Exception as e:
|
|
133
|
+
raise ValueError(f"Error saving conversation to s3: {e}")
|
|
134
|
+
|
|
135
|
+
def _save_to_file(self, file_path: str) -> bool:
|
|
136
|
+
"""Save conversation to file"""
|
|
137
|
+
try:
|
|
138
|
+
with open(file_path, 'w') as f:
|
|
139
|
+
for message in self.message_list:
|
|
140
|
+
f.write(f"{message.content}\n")
|
|
141
|
+
print(f"Conversation saved to file: {file_path}")
|
|
142
|
+
return True
|
|
143
|
+
except Exception as e:
|
|
144
|
+
raise ValueError(f"Error saving conversation to file: {e}")
|
|
145
|
+
|
|
146
|
+
def load_conversation(self, file_path: Optional[str] = None, **kwargs) -> List[Any]:
|
|
147
|
+
"""
|
|
148
|
+
Load a conversation
|
|
149
|
+
Args:
|
|
150
|
+
file_path: Path to load from
|
|
151
|
+
**kwargs: Additional arguments for S3
|
|
152
|
+
Returns:
|
|
153
|
+
List: Loaded messages
|
|
154
|
+
"""
|
|
155
|
+
self.message_list = []
|
|
156
|
+
if self._is_s3_path(file_path or self.file_path):
|
|
157
|
+
print("Loading conversation from S3.")
|
|
158
|
+
self.file_path = file_path
|
|
159
|
+
return self._load_from_s3(**kwargs)
|
|
160
|
+
return self._load_from_file(file_path or self.file_path)
|
|
161
|
+
|
|
162
|
+
def _load_from_s3(self, **kwargs) -> List[Any]:
|
|
163
|
+
"""Load conversation from S3"""
|
|
164
|
+
try:
|
|
165
|
+
client = kwargs.get('client', self.client)
|
|
166
|
+
bucket = kwargs.get('bucket', self.bucket)
|
|
167
|
+
res = client.get_response(client, bucket, self.s3_path)
|
|
168
|
+
res_str = eval(res['Body'].read().decode('utf-8'))
|
|
169
|
+
self.message_list = [SystemMessage(content=res_str)]
|
|
170
|
+
print(f"Conversation loaded from s3_path: {self.file_path}")
|
|
171
|
+
return self.message_list
|
|
172
|
+
except Exception as e:
|
|
173
|
+
raise ValueError(f"Error loading conversation from s3: {e}")
|
|
174
|
+
|
|
175
|
+
def _load_from_file(self, file_path: str) -> List[Any]:
|
|
176
|
+
"""Load conversation from file"""
|
|
177
|
+
try:
|
|
178
|
+
with open(file_path, 'r') as f:
|
|
179
|
+
lines = f.readlines()
|
|
180
|
+
for line in lines:
|
|
181
|
+
self.message_list.append(SystemMessage(content=line))
|
|
182
|
+
print(f"Conversation loaded from file: {file_path}")
|
|
183
|
+
return self.message_list
|
|
184
|
+
except Exception as e:
|
|
185
|
+
raise ValueError(f"Error loading conversation from file: {e}")
|