maxframe 2.0.0b2__cp37-cp37m-win32.whl → 2.3.0rc1__cp37-cp37m-win32.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of maxframe might be problematic. Click here for more details.
- maxframe/__init__.py +1 -0
- maxframe/_utils.cp37-win32.pyd +0 -0
- maxframe/_utils.pyx +14 -1
- maxframe/codegen/core.py +9 -8
- maxframe/codegen/spe/core.py +1 -1
- maxframe/codegen/spe/dataframe/__init__.py +1 -0
- maxframe/codegen/spe/dataframe/accessors/base.py +18 -0
- maxframe/codegen/spe/dataframe/accessors/dict_.py +25 -130
- maxframe/codegen/spe/dataframe/accessors/list_.py +12 -48
- maxframe/codegen/spe/dataframe/accessors/struct_.py +28 -0
- maxframe/codegen/spe/dataframe/arithmetic.py +7 -2
- maxframe/codegen/spe/dataframe/groupby.py +88 -0
- maxframe/codegen/spe/dataframe/indexing.py +99 -4
- maxframe/codegen/spe/dataframe/merge.py +38 -1
- maxframe/codegen/spe/dataframe/misc.py +11 -33
- maxframe/codegen/spe/dataframe/reduction.py +32 -9
- maxframe/codegen/spe/dataframe/reshape.py +46 -0
- maxframe/codegen/spe/dataframe/sort.py +39 -18
- maxframe/codegen/spe/dataframe/tests/accessors/test_dict.py +9 -15
- maxframe/codegen/spe/dataframe/tests/accessors/test_list.py +4 -7
- maxframe/codegen/spe/dataframe/tests/accessors/test_struct.py +75 -0
- maxframe/codegen/spe/dataframe/tests/indexing/test_iloc.py +20 -1
- maxframe/codegen/spe/dataframe/tests/indexing/test_loc.py +35 -0
- maxframe/codegen/spe/dataframe/tests/misc/test_misc.py +0 -32
- maxframe/codegen/spe/dataframe/tests/test_groupby.py +81 -18
- maxframe/codegen/spe/dataframe/tests/test_merge.py +27 -1
- maxframe/codegen/spe/dataframe/tests/test_reduction.py +13 -0
- maxframe/codegen/spe/dataframe/tests/test_reshape.py +79 -0
- maxframe/codegen/spe/dataframe/tests/test_sort.py +20 -0
- maxframe/codegen/spe/dataframe/tseries.py +9 -0
- maxframe/codegen/spe/learn/contrib/lightgbm.py +4 -3
- maxframe/codegen/spe/learn/contrib/tests/test_xgboost.py +2 -1
- maxframe/codegen/spe/learn/metrics/__init__.py +1 -1
- maxframe/codegen/spe/learn/metrics/_ranking.py +76 -0
- maxframe/codegen/spe/learn/metrics/pairwise.py +51 -0
- maxframe/codegen/spe/learn/metrics/tests/test_pairwise.py +36 -0
- maxframe/codegen/spe/learn/metrics/tests/test_ranking.py +59 -0
- maxframe/codegen/spe/tensor/__init__.py +3 -0
- maxframe/codegen/spe/tensor/datasource.py +1 -0
- maxframe/codegen/spe/tensor/fft.py +74 -0
- maxframe/codegen/spe/tensor/linalg.py +29 -2
- maxframe/codegen/spe/tensor/misc.py +79 -25
- maxframe/codegen/spe/tensor/spatial.py +45 -0
- maxframe/codegen/spe/tensor/statistics.py +44 -0
- maxframe/codegen/spe/tensor/tests/test_fft.py +64 -0
- maxframe/codegen/spe/tensor/tests/test_linalg.py +15 -1
- maxframe/codegen/spe/tensor/tests/test_misc.py +52 -2
- maxframe/codegen/spe/tensor/tests/test_spatial.py +33 -0
- maxframe/codegen/spe/tensor/tests/test_statistics.py +15 -1
- maxframe/codegen/spe/tests/test_spe_codegen.py +6 -12
- maxframe/codegen/spe/utils.py +2 -0
- maxframe/config/config.py +73 -9
- maxframe/config/tests/test_validators.py +13 -1
- maxframe/config/validators.py +49 -0
- maxframe/conftest.py +54 -17
- maxframe/core/accessor.py +2 -2
- maxframe/core/base.py +2 -1
- maxframe/core/entity/core.py +5 -0
- maxframe/core/entity/tileables.py +3 -1
- maxframe/core/graph/core.cp37-win32.pyd +0 -0
- maxframe/core/graph/entity.py +8 -3
- maxframe/core/mode.py +6 -1
- maxframe/core/operator/base.py +9 -2
- maxframe/core/operator/core.py +10 -2
- maxframe/core/operator/utils.py +13 -0
- maxframe/dataframe/__init__.py +12 -5
- maxframe/dataframe/accessors/__init__.py +1 -1
- maxframe/dataframe/accessors/compat.py +45 -0
- maxframe/dataframe/accessors/datetime_/__init__.py +4 -1
- maxframe/dataframe/accessors/dict_/contains.py +7 -16
- maxframe/dataframe/accessors/dict_/core.py +48 -0
- maxframe/dataframe/accessors/dict_/getitem.py +17 -21
- maxframe/dataframe/accessors/dict_/length.py +7 -16
- maxframe/dataframe/accessors/dict_/remove.py +6 -18
- maxframe/dataframe/accessors/dict_/setitem.py +8 -18
- maxframe/dataframe/accessors/dict_/tests/test_dict_accessor.py +62 -22
- maxframe/dataframe/accessors/list_/__init__.py +2 -2
- maxframe/dataframe/accessors/list_/core.py +48 -0
- maxframe/dataframe/accessors/list_/getitem.py +12 -19
- maxframe/dataframe/accessors/list_/length.py +7 -16
- maxframe/dataframe/accessors/list_/tests/test_list_accessor.py +11 -9
- maxframe/dataframe/accessors/string_/__init__.py +4 -1
- maxframe/dataframe/accessors/struct_/__init__.py +37 -0
- maxframe/dataframe/accessors/struct_/accessor.py +39 -0
- maxframe/dataframe/accessors/struct_/core.py +43 -0
- maxframe/dataframe/accessors/struct_/dtypes.py +53 -0
- maxframe/dataframe/accessors/struct_/field.py +123 -0
- maxframe/dataframe/accessors/struct_/tests/__init__.py +13 -0
- maxframe/dataframe/accessors/struct_/tests/test_struct_accessor.py +91 -0
- maxframe/dataframe/arithmetic/__init__.py +18 -4
- maxframe/dataframe/arithmetic/between.py +106 -0
- maxframe/dataframe/arithmetic/dot.py +237 -0
- maxframe/dataframe/arithmetic/maximum.py +33 -0
- maxframe/dataframe/arithmetic/minimum.py +33 -0
- maxframe/dataframe/arithmetic/{around.py → round.py} +11 -7
- maxframe/dataframe/core.py +161 -224
- maxframe/dataframe/datasource/__init__.py +18 -0
- maxframe/dataframe/datasource/core.py +6 -0
- maxframe/dataframe/datasource/direct.py +57 -0
- maxframe/dataframe/datasource/from_dict.py +124 -0
- maxframe/dataframe/datasource/from_index.py +1 -1
- maxframe/dataframe/datasource/from_records.py +77 -0
- maxframe/dataframe/datasource/from_tensor.py +109 -41
- maxframe/dataframe/datasource/read_csv.py +21 -14
- maxframe/dataframe/datasource/read_odps_query.py +29 -6
- maxframe/dataframe/datasource/read_odps_table.py +32 -10
- maxframe/dataframe/datasource/read_parquet.py +38 -39
- maxframe/dataframe/datasource/tests/test_datasource.py +37 -0
- maxframe/dataframe/datastore/__init__.py +11 -1
- maxframe/dataframe/datastore/direct.py +268 -0
- maxframe/dataframe/datastore/to_csv.py +29 -41
- maxframe/dataframe/datastore/to_odps.py +36 -4
- maxframe/dataframe/extensions/__init__.py +20 -4
- maxframe/dataframe/extensions/apply_chunk.py +32 -6
- maxframe/dataframe/extensions/cartesian_chunk.py +153 -0
- maxframe/dataframe/extensions/collect_kv.py +126 -0
- maxframe/dataframe/extensions/extract_kv.py +177 -0
- maxframe/dataframe/extensions/flatjson.py +2 -1
- maxframe/dataframe/extensions/map_reduce.py +263 -0
- maxframe/dataframe/extensions/rebalance.py +62 -0
- maxframe/dataframe/extensions/tests/test_apply_chunk.py +9 -2
- maxframe/dataframe/extensions/tests/test_extensions.py +54 -0
- maxframe/dataframe/extensions/tests/test_map_reduce.py +135 -0
- maxframe/dataframe/groupby/__init__.py +17 -2
- maxframe/dataframe/groupby/aggregation.py +86 -49
- maxframe/dataframe/groupby/apply.py +1 -1
- maxframe/dataframe/groupby/apply_chunk.py +19 -5
- maxframe/dataframe/groupby/core.py +116 -16
- maxframe/dataframe/groupby/cum.py +4 -25
- maxframe/dataframe/groupby/expanding.py +264 -0
- maxframe/dataframe/groupby/fill.py +1 -1
- maxframe/dataframe/groupby/getitem.py +12 -5
- maxframe/dataframe/groupby/head.py +11 -1
- maxframe/dataframe/groupby/rank.py +136 -0
- maxframe/dataframe/groupby/rolling.py +206 -0
- maxframe/dataframe/groupby/shift.py +114 -0
- maxframe/dataframe/groupby/tests/test_groupby.py +0 -5
- maxframe/dataframe/indexing/__init__.py +22 -2
- maxframe/dataframe/indexing/droplevel.py +195 -0
- maxframe/dataframe/indexing/filter.py +169 -0
- maxframe/dataframe/indexing/get_level_values.py +76 -0
- maxframe/dataframe/indexing/iat.py +45 -0
- maxframe/dataframe/indexing/iloc.py +152 -12
- maxframe/dataframe/indexing/insert.py +46 -18
- maxframe/dataframe/indexing/loc.py +287 -7
- maxframe/dataframe/indexing/reindex.py +14 -5
- maxframe/dataframe/indexing/rename.py +6 -0
- maxframe/dataframe/indexing/rename_axis.py +2 -2
- maxframe/dataframe/indexing/reorder_levels.py +143 -0
- maxframe/dataframe/indexing/reset_index.py +33 -6
- maxframe/dataframe/indexing/sample.py +8 -0
- maxframe/dataframe/indexing/setitem.py +3 -3
- maxframe/dataframe/indexing/swaplevel.py +185 -0
- maxframe/dataframe/indexing/take.py +99 -0
- maxframe/dataframe/indexing/truncate.py +140 -0
- maxframe/dataframe/indexing/where.py +0 -11
- maxframe/dataframe/indexing/xs.py +148 -0
- maxframe/dataframe/merge/__init__.py +15 -1
- maxframe/dataframe/merge/append.py +97 -98
- maxframe/dataframe/merge/combine.py +244 -0
- maxframe/dataframe/merge/combine_first.py +120 -0
- maxframe/dataframe/merge/compare.py +387 -0
- maxframe/dataframe/merge/concat.py +183 -0
- maxframe/dataframe/merge/update.py +271 -0
- maxframe/dataframe/misc/__init__.py +28 -11
- maxframe/dataframe/misc/_duplicate.py +10 -4
- maxframe/dataframe/misc/apply.py +1 -1
- maxframe/dataframe/misc/check_unique.py +82 -0
- maxframe/dataframe/misc/clip.py +145 -0
- maxframe/dataframe/misc/describe.py +175 -9
- maxframe/dataframe/misc/drop.py +31 -0
- maxframe/dataframe/misc/drop_duplicates.py +2 -2
- maxframe/dataframe/misc/duplicated.py +2 -2
- maxframe/dataframe/misc/get_dummies.py +5 -1
- maxframe/dataframe/misc/infer_dtypes.py +251 -0
- maxframe/dataframe/misc/isin.py +2 -2
- maxframe/dataframe/misc/map.py +125 -18
- maxframe/dataframe/misc/repeat.py +159 -0
- maxframe/dataframe/misc/tests/test_misc.py +48 -3
- maxframe/dataframe/misc/to_numeric.py +3 -0
- maxframe/dataframe/misc/transform.py +12 -5
- maxframe/dataframe/misc/transpose.py +13 -1
- maxframe/dataframe/misc/valid_index.py +115 -0
- maxframe/dataframe/misc/value_counts.py +38 -4
- maxframe/dataframe/missing/checkna.py +14 -6
- maxframe/dataframe/missing/dropna.py +5 -0
- maxframe/dataframe/missing/fillna.py +1 -1
- maxframe/dataframe/missing/replace.py +7 -4
- maxframe/dataframe/reduction/__init__.py +35 -16
- maxframe/dataframe/reduction/aggregation.py +43 -14
- maxframe/dataframe/reduction/all.py +2 -2
- maxframe/dataframe/reduction/any.py +2 -2
- maxframe/dataframe/reduction/argmax.py +103 -0
- maxframe/dataframe/reduction/argmin.py +103 -0
- maxframe/dataframe/reduction/core.py +80 -24
- maxframe/dataframe/reduction/count.py +13 -9
- maxframe/dataframe/reduction/cov.py +166 -0
- maxframe/dataframe/reduction/cummax.py +2 -2
- maxframe/dataframe/reduction/cummin.py +2 -2
- maxframe/dataframe/reduction/cumprod.py +2 -2
- maxframe/dataframe/reduction/cumsum.py +2 -2
- maxframe/dataframe/reduction/custom_reduction.py +2 -2
- maxframe/dataframe/reduction/idxmax.py +185 -0
- maxframe/dataframe/reduction/idxmin.py +185 -0
- maxframe/dataframe/reduction/kurtosis.py +37 -30
- maxframe/dataframe/reduction/max.py +2 -2
- maxframe/dataframe/reduction/mean.py +9 -7
- maxframe/dataframe/reduction/median.py +2 -2
- maxframe/dataframe/reduction/min.py +2 -2
- maxframe/dataframe/reduction/mode.py +144 -0
- maxframe/dataframe/reduction/nunique.py +19 -11
- maxframe/dataframe/reduction/prod.py +18 -13
- maxframe/dataframe/reduction/reduction_size.py +2 -2
- maxframe/dataframe/reduction/sem.py +13 -9
- maxframe/dataframe/reduction/skew.py +31 -27
- maxframe/dataframe/reduction/str_concat.py +10 -7
- maxframe/dataframe/reduction/sum.py +18 -14
- maxframe/dataframe/reduction/tests/test_reduction.py +12 -0
- maxframe/dataframe/reduction/unique.py +20 -3
- maxframe/dataframe/reduction/var.py +16 -12
- maxframe/dataframe/reshape/__init__.py +38 -0
- maxframe/dataframe/{misc → reshape}/pivot.py +1 -0
- maxframe/dataframe/{misc → reshape}/pivot_table.py +1 -0
- maxframe/dataframe/reshape/unstack.py +114 -0
- maxframe/dataframe/sort/__init__.py +16 -1
- maxframe/dataframe/sort/argsort.py +68 -0
- maxframe/dataframe/sort/core.py +2 -1
- maxframe/dataframe/sort/nlargest.py +238 -0
- maxframe/dataframe/sort/nsmallest.py +228 -0
- maxframe/dataframe/sort/rank.py +147 -0
- maxframe/dataframe/statistics/__init__.py +3 -3
- maxframe/dataframe/statistics/corr.py +1 -0
- maxframe/dataframe/statistics/quantile.py +2 -2
- maxframe/dataframe/tests/test_typing.py +104 -0
- maxframe/dataframe/tests/test_utils.py +66 -2
- maxframe/dataframe/tseries/__init__.py +19 -0
- maxframe/dataframe/tseries/at_time.py +61 -0
- maxframe/dataframe/tseries/between_time.py +122 -0
- maxframe/dataframe/typing_.py +185 -0
- maxframe/dataframe/utils.py +125 -52
- maxframe/dataframe/window/aggregation.py +8 -4
- maxframe/dataframe/window/core.py +14 -1
- maxframe/dataframe/window/ewm.py +1 -3
- maxframe/dataframe/window/expanding.py +37 -35
- maxframe/dataframe/window/rolling.py +49 -39
- maxframe/dataframe/window/tests/test_expanding.py +1 -7
- maxframe/dataframe/window/tests/test_rolling.py +1 -1
- maxframe/env.py +7 -4
- maxframe/errors.py +2 -2
- maxframe/io/odpsio/schema.py +9 -3
- maxframe/io/odpsio/tableio.py +7 -2
- maxframe/io/odpsio/tests/test_schema.py +198 -83
- maxframe/learn/__init__.py +10 -2
- maxframe/learn/cluster/__init__.py +15 -0
- maxframe/learn/cluster/_kmeans.py +782 -0
- maxframe/learn/contrib/llm/core.py +18 -7
- maxframe/learn/contrib/llm/deploy/__init__.py +13 -0
- maxframe/learn/contrib/llm/deploy/config.py +221 -0
- maxframe/learn/contrib/llm/deploy/core.py +247 -0
- maxframe/learn/contrib/llm/deploy/framework.py +35 -0
- maxframe/learn/contrib/llm/deploy/loader.py +360 -0
- maxframe/learn/contrib/llm/deploy/tests/__init__.py +13 -0
- maxframe/learn/contrib/llm/deploy/tests/test_register_models.py +359 -0
- maxframe/learn/contrib/llm/models/__init__.py +1 -0
- maxframe/learn/contrib/llm/models/dashscope.py +12 -6
- maxframe/learn/contrib/llm/models/managed.py +76 -11
- maxframe/learn/contrib/llm/models/openai.py +72 -0
- maxframe/learn/contrib/llm/tests/__init__.py +13 -0
- maxframe/learn/contrib/llm/tests/test_core.py +34 -0
- maxframe/learn/contrib/llm/tests/test_openai.py +187 -0
- maxframe/learn/contrib/llm/tests/test_text_gen.py +155 -0
- maxframe/learn/contrib/llm/text.py +348 -42
- maxframe/learn/contrib/models.py +4 -1
- maxframe/learn/contrib/xgboost/classifier.py +2 -0
- maxframe/learn/contrib/xgboost/core.py +113 -4
- maxframe/learn/contrib/xgboost/predict.py +4 -2
- maxframe/learn/contrib/xgboost/regressor.py +5 -0
- maxframe/learn/contrib/xgboost/train.py +7 -2
- maxframe/learn/core.py +66 -0
- maxframe/learn/linear_model/_base.py +58 -1
- maxframe/learn/linear_model/_lin_reg.py +1 -1
- maxframe/learn/metrics/__init__.py +6 -0
- maxframe/learn/metrics/_classification.py +145 -0
- maxframe/learn/metrics/_ranking.py +477 -0
- maxframe/learn/metrics/_scorer.py +60 -0
- maxframe/learn/metrics/pairwise/__init__.py +21 -0
- maxframe/learn/metrics/pairwise/core.py +77 -0
- maxframe/learn/metrics/pairwise/cosine.py +115 -0
- maxframe/learn/metrics/pairwise/euclidean.py +176 -0
- maxframe/learn/metrics/pairwise/haversine.py +96 -0
- maxframe/learn/metrics/pairwise/manhattan.py +80 -0
- maxframe/learn/metrics/pairwise/pairwise.py +127 -0
- maxframe/learn/metrics/pairwise/pairwise_distances_topk.py +121 -0
- maxframe/learn/metrics/pairwise/rbf_kernel.py +51 -0
- maxframe/learn/metrics/tests/__init__.py +13 -0
- maxframe/learn/metrics/tests/test_scorer.py +26 -0
- maxframe/learn/preprocessing/_data/min_max_scaler.py +34 -23
- maxframe/learn/preprocessing/_data/standard_scaler.py +34 -25
- maxframe/learn/utils/__init__.py +2 -1
- maxframe/learn/utils/checks.py +1 -2
- maxframe/learn/utils/core.py +59 -0
- maxframe/learn/utils/extmath.py +79 -9
- maxframe/learn/utils/odpsio.py +262 -0
- maxframe/learn/utils/validation.py +2 -2
- maxframe/lib/compat.py +40 -0
- maxframe/lib/dtypes_extension/__init__.py +16 -1
- maxframe/lib/dtypes_extension/_fake_arrow_dtype.py +604 -0
- maxframe/lib/dtypes_extension/blob.py +304 -0
- maxframe/lib/dtypes_extension/dtypes.py +40 -0
- maxframe/lib/dtypes_extension/tests/test_blob.py +88 -0
- maxframe/lib/dtypes_extension/tests/test_dtypes.py +16 -1
- maxframe/lib/dtypes_extension/tests/test_fake_arrow_dtype.py +75 -0
- maxframe/lib/filesystem/_oss_lib/common.py +124 -50
- maxframe/lib/filesystem/_oss_lib/glob.py +1 -1
- maxframe/lib/filesystem/_oss_lib/handle.py +21 -25
- maxframe/lib/filesystem/base.py +1 -1
- maxframe/lib/filesystem/core.py +1 -1
- maxframe/lib/filesystem/oss.py +115 -46
- maxframe/lib/filesystem/tests/test_oss.py +74 -36
- maxframe/lib/mmh3.cp37-win32.pyd +0 -0
- maxframe/lib/wrapped_pickle.py +10 -0
- maxframe/opcodes.py +41 -15
- maxframe/protocol.py +12 -0
- maxframe/remote/core.py +4 -0
- maxframe/serialization/__init__.py +11 -2
- maxframe/serialization/arrow.py +38 -13
- maxframe/serialization/blob.py +32 -0
- maxframe/serialization/core.cp37-win32.pyd +0 -0
- maxframe/serialization/core.pyx +39 -1
- maxframe/serialization/exception.py +2 -4
- maxframe/serialization/numpy.py +11 -0
- maxframe/serialization/pandas.py +46 -9
- maxframe/serialization/serializables/core.py +2 -2
- maxframe/serialization/tests/test_serial.py +31 -4
- maxframe/tensor/__init__.py +38 -8
- maxframe/tensor/arithmetic/__init__.py +19 -10
- maxframe/tensor/arithmetic/core.py +2 -2
- maxframe/tensor/arithmetic/iscomplexobj.py +53 -0
- maxframe/tensor/arithmetic/tests/test_arithmetic.py +6 -9
- maxframe/tensor/core.py +6 -2
- maxframe/tensor/datasource/tests/test_datasource.py +2 -1
- maxframe/tensor/extensions/__init__.py +2 -0
- maxframe/tensor/extensions/apply_chunk.py +3 -3
- maxframe/tensor/extensions/rebalance.py +65 -0
- maxframe/tensor/fft/__init__.py +32 -0
- maxframe/tensor/fft/core.py +168 -0
- maxframe/tensor/fft/fft.py +112 -0
- maxframe/tensor/fft/fft2.py +118 -0
- maxframe/tensor/fft/fftfreq.py +80 -0
- maxframe/tensor/fft/fftn.py +123 -0
- maxframe/tensor/fft/fftshift.py +79 -0
- maxframe/tensor/fft/hfft.py +112 -0
- maxframe/tensor/fft/ifft.py +114 -0
- maxframe/tensor/fft/ifft2.py +115 -0
- maxframe/tensor/fft/ifftn.py +123 -0
- maxframe/tensor/fft/ifftshift.py +73 -0
- maxframe/tensor/fft/ihfft.py +93 -0
- maxframe/tensor/fft/irfft.py +118 -0
- maxframe/tensor/fft/irfft2.py +62 -0
- maxframe/tensor/fft/irfftn.py +114 -0
- maxframe/tensor/fft/rfft.py +116 -0
- maxframe/tensor/fft/rfft2.py +63 -0
- maxframe/tensor/fft/rfftfreq.py +87 -0
- maxframe/tensor/fft/rfftn.py +113 -0
- maxframe/tensor/indexing/fill_diagonal.py +1 -7
- maxframe/tensor/linalg/__init__.py +7 -0
- maxframe/tensor/linalg/_einsumfunc.py +1025 -0
- maxframe/tensor/linalg/cholesky.py +117 -0
- maxframe/tensor/linalg/einsum.py +339 -0
- maxframe/tensor/linalg/lstsq.py +100 -0
- maxframe/tensor/linalg/matrix_norm.py +75 -0
- maxframe/tensor/linalg/norm.py +249 -0
- maxframe/tensor/linalg/solve.py +72 -0
- maxframe/tensor/linalg/solve_triangular.py +2 -2
- maxframe/tensor/linalg/vector_norm.py +113 -0
- maxframe/tensor/misc/__init__.py +24 -1
- maxframe/tensor/misc/argwhere.py +72 -0
- maxframe/tensor/misc/array_split.py +46 -0
- maxframe/tensor/misc/broadcast_arrays.py +57 -0
- maxframe/tensor/misc/copyto.py +130 -0
- maxframe/tensor/misc/delete.py +104 -0
- maxframe/tensor/misc/dsplit.py +68 -0
- maxframe/tensor/misc/ediff1d.py +74 -0
- maxframe/tensor/misc/expand_dims.py +85 -0
- maxframe/tensor/misc/flip.py +90 -0
- maxframe/tensor/misc/fliplr.py +64 -0
- maxframe/tensor/misc/flipud.py +68 -0
- maxframe/tensor/misc/hsplit.py +85 -0
- maxframe/tensor/misc/insert.py +139 -0
- maxframe/tensor/misc/moveaxis.py +83 -0
- maxframe/tensor/misc/result_type.py +88 -0
- maxframe/tensor/misc/roll.py +124 -0
- maxframe/tensor/misc/rollaxis.py +77 -0
- maxframe/tensor/misc/shape.py +89 -0
- maxframe/tensor/misc/split.py +190 -0
- maxframe/tensor/misc/tile.py +109 -0
- maxframe/tensor/misc/vsplit.py +74 -0
- maxframe/tensor/reduction/array_equal.py +2 -1
- maxframe/tensor/sort/__init__.py +2 -0
- maxframe/tensor/sort/argpartition.py +98 -0
- maxframe/tensor/sort/partition.py +228 -0
- maxframe/tensor/spatial/__init__.py +15 -0
- maxframe/tensor/spatial/distance/__init__.py +17 -0
- maxframe/tensor/spatial/distance/cdist.py +421 -0
- maxframe/tensor/spatial/distance/pdist.py +398 -0
- maxframe/tensor/spatial/distance/squareform.py +153 -0
- maxframe/tensor/special/__init__.py +159 -21
- maxframe/tensor/special/airy.py +55 -0
- maxframe/tensor/special/bessel.py +199 -0
- maxframe/tensor/special/core.py +65 -4
- maxframe/tensor/special/ellip_func_integrals.py +155 -0
- maxframe/tensor/special/ellip_harm.py +55 -0
- maxframe/tensor/special/err_fresnel.py +223 -0
- maxframe/tensor/special/gamma_funcs.py +303 -0
- maxframe/tensor/special/hypergeometric_funcs.py +69 -0
- maxframe/tensor/special/info_theory.py +189 -0
- maxframe/tensor/special/misc.py +21 -0
- maxframe/tensor/statistics/__init__.py +6 -0
- maxframe/tensor/statistics/corrcoef.py +77 -0
- maxframe/tensor/statistics/cov.py +222 -0
- maxframe/tensor/statistics/digitize.py +126 -0
- maxframe/tensor/statistics/histogram.py +520 -0
- maxframe/tensor/statistics/median.py +85 -0
- maxframe/tensor/statistics/ptp.py +89 -0
- maxframe/tensor/utils.py +3 -3
- maxframe/tests/test_udf.py +61 -0
- maxframe/tests/test_utils.py +51 -6
- maxframe/tests/utils.py +0 -2
- maxframe/typing_.py +2 -0
- maxframe/udf.py +130 -9
- maxframe/utils.py +254 -27
- {maxframe-2.0.0b2.dist-info → maxframe-2.3.0rc1.dist-info}/METADATA +3 -3
- {maxframe-2.0.0b2.dist-info → maxframe-2.3.0rc1.dist-info}/RECORD +442 -264
- maxframe_client/fetcher.py +35 -4
- maxframe_client/session/odps.py +7 -2
- maxframe_client/session/task.py +8 -1
- maxframe_client/tests/test_fetcher.py +76 -3
- maxframe_client/tests/test_session.py +28 -1
- maxframe/dataframe/arrays.py +0 -864
- /maxframe/dataframe/{misc → reshape}/melt.py +0 -0
- /maxframe/dataframe/{misc → reshape}/stack.py +0 -0
- {maxframe-2.0.0b2.dist-info → maxframe-2.3.0rc1.dist-info}/WHEEL +0 -0
- {maxframe-2.0.0b2.dist-info → maxframe-2.3.0rc1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
# Copyright 1999-2025 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import numpy as np
|
|
16
|
+
from numpy.linalg import LinAlgError
|
|
17
|
+
|
|
18
|
+
from ... import opcodes
|
|
19
|
+
from ...serialization.serializables import BoolField
|
|
20
|
+
from ..core import TensorOrder
|
|
21
|
+
from ..datasource import tensor as astensor
|
|
22
|
+
from ..operators import TensorHasInput, TensorOperatorMixin
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class TensorCholesky(TensorHasInput, TensorOperatorMixin):
|
|
26
|
+
_op_type_ = opcodes.CHOLESKY
|
|
27
|
+
|
|
28
|
+
lower = BoolField("lower")
|
|
29
|
+
|
|
30
|
+
def __call__(self, a):
|
|
31
|
+
return self.new_tensor([a], a.shape, order=TensorOrder.C_ORDER)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def cholesky(a, lower=False):
|
|
35
|
+
"""
|
|
36
|
+
Cholesky decomposition.
|
|
37
|
+
|
|
38
|
+
Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`,
|
|
39
|
+
where `L` is lower-triangular and .H is the conjugate transpose operator
|
|
40
|
+
(which is the ordinary transpose if `a` is real-valued). `a` must be
|
|
41
|
+
Hermitian (symmetric if real-valued) and positive-definite. Only `L` is
|
|
42
|
+
actually returned.
|
|
43
|
+
|
|
44
|
+
Parameters
|
|
45
|
+
----------
|
|
46
|
+
a : (..., M, M) array_like
|
|
47
|
+
Hermitian (symmetric if all elements are real), positive-definite
|
|
48
|
+
input matrix.
|
|
49
|
+
lower : bool
|
|
50
|
+
Whether to compute the upper or lower triangular Cholesky
|
|
51
|
+
factorization. Default is upper-triangular.
|
|
52
|
+
|
|
53
|
+
Returns
|
|
54
|
+
-------
|
|
55
|
+
L : (..., M, M) array_like
|
|
56
|
+
Upper or lower-triangular Cholesky factor of `a`.
|
|
57
|
+
|
|
58
|
+
Raises
|
|
59
|
+
------
|
|
60
|
+
LinAlgError
|
|
61
|
+
If the decomposition fails, for example, if `a` is not
|
|
62
|
+
positive-definite.
|
|
63
|
+
|
|
64
|
+
Notes
|
|
65
|
+
-----
|
|
66
|
+
|
|
67
|
+
Broadcasting rules apply, see the `mt.linalg` documentation for
|
|
68
|
+
details.
|
|
69
|
+
|
|
70
|
+
The Cholesky decomposition is often used as a fast way of solving
|
|
71
|
+
|
|
72
|
+
.. math:: A \\mathbf{x} = \\mathbf{b}
|
|
73
|
+
|
|
74
|
+
(when `A` is both Hermitian/symmetric and positive-definite).
|
|
75
|
+
|
|
76
|
+
First, we solve for :math:`\\mathbf{y}` in
|
|
77
|
+
|
|
78
|
+
.. math:: L \\mathbf{y} = \\mathbf{b},
|
|
79
|
+
|
|
80
|
+
and then for :math:`\\mathbf{x}` in
|
|
81
|
+
|
|
82
|
+
.. math:: L.H \\mathbf{x} = \\mathbf{y}.
|
|
83
|
+
|
|
84
|
+
Examples
|
|
85
|
+
--------
|
|
86
|
+
>>> import maxframe.tensor as mt
|
|
87
|
+
|
|
88
|
+
>>> A = mt.array([[1,-2j],[2j,5]])
|
|
89
|
+
>>> A.execute()
|
|
90
|
+
array([[ 1.+0.j, 0.-2.j],
|
|
91
|
+
[ 0.+2.j, 5.+0.j]])
|
|
92
|
+
>>> L = mt.linalg.cholesky(A, lower=True)
|
|
93
|
+
>>> L.execute()
|
|
94
|
+
array([[ 1.+0.j, 0.+0.j],
|
|
95
|
+
[ 0.+2.j, 1.+0.j]])
|
|
96
|
+
>>> mt.dot(L, L.T.conj()).execute() # verify that L * L.H = A
|
|
97
|
+
array([[ 1.+0.j, 0.-2.j],
|
|
98
|
+
[ 0.+2.j, 5.+0.j]])
|
|
99
|
+
>>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
|
|
100
|
+
>>> mt.linalg.cholesky(A, lower=True).execute()
|
|
101
|
+
array([[ 1.+0.j, 0.+0.j],
|
|
102
|
+
[ 0.+2.j, 1.+0.j]])
|
|
103
|
+
|
|
104
|
+
"""
|
|
105
|
+
a = astensor(a)
|
|
106
|
+
|
|
107
|
+
if a.ndim != 2: # pragma: no cover
|
|
108
|
+
raise LinAlgError(
|
|
109
|
+
f"{a.ndim}-dimensional array given. Tensor must be two-dimensional"
|
|
110
|
+
)
|
|
111
|
+
if a.shape[0] != a.shape[1]: # pragma: no cover
|
|
112
|
+
raise LinAlgError("Input must be square")
|
|
113
|
+
|
|
114
|
+
cho = np.linalg.cholesky(np.array([[1, 2], [2, 5]], dtype=a.dtype))
|
|
115
|
+
|
|
116
|
+
op = TensorCholesky(lower=lower, dtype=cho.dtype)
|
|
117
|
+
return op(a)
|
|
@@ -0,0 +1,339 @@
|
|
|
1
|
+
# Copyright 1999-2025 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from ... import opcodes
|
|
16
|
+
from ...serialization.serializables import AnyField, StringField
|
|
17
|
+
from ..core import TensorOrder
|
|
18
|
+
from ..operators import TensorOperator, TensorOperatorMixin
|
|
19
|
+
from ._einsumfunc import einsum_path, parse_einsum_input
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class TensorEinsum(TensorOperator, TensorOperatorMixin):
|
|
23
|
+
_op_type_ = opcodes.EINSUM
|
|
24
|
+
|
|
25
|
+
subscripts = StringField("subscripts")
|
|
26
|
+
optimize = AnyField("optimize")
|
|
27
|
+
order = StringField("order")
|
|
28
|
+
casting = StringField("casting")
|
|
29
|
+
|
|
30
|
+
def __call__(self, input_tensors, shape):
|
|
31
|
+
if self.order in "KA":
|
|
32
|
+
if any(t.order == TensorOrder.C_ORDER for t in input_tensors):
|
|
33
|
+
order = TensorOrder.C_ORDER
|
|
34
|
+
else:
|
|
35
|
+
order = TensorOrder.F_ORDER
|
|
36
|
+
else:
|
|
37
|
+
if self.order == "C":
|
|
38
|
+
order = TensorOrder.C_ORDER
|
|
39
|
+
else:
|
|
40
|
+
order = TensorOrder.F_ORDER
|
|
41
|
+
return self.new_tensor(
|
|
42
|
+
input_tensors, shape=shape, dtype=self.dtype, order=order
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
def einsum(
|
|
47
|
+
subscripts, *operands, dtype=None, order="K", casting="safe", optimize=False
|
|
48
|
+
):
|
|
49
|
+
"""
|
|
50
|
+
Evaluates the Einstein summation convention on the operands.
|
|
51
|
+
|
|
52
|
+
Using the Einstein summation convention, many common multi-dimensional,
|
|
53
|
+
linear algebraic array operations can be represented in a simple fashion.
|
|
54
|
+
In *implicit* mode `einsum` computes these values.
|
|
55
|
+
|
|
56
|
+
In *explicit* mode, `einsum` provides further flexibility to compute
|
|
57
|
+
other array operations that might not be considered classical Einstein
|
|
58
|
+
summation operations, by disabling, or forcing summation over specified
|
|
59
|
+
subscript labels.
|
|
60
|
+
|
|
61
|
+
See the notes and examples for clarification.
|
|
62
|
+
|
|
63
|
+
Parameters
|
|
64
|
+
----------
|
|
65
|
+
subscripts : str
|
|
66
|
+
Specifies the subscripts for summation as comma separated list of
|
|
67
|
+
subscript labels. An implicit (classical Einstein summation)
|
|
68
|
+
calculation is performed unless the explicit indicator '->' is
|
|
69
|
+
included as well as subscript labels of the precise output form.
|
|
70
|
+
operands : list of array_like
|
|
71
|
+
These are the arrays for the operation.
|
|
72
|
+
dtype : {data-type, None}, optional
|
|
73
|
+
If provided, forces the calculation to use the data type specified.
|
|
74
|
+
Note that you may have to also give a more liberal `casting`
|
|
75
|
+
parameter to allow the conversions. Default is None.
|
|
76
|
+
order : {'C', 'F', 'A', 'K'}, optional
|
|
77
|
+
Controls the memory layout of the output. 'C' means it should
|
|
78
|
+
be C contiguous. 'F' means it should be Fortran contiguous,
|
|
79
|
+
'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
|
|
80
|
+
'K' means it should be as close to the layout as the inputs as
|
|
81
|
+
is possible, including arbitrarily permuted axes.
|
|
82
|
+
Default is 'K'.
|
|
83
|
+
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
|
|
84
|
+
Controls what kind of data casting may occur. Setting this to
|
|
85
|
+
'unsafe' is not recommended, as it can adversely affect accumulations.
|
|
86
|
+
|
|
87
|
+
* 'no' means the data types should not be cast at all.
|
|
88
|
+
* 'equiv' means only byte-order changes are allowed.
|
|
89
|
+
* 'safe' means only casts which can preserve values are allowed.
|
|
90
|
+
* 'same_kind' means only safe casts or casts within a kind,
|
|
91
|
+
like float64 to float32, are allowed.
|
|
92
|
+
* 'unsafe' means any data conversions may be done.
|
|
93
|
+
|
|
94
|
+
Default is 'safe'.
|
|
95
|
+
optimize : {False, True, 'greedy', 'optimal'}, optional
|
|
96
|
+
Controls if intermediate optimization should occur. No optimization
|
|
97
|
+
will occur if False and True will default to the 'greedy' algorithm.
|
|
98
|
+
Also accepts an explicit contraction list from the ``np.einsum_path``
|
|
99
|
+
function. See ``np.einsum_path`` for more details. Defaults to False.
|
|
100
|
+
|
|
101
|
+
Returns
|
|
102
|
+
-------
|
|
103
|
+
output : maxframe.tensor.Tensor
|
|
104
|
+
The calculation based on the Einstein summation convention.
|
|
105
|
+
|
|
106
|
+
The Einstein summation convention can be used to compute
|
|
107
|
+
many multi-dimensional, linear algebraic array operations. `einsum`
|
|
108
|
+
provides a succinct way of representing these.
|
|
109
|
+
|
|
110
|
+
A non-exhaustive list of these operations,
|
|
111
|
+
which can be computed by `einsum`, is shown below along with examples:
|
|
112
|
+
|
|
113
|
+
* Trace of an array, :py:func:`numpy.trace`.
|
|
114
|
+
* Return a diagonal, :py:func:`numpy.diag`.
|
|
115
|
+
* Array axis summations, :py:func:`numpy.sum`.
|
|
116
|
+
* Transpositions and permutations, :py:func:`numpy.transpose`.
|
|
117
|
+
* Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
|
|
118
|
+
* Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
|
|
119
|
+
* Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
|
|
120
|
+
* Tensor contractions, :py:func:`numpy.tensordot`.
|
|
121
|
+
* Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`.
|
|
122
|
+
|
|
123
|
+
The subscripts string is a comma-separated list of subscript labels,
|
|
124
|
+
where each label refers to a dimension of the corresponding operand.
|
|
125
|
+
Whenever a label is repeated it is summed, so ``mt.einsum('i,i', a, b)``
|
|
126
|
+
is equivalent to :py:func:`mt.inner(a,b) <maxframe.tensor.inner>`. If a label
|
|
127
|
+
appears only once, it is not summed, so ``mt.einsum('i', a)`` produces a
|
|
128
|
+
view of ``a`` with no changes. A further example ``mt.einsum('ij,jk', a, b)``
|
|
129
|
+
describes traditional matrix multiplication and is equivalent to
|
|
130
|
+
:py:func:`mt.matmul(a,b) <maxframe.tensor.matmul>`.
|
|
131
|
+
|
|
132
|
+
In *implicit mode*, the chosen subscripts are important
|
|
133
|
+
since the axes of the output are reordered alphabetically. This
|
|
134
|
+
means that ``mt.einsum('ij', a)`` doesn't affect a 2D array, while
|
|
135
|
+
``mt.einsum('ji', a)`` takes its transpose. Additionally,
|
|
136
|
+
``mt.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
|
|
137
|
+
``mt.einsum('ij,jh', a, b)`` returns the transpose of the
|
|
138
|
+
multiplication since subscript 'h' precedes subscript 'i'.
|
|
139
|
+
|
|
140
|
+
In *explicit mode* the output can be directly controlled by
|
|
141
|
+
specifying output subscript labels. This requires the
|
|
142
|
+
identifier '->' as well as the list of output subscript labels.
|
|
143
|
+
This feature increases the flexibility of the function since
|
|
144
|
+
summing can be disabled or forced when required. The call
|
|
145
|
+
``mt.einsum('i->', a)`` is like :py:func:`mt.sum(a, axis=-1) <maxframe.tensor.sum>`,
|
|
146
|
+
and ``mt.einsum('ii->i', a)`` is like :py:func:`mt.diag(a) <maxframe.tensor.diag>`.
|
|
147
|
+
The difference is that `einsum` does not allow broadcasting by default.
|
|
148
|
+
Additionally ``mt.einsum('ij,jh->ih', a, b)`` directly specifies the
|
|
149
|
+
order of the output subscript labels and therefore returns matrix
|
|
150
|
+
multiplication, unlike the example above in implicit mode.
|
|
151
|
+
|
|
152
|
+
To enable and control broadcasting, use an ellipsis. Default
|
|
153
|
+
NumPy-style broadcasting is done by adding an ellipsis
|
|
154
|
+
to the left of each term, like ``mt.einsum('...ii->...i', a)``.
|
|
155
|
+
To take the trace along the first and last axes,
|
|
156
|
+
you can do ``mt.einsum('i...i', a)``, or to do a matrix-matrix
|
|
157
|
+
product with the left-most indices instead of rightmost, one can do
|
|
158
|
+
``mt.einsum('ij...,jk...->ik...', a, b)``.
|
|
159
|
+
|
|
160
|
+
When there is only one operand, no axes are summed, and no output
|
|
161
|
+
parameter is provided, a view into the operand is returned instead
|
|
162
|
+
of a new array. Thus, taking the diagonal as ``mt.einsum('ii->i', a)``
|
|
163
|
+
produces a view (changed in version 1.10.0).
|
|
164
|
+
|
|
165
|
+
`einsum` also provides an alternative way to provide the subscripts
|
|
166
|
+
and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
|
|
167
|
+
If the output shape is not provided in this format `einsum` will be
|
|
168
|
+
calculated in implicit mode, otherwise it will be performed explicitly.
|
|
169
|
+
The examples below have corresponding `einsum` calls with the two
|
|
170
|
+
parameter methods.
|
|
171
|
+
|
|
172
|
+
Examples
|
|
173
|
+
--------
|
|
174
|
+
>>> import maxframe.tensor as mt
|
|
175
|
+
>>> a = mt.arange(25).reshape(5,5)
|
|
176
|
+
>>> b = mt.arange(5)
|
|
177
|
+
>>> c = mt.arange(6).reshape(2,3)
|
|
178
|
+
Trace of a matrix:
|
|
179
|
+
>>> mt.einsum('ii', a).execute()
|
|
180
|
+
60
|
|
181
|
+
>>> mt.einsum(a, [0,0]).execute()
|
|
182
|
+
60
|
|
183
|
+
Extract the diagonal (requires explicit form):
|
|
184
|
+
>>> mt.einsum('ii->i', a).execute()
|
|
185
|
+
array([ 0, 6, 12, 18, 24])
|
|
186
|
+
>>> mt.einsum(a, [0,0], [0]).execute()
|
|
187
|
+
array([ 0, 6, 12, 18, 24])
|
|
188
|
+
>>> mt.diag(a).execute()
|
|
189
|
+
array([ 0, 6, 12, 18, 24])
|
|
190
|
+
Sum over an axis (requires explicit form):
|
|
191
|
+
>>> mt.einsum('ij->i', a).execute()
|
|
192
|
+
array([ 10, 35, 60, 85, 110])
|
|
193
|
+
>>> mt.einsum(a, [0,1], [0]).execute()
|
|
194
|
+
array([ 10, 35, 60, 85, 110])
|
|
195
|
+
>>> mt.sum(a, axis=1).execute()
|
|
196
|
+
array([ 10, 35, 60, 85, 110])
|
|
197
|
+
For higher dimensional arrays summing a single axis can be done with ellipsis:
|
|
198
|
+
>>> mt.einsum('...j->...', a).execute()
|
|
199
|
+
array([ 10, 35, 60, 85, 110])
|
|
200
|
+
>>> mt.einsum(a, [Ellipsis,1], [Ellipsis]).execute()
|
|
201
|
+
array([ 10, 35, 60, 85, 110])
|
|
202
|
+
Compute a matrix transpose, or reorder any number of axes:
|
|
203
|
+
>>> mt.einsum('ji', c).execute()
|
|
204
|
+
array([[0, 3],
|
|
205
|
+
[1, 4],
|
|
206
|
+
[2, 5]])
|
|
207
|
+
>>> mt.einsum('ij->ji', c).execute()
|
|
208
|
+
array([[0, 3],
|
|
209
|
+
[1, 4],
|
|
210
|
+
[2, 5]])
|
|
211
|
+
>>> mt.einsum(c, [1,0]).execute()
|
|
212
|
+
array([[0, 3],
|
|
213
|
+
[1, 4],
|
|
214
|
+
[2, 5]])
|
|
215
|
+
>>> mt.transpose(c).execute()
|
|
216
|
+
array([[0, 3],
|
|
217
|
+
[1, 4],
|
|
218
|
+
[2, 5]])
|
|
219
|
+
Vector inner products:
|
|
220
|
+
>>> mt.einsum('i,i', b, b).execute()
|
|
221
|
+
30
|
|
222
|
+
>>> mt.einsum(b, [0], b, [0]).execute()
|
|
223
|
+
30
|
|
224
|
+
>>> mt.inner(b,b).execute()
|
|
225
|
+
30
|
|
226
|
+
Matrix vector multiplication:
|
|
227
|
+
>>> mt.einsum('ij,j', a, b).execute()
|
|
228
|
+
array([ 30, 80, 130, 180, 230])
|
|
229
|
+
>>> mt.einsum(a, [0,1], b, [1]).execute()
|
|
230
|
+
array([ 30, 80, 130, 180, 230])
|
|
231
|
+
>>> mt.dot(a, b).execute()
|
|
232
|
+
array([ 30, 80, 130, 180, 230])
|
|
233
|
+
>>> mt.einsum('...j,j', a, b).execute()
|
|
234
|
+
array([ 30, 80, 130, 180, 230])
|
|
235
|
+
Broadcasting and scalar multiplication:
|
|
236
|
+
>>> mt.einsum('..., ...', 3, c).execute()
|
|
237
|
+
array([[ 0, 3, 6],
|
|
238
|
+
[ 9, 12, 15]])
|
|
239
|
+
>>> mt.einsum(',ij', 3, c).execute()
|
|
240
|
+
array([[ 0, 3, 6],
|
|
241
|
+
[ 9, 12, 15]])
|
|
242
|
+
>>> mt.einsum(3, [Ellipsis], c, [Ellipsis]).execute()
|
|
243
|
+
array([[ 0, 3, 6],
|
|
244
|
+
[ 9, 12, 15]])
|
|
245
|
+
>>> mt.multiply(3, c).execute()
|
|
246
|
+
array([[ 0, 3, 6],
|
|
247
|
+
[ 9, 12, 15]])
|
|
248
|
+
Vector outer product:
|
|
249
|
+
>>> mt.einsum('i,j', mt.arange(2)+1, b).execute()
|
|
250
|
+
array([[0, 1, 2, 3, 4],
|
|
251
|
+
[0, 2, 4, 6, 8]])
|
|
252
|
+
>>> mt.einsum(mt.arange(2)+1, [0], b, [1]).execute()
|
|
253
|
+
array([[0, 1, 2, 3, 4],
|
|
254
|
+
[0, 2, 4, 6, 8]])
|
|
255
|
+
>>> mt.outer(mt.arange(2)+1, b).execute()
|
|
256
|
+
array([[0, 1, 2, 3, 4],
|
|
257
|
+
[0, 2, 4, 6, 8]])
|
|
258
|
+
Tensor contraction:
|
|
259
|
+
>>> a = mt.arange(60.).reshape(3,4,5)
|
|
260
|
+
>>> b = mt.arange(24.).reshape(4,3,2)
|
|
261
|
+
>>> mt.einsum('ijk,jil->kl', a, b).execute()
|
|
262
|
+
array([[4400., 4730.],
|
|
263
|
+
[4532., 4874.],
|
|
264
|
+
[4664., 5018.],
|
|
265
|
+
[4796., 5162.],
|
|
266
|
+
[4928., 5306.]])
|
|
267
|
+
>>> mt.einsum(a, [0,1,2], b, [1,0,3], [2,3]).execute()
|
|
268
|
+
array([[4400., 4730.],
|
|
269
|
+
[4532., 4874.],
|
|
270
|
+
[4664., 5018.],
|
|
271
|
+
[4796., 5162.],
|
|
272
|
+
[4928., 5306.]])
|
|
273
|
+
>>> mt.tensordot(a,b, axes=([1,0],[0,1])).execute()
|
|
274
|
+
array([[4400., 4730.],
|
|
275
|
+
[4532., 4874.],
|
|
276
|
+
[4664., 5018.],
|
|
277
|
+
[4796., 5162.],
|
|
278
|
+
[4928., 5306.]])
|
|
279
|
+
Writeable returned arrays (since version 1.10.0):
|
|
280
|
+
>>> a = mt.zeros((3, 3))
|
|
281
|
+
>>> mt.einsum('ii->i', a)[:] = 1
|
|
282
|
+
>>> a.execute()
|
|
283
|
+
array([[1., 0., 0.],
|
|
284
|
+
[0., 1., 0.],
|
|
285
|
+
[0., 0., 1.]])
|
|
286
|
+
Example of ellipsis use:
|
|
287
|
+
>>> a = mt.arange(6).reshape((3,2))
|
|
288
|
+
>>> b = mt.arange(12).reshape((4,3))
|
|
289
|
+
>>> mt.einsum('ki,jk->ij', a, b).execute()
|
|
290
|
+
array([[10, 28, 46, 64],
|
|
291
|
+
[13, 40, 67, 94]])
|
|
292
|
+
>>> mt.einsum('ki,...k->i...', a, b).execute()
|
|
293
|
+
array([[10, 28, 46, 64],
|
|
294
|
+
[13, 40, 67, 94]])
|
|
295
|
+
>>> mt.einsum('k...,jk', a, b).execute()
|
|
296
|
+
array([[10, 28, 46, 64],
|
|
297
|
+
[13, 40, 67, 94]])
|
|
298
|
+
Chained array operations. For more complicated contractions, speed ups
|
|
299
|
+
might be achieved by repeatedly computing a 'greedy' path or pre-computing the
|
|
300
|
+
'optimal' path and repeatedly applying it, using an
|
|
301
|
+
`einsum_path` insertion (since version 1.12.0). Performance improvements can be
|
|
302
|
+
particularly significant with larger arrays:
|
|
303
|
+
>>> a = mt.ones(64).reshape(2,4,8)
|
|
304
|
+
Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
|
|
305
|
+
>>> for iteration in range(500):
|
|
306
|
+
... _ = mt.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
|
|
307
|
+
Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
|
|
308
|
+
>>> for iteration in range(500):
|
|
309
|
+
... _ = mt.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')
|
|
310
|
+
Greedy `einsum` (faster optimal path approximation): ~160ms
|
|
311
|
+
>>> for iteration in range(500):
|
|
312
|
+
... _ = mt.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
|
|
313
|
+
Optimal `einsum` (best usage pattern in some use cases): ~110ms
|
|
314
|
+
>>> path = mt.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0]
|
|
315
|
+
>>> for iteration in range(500):
|
|
316
|
+
... _ = mt.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)
|
|
317
|
+
|
|
318
|
+
"""
|
|
319
|
+
|
|
320
|
+
all_inputs = [subscripts] + list(operands)
|
|
321
|
+
inputs, outputs, operands = parse_einsum_input(all_inputs)
|
|
322
|
+
subscripts = "->".join((inputs, outputs))
|
|
323
|
+
axes_shape = dict()
|
|
324
|
+
for axes, op in zip(inputs.split(","), operands):
|
|
325
|
+
for ax, s in zip(axes, op.shape):
|
|
326
|
+
axes_shape[ax] = s
|
|
327
|
+
|
|
328
|
+
if optimize:
|
|
329
|
+
optimize, _ = einsum_path(*all_inputs, optimize=optimize)
|
|
330
|
+
|
|
331
|
+
shape = tuple(axes_shape[ax] for ax in outputs)
|
|
332
|
+
op = TensorEinsum(
|
|
333
|
+
subscripts=subscripts,
|
|
334
|
+
optimize=optimize,
|
|
335
|
+
dtype=dtype or operands[0].dtype,
|
|
336
|
+
order=order,
|
|
337
|
+
casting=casting,
|
|
338
|
+
)
|
|
339
|
+
return op(operands, shape)
|
|
@@ -0,0 +1,100 @@
|
|
|
1
|
+
# Copyright 1999-2025 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import numpy as np
|
|
16
|
+
|
|
17
|
+
from ...core import ExecutableTuple
|
|
18
|
+
from ...udf import builtin_function
|
|
19
|
+
from .svd import svd
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@builtin_function
|
|
23
|
+
def _cut_residuals(residuals, full_rank):
|
|
24
|
+
return residuals if full_rank else np.array([], dtype=residuals.dtype)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def lstsq(a, b, rcond=None):
|
|
28
|
+
"""
|
|
29
|
+
Return the least-squares solution to a linear matrix equation.
|
|
30
|
+
|
|
31
|
+
Computes the vector `x` that approximately solves the equation
|
|
32
|
+
``a @ x = b``. The equation may be under-, well-, or over-determined
|
|
33
|
+
(i.e., the number of linearly independent rows of `a` can be less than,
|
|
34
|
+
equal to, or greater than its number of linearly independent columns).
|
|
35
|
+
If `a` is square and of full rank, then `x` (but for round-off error)
|
|
36
|
+
is the "exact" solution of the equation. Else, `x` minimizes the
|
|
37
|
+
Euclidean 2-norm :math:`||b - ax||`. If there are multiple minimizing
|
|
38
|
+
solutions, the one with the smallest 2-norm :math:`||x||` is returned.
|
|
39
|
+
|
|
40
|
+
Parameters
|
|
41
|
+
----------
|
|
42
|
+
a : (M, N) array_like
|
|
43
|
+
"Coefficient" matrix.
|
|
44
|
+
b : {(M,), (M, K)} array_like
|
|
45
|
+
Ordinate or "dependent variable" values. If `b` is two-dimensional,
|
|
46
|
+
the least-squares solution is calculated for each of the `K` columns
|
|
47
|
+
of `b`.
|
|
48
|
+
rcond : float, optional
|
|
49
|
+
Cut-off ratio for small singular values of `a`.
|
|
50
|
+
For the purposes of rank determination, singular values are treated
|
|
51
|
+
as zero if they are smaller than `rcond` times the largest singular
|
|
52
|
+
value of `a`.
|
|
53
|
+
The default uses the machine precision times ``max(M, N)``. Passing
|
|
54
|
+
``-1`` will use machine precision.
|
|
55
|
+
|
|
56
|
+
Returns
|
|
57
|
+
-------
|
|
58
|
+
x : {(N,), (N, K)} ndarray
|
|
59
|
+
Least-squares solution. If `b` is two-dimensional,
|
|
60
|
+
the solutions are in the `K` columns of `x`.
|
|
61
|
+
residuals : {(1,), (K,), (0,)} ndarray
|
|
62
|
+
Sums of squared residuals: Squared Euclidean 2-norm for each column in
|
|
63
|
+
``b - a @ x``.
|
|
64
|
+
If the rank of `a` is < N or M <= N, this is an empty array.
|
|
65
|
+
If `b` is 1-dimensional, this is a (1,) shape array.
|
|
66
|
+
Otherwise the shape is (K,).
|
|
67
|
+
rank : int
|
|
68
|
+
Rank of matrix `a`.
|
|
69
|
+
s : (min(M, N),) ndarray
|
|
70
|
+
Singular values of `a`.
|
|
71
|
+
|
|
72
|
+
Raises
|
|
73
|
+
------
|
|
74
|
+
LinAlgError
|
|
75
|
+
If computation does not converge.
|
|
76
|
+
|
|
77
|
+
Notes
|
|
78
|
+
-----
|
|
79
|
+
If `b` is a matrix, then all array results are returned as matrices.
|
|
80
|
+
"""
|
|
81
|
+
# fixme when has_unknown_shape(a)
|
|
82
|
+
|
|
83
|
+
rcond = rcond if rcond is not None and rcond < 1 else None
|
|
84
|
+
if rcond is None:
|
|
85
|
+
rcond = max(a.shape) * np.finfo(a.dtype).eps
|
|
86
|
+
elif rcond == -1:
|
|
87
|
+
rcond = np.finfo(np.float64).eps
|
|
88
|
+
|
|
89
|
+
u, s, vt = svd(a)
|
|
90
|
+
cutoff = (s > s.max() * rcond).astype(int)
|
|
91
|
+
# v^T diag(1.0 / s) u_1^T b
|
|
92
|
+
x = vt.T * (1.0 / s * cutoff) @ u.T[: a.shape[1], :] @ b
|
|
93
|
+
residuals = b - a.dot(x)
|
|
94
|
+
residuals = abs(residuals**2).sum(axis=0, keepdims=b.ndim == 1)
|
|
95
|
+
|
|
96
|
+
rank = cutoff.sum()
|
|
97
|
+
residuals = residuals.mf.apply_chunk(
|
|
98
|
+
_cut_residuals, dtype=residuals.dtype, full_rank=rank == min(a.shape)
|
|
99
|
+
)
|
|
100
|
+
return ExecutableTuple((x, residuals, rank, s))
|
|
@@ -0,0 +1,75 @@
|
|
|
1
|
+
# Copyright 1999-2025 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from .norm import norm
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def matrix_norm(x, *, keepdims=False, ord="fro"):
|
|
19
|
+
"""
|
|
20
|
+
Computes the matrix norm of a matrix (or a stack of matrices) ``x``.
|
|
21
|
+
|
|
22
|
+
This function is Array API compatible.
|
|
23
|
+
|
|
24
|
+
Parameters
|
|
25
|
+
----------
|
|
26
|
+
x : array_like
|
|
27
|
+
Input array having shape (..., M, N) and whose two innermost
|
|
28
|
+
dimensions form ``MxN`` matrices.
|
|
29
|
+
keepdims : bool, optional
|
|
30
|
+
If this is set to True, the axes which are normed over are left in
|
|
31
|
+
the result as dimensions with size one. Default: False.
|
|
32
|
+
ord : {1, -1, 2, -2, inf, -inf, 'fro', 'nuc'}, optional
|
|
33
|
+
The order of the norm. For details see the table under ``Notes``
|
|
34
|
+
in `numpy.linalg.norm`.
|
|
35
|
+
|
|
36
|
+
See Also
|
|
37
|
+
--------
|
|
38
|
+
numpy.linalg.norm : Generic norm function
|
|
39
|
+
|
|
40
|
+
Examples
|
|
41
|
+
--------
|
|
42
|
+
>>> import maxframe.tensor as mt
|
|
43
|
+
>>> from maxframe.tensor import linalg as LA
|
|
44
|
+
>>> a = mt.arange(9) - 4
|
|
45
|
+
>>> a.execute()
|
|
46
|
+
array([-4, -3, -2, ..., 2, 3, 4])
|
|
47
|
+
>>> b = a.reshape((3, 3))
|
|
48
|
+
>>> b.execute()
|
|
49
|
+
array([[-4, -3, -2],
|
|
50
|
+
[-1, 0, 1],
|
|
51
|
+
[ 2, 3, 4]])
|
|
52
|
+
|
|
53
|
+
>>> LA.matrix_norm(b).execute()
|
|
54
|
+
7.745966692414834
|
|
55
|
+
>>> LA.matrix_norm(b, ord='fro').execute()
|
|
56
|
+
7.745966692414834
|
|
57
|
+
>>> LA.matrix_norm(b, ord=np.inf).execute()
|
|
58
|
+
9.0
|
|
59
|
+
>>> LA.matrix_norm(b, ord=-np.inf).execute()
|
|
60
|
+
2.0
|
|
61
|
+
|
|
62
|
+
>>> LA.matrix_norm(b, ord=1).execute()
|
|
63
|
+
7.0
|
|
64
|
+
>>> LA.matrix_norm(b, ord=-1).execute()
|
|
65
|
+
6.0
|
|
66
|
+
>>> LA.matrix_norm(b, ord=2).execute()
|
|
67
|
+
7.3484692283495345
|
|
68
|
+
>>> LA.matrix_norm(b, ord=-2).execute()
|
|
69
|
+
1.8570331885190563e-016 # may vary
|
|
70
|
+
|
|
71
|
+
"""
|
|
72
|
+
from ..datasource.array import asarray
|
|
73
|
+
|
|
74
|
+
x = asarray(x)
|
|
75
|
+
return norm(x, axis=(-2, -1), keepdims=keepdims, ord=ord)
|