maxframe 2.0.0b2__cp37-cp37m-win32.whl → 2.3.0rc1__cp37-cp37m-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of maxframe might be problematic. Click here for more details.

Files changed (443) hide show
  1. maxframe/__init__.py +1 -0
  2. maxframe/_utils.cp37-win32.pyd +0 -0
  3. maxframe/_utils.pyx +14 -1
  4. maxframe/codegen/core.py +9 -8
  5. maxframe/codegen/spe/core.py +1 -1
  6. maxframe/codegen/spe/dataframe/__init__.py +1 -0
  7. maxframe/codegen/spe/dataframe/accessors/base.py +18 -0
  8. maxframe/codegen/spe/dataframe/accessors/dict_.py +25 -130
  9. maxframe/codegen/spe/dataframe/accessors/list_.py +12 -48
  10. maxframe/codegen/spe/dataframe/accessors/struct_.py +28 -0
  11. maxframe/codegen/spe/dataframe/arithmetic.py +7 -2
  12. maxframe/codegen/spe/dataframe/groupby.py +88 -0
  13. maxframe/codegen/spe/dataframe/indexing.py +99 -4
  14. maxframe/codegen/spe/dataframe/merge.py +38 -1
  15. maxframe/codegen/spe/dataframe/misc.py +11 -33
  16. maxframe/codegen/spe/dataframe/reduction.py +32 -9
  17. maxframe/codegen/spe/dataframe/reshape.py +46 -0
  18. maxframe/codegen/spe/dataframe/sort.py +39 -18
  19. maxframe/codegen/spe/dataframe/tests/accessors/test_dict.py +9 -15
  20. maxframe/codegen/spe/dataframe/tests/accessors/test_list.py +4 -7
  21. maxframe/codegen/spe/dataframe/tests/accessors/test_struct.py +75 -0
  22. maxframe/codegen/spe/dataframe/tests/indexing/test_iloc.py +20 -1
  23. maxframe/codegen/spe/dataframe/tests/indexing/test_loc.py +35 -0
  24. maxframe/codegen/spe/dataframe/tests/misc/test_misc.py +0 -32
  25. maxframe/codegen/spe/dataframe/tests/test_groupby.py +81 -18
  26. maxframe/codegen/spe/dataframe/tests/test_merge.py +27 -1
  27. maxframe/codegen/spe/dataframe/tests/test_reduction.py +13 -0
  28. maxframe/codegen/spe/dataframe/tests/test_reshape.py +79 -0
  29. maxframe/codegen/spe/dataframe/tests/test_sort.py +20 -0
  30. maxframe/codegen/spe/dataframe/tseries.py +9 -0
  31. maxframe/codegen/spe/learn/contrib/lightgbm.py +4 -3
  32. maxframe/codegen/spe/learn/contrib/tests/test_xgboost.py +2 -1
  33. maxframe/codegen/spe/learn/metrics/__init__.py +1 -1
  34. maxframe/codegen/spe/learn/metrics/_ranking.py +76 -0
  35. maxframe/codegen/spe/learn/metrics/pairwise.py +51 -0
  36. maxframe/codegen/spe/learn/metrics/tests/test_pairwise.py +36 -0
  37. maxframe/codegen/spe/learn/metrics/tests/test_ranking.py +59 -0
  38. maxframe/codegen/spe/tensor/__init__.py +3 -0
  39. maxframe/codegen/spe/tensor/datasource.py +1 -0
  40. maxframe/codegen/spe/tensor/fft.py +74 -0
  41. maxframe/codegen/spe/tensor/linalg.py +29 -2
  42. maxframe/codegen/spe/tensor/misc.py +79 -25
  43. maxframe/codegen/spe/tensor/spatial.py +45 -0
  44. maxframe/codegen/spe/tensor/statistics.py +44 -0
  45. maxframe/codegen/spe/tensor/tests/test_fft.py +64 -0
  46. maxframe/codegen/spe/tensor/tests/test_linalg.py +15 -1
  47. maxframe/codegen/spe/tensor/tests/test_misc.py +52 -2
  48. maxframe/codegen/spe/tensor/tests/test_spatial.py +33 -0
  49. maxframe/codegen/spe/tensor/tests/test_statistics.py +15 -1
  50. maxframe/codegen/spe/tests/test_spe_codegen.py +6 -12
  51. maxframe/codegen/spe/utils.py +2 -0
  52. maxframe/config/config.py +73 -9
  53. maxframe/config/tests/test_validators.py +13 -1
  54. maxframe/config/validators.py +49 -0
  55. maxframe/conftest.py +54 -17
  56. maxframe/core/accessor.py +2 -2
  57. maxframe/core/base.py +2 -1
  58. maxframe/core/entity/core.py +5 -0
  59. maxframe/core/entity/tileables.py +3 -1
  60. maxframe/core/graph/core.cp37-win32.pyd +0 -0
  61. maxframe/core/graph/entity.py +8 -3
  62. maxframe/core/mode.py +6 -1
  63. maxframe/core/operator/base.py +9 -2
  64. maxframe/core/operator/core.py +10 -2
  65. maxframe/core/operator/utils.py +13 -0
  66. maxframe/dataframe/__init__.py +12 -5
  67. maxframe/dataframe/accessors/__init__.py +1 -1
  68. maxframe/dataframe/accessors/compat.py +45 -0
  69. maxframe/dataframe/accessors/datetime_/__init__.py +4 -1
  70. maxframe/dataframe/accessors/dict_/contains.py +7 -16
  71. maxframe/dataframe/accessors/dict_/core.py +48 -0
  72. maxframe/dataframe/accessors/dict_/getitem.py +17 -21
  73. maxframe/dataframe/accessors/dict_/length.py +7 -16
  74. maxframe/dataframe/accessors/dict_/remove.py +6 -18
  75. maxframe/dataframe/accessors/dict_/setitem.py +8 -18
  76. maxframe/dataframe/accessors/dict_/tests/test_dict_accessor.py +62 -22
  77. maxframe/dataframe/accessors/list_/__init__.py +2 -2
  78. maxframe/dataframe/accessors/list_/core.py +48 -0
  79. maxframe/dataframe/accessors/list_/getitem.py +12 -19
  80. maxframe/dataframe/accessors/list_/length.py +7 -16
  81. maxframe/dataframe/accessors/list_/tests/test_list_accessor.py +11 -9
  82. maxframe/dataframe/accessors/string_/__init__.py +4 -1
  83. maxframe/dataframe/accessors/struct_/__init__.py +37 -0
  84. maxframe/dataframe/accessors/struct_/accessor.py +39 -0
  85. maxframe/dataframe/accessors/struct_/core.py +43 -0
  86. maxframe/dataframe/accessors/struct_/dtypes.py +53 -0
  87. maxframe/dataframe/accessors/struct_/field.py +123 -0
  88. maxframe/dataframe/accessors/struct_/tests/__init__.py +13 -0
  89. maxframe/dataframe/accessors/struct_/tests/test_struct_accessor.py +91 -0
  90. maxframe/dataframe/arithmetic/__init__.py +18 -4
  91. maxframe/dataframe/arithmetic/between.py +106 -0
  92. maxframe/dataframe/arithmetic/dot.py +237 -0
  93. maxframe/dataframe/arithmetic/maximum.py +33 -0
  94. maxframe/dataframe/arithmetic/minimum.py +33 -0
  95. maxframe/dataframe/arithmetic/{around.py → round.py} +11 -7
  96. maxframe/dataframe/core.py +161 -224
  97. maxframe/dataframe/datasource/__init__.py +18 -0
  98. maxframe/dataframe/datasource/core.py +6 -0
  99. maxframe/dataframe/datasource/direct.py +57 -0
  100. maxframe/dataframe/datasource/from_dict.py +124 -0
  101. maxframe/dataframe/datasource/from_index.py +1 -1
  102. maxframe/dataframe/datasource/from_records.py +77 -0
  103. maxframe/dataframe/datasource/from_tensor.py +109 -41
  104. maxframe/dataframe/datasource/read_csv.py +21 -14
  105. maxframe/dataframe/datasource/read_odps_query.py +29 -6
  106. maxframe/dataframe/datasource/read_odps_table.py +32 -10
  107. maxframe/dataframe/datasource/read_parquet.py +38 -39
  108. maxframe/dataframe/datasource/tests/test_datasource.py +37 -0
  109. maxframe/dataframe/datastore/__init__.py +11 -1
  110. maxframe/dataframe/datastore/direct.py +268 -0
  111. maxframe/dataframe/datastore/to_csv.py +29 -41
  112. maxframe/dataframe/datastore/to_odps.py +36 -4
  113. maxframe/dataframe/extensions/__init__.py +20 -4
  114. maxframe/dataframe/extensions/apply_chunk.py +32 -6
  115. maxframe/dataframe/extensions/cartesian_chunk.py +153 -0
  116. maxframe/dataframe/extensions/collect_kv.py +126 -0
  117. maxframe/dataframe/extensions/extract_kv.py +177 -0
  118. maxframe/dataframe/extensions/flatjson.py +2 -1
  119. maxframe/dataframe/extensions/map_reduce.py +263 -0
  120. maxframe/dataframe/extensions/rebalance.py +62 -0
  121. maxframe/dataframe/extensions/tests/test_apply_chunk.py +9 -2
  122. maxframe/dataframe/extensions/tests/test_extensions.py +54 -0
  123. maxframe/dataframe/extensions/tests/test_map_reduce.py +135 -0
  124. maxframe/dataframe/groupby/__init__.py +17 -2
  125. maxframe/dataframe/groupby/aggregation.py +86 -49
  126. maxframe/dataframe/groupby/apply.py +1 -1
  127. maxframe/dataframe/groupby/apply_chunk.py +19 -5
  128. maxframe/dataframe/groupby/core.py +116 -16
  129. maxframe/dataframe/groupby/cum.py +4 -25
  130. maxframe/dataframe/groupby/expanding.py +264 -0
  131. maxframe/dataframe/groupby/fill.py +1 -1
  132. maxframe/dataframe/groupby/getitem.py +12 -5
  133. maxframe/dataframe/groupby/head.py +11 -1
  134. maxframe/dataframe/groupby/rank.py +136 -0
  135. maxframe/dataframe/groupby/rolling.py +206 -0
  136. maxframe/dataframe/groupby/shift.py +114 -0
  137. maxframe/dataframe/groupby/tests/test_groupby.py +0 -5
  138. maxframe/dataframe/indexing/__init__.py +22 -2
  139. maxframe/dataframe/indexing/droplevel.py +195 -0
  140. maxframe/dataframe/indexing/filter.py +169 -0
  141. maxframe/dataframe/indexing/get_level_values.py +76 -0
  142. maxframe/dataframe/indexing/iat.py +45 -0
  143. maxframe/dataframe/indexing/iloc.py +152 -12
  144. maxframe/dataframe/indexing/insert.py +46 -18
  145. maxframe/dataframe/indexing/loc.py +287 -7
  146. maxframe/dataframe/indexing/reindex.py +14 -5
  147. maxframe/dataframe/indexing/rename.py +6 -0
  148. maxframe/dataframe/indexing/rename_axis.py +2 -2
  149. maxframe/dataframe/indexing/reorder_levels.py +143 -0
  150. maxframe/dataframe/indexing/reset_index.py +33 -6
  151. maxframe/dataframe/indexing/sample.py +8 -0
  152. maxframe/dataframe/indexing/setitem.py +3 -3
  153. maxframe/dataframe/indexing/swaplevel.py +185 -0
  154. maxframe/dataframe/indexing/take.py +99 -0
  155. maxframe/dataframe/indexing/truncate.py +140 -0
  156. maxframe/dataframe/indexing/where.py +0 -11
  157. maxframe/dataframe/indexing/xs.py +148 -0
  158. maxframe/dataframe/merge/__init__.py +15 -1
  159. maxframe/dataframe/merge/append.py +97 -98
  160. maxframe/dataframe/merge/combine.py +244 -0
  161. maxframe/dataframe/merge/combine_first.py +120 -0
  162. maxframe/dataframe/merge/compare.py +387 -0
  163. maxframe/dataframe/merge/concat.py +183 -0
  164. maxframe/dataframe/merge/update.py +271 -0
  165. maxframe/dataframe/misc/__init__.py +28 -11
  166. maxframe/dataframe/misc/_duplicate.py +10 -4
  167. maxframe/dataframe/misc/apply.py +1 -1
  168. maxframe/dataframe/misc/check_unique.py +82 -0
  169. maxframe/dataframe/misc/clip.py +145 -0
  170. maxframe/dataframe/misc/describe.py +175 -9
  171. maxframe/dataframe/misc/drop.py +31 -0
  172. maxframe/dataframe/misc/drop_duplicates.py +2 -2
  173. maxframe/dataframe/misc/duplicated.py +2 -2
  174. maxframe/dataframe/misc/get_dummies.py +5 -1
  175. maxframe/dataframe/misc/infer_dtypes.py +251 -0
  176. maxframe/dataframe/misc/isin.py +2 -2
  177. maxframe/dataframe/misc/map.py +125 -18
  178. maxframe/dataframe/misc/repeat.py +159 -0
  179. maxframe/dataframe/misc/tests/test_misc.py +48 -3
  180. maxframe/dataframe/misc/to_numeric.py +3 -0
  181. maxframe/dataframe/misc/transform.py +12 -5
  182. maxframe/dataframe/misc/transpose.py +13 -1
  183. maxframe/dataframe/misc/valid_index.py +115 -0
  184. maxframe/dataframe/misc/value_counts.py +38 -4
  185. maxframe/dataframe/missing/checkna.py +14 -6
  186. maxframe/dataframe/missing/dropna.py +5 -0
  187. maxframe/dataframe/missing/fillna.py +1 -1
  188. maxframe/dataframe/missing/replace.py +7 -4
  189. maxframe/dataframe/reduction/__init__.py +35 -16
  190. maxframe/dataframe/reduction/aggregation.py +43 -14
  191. maxframe/dataframe/reduction/all.py +2 -2
  192. maxframe/dataframe/reduction/any.py +2 -2
  193. maxframe/dataframe/reduction/argmax.py +103 -0
  194. maxframe/dataframe/reduction/argmin.py +103 -0
  195. maxframe/dataframe/reduction/core.py +80 -24
  196. maxframe/dataframe/reduction/count.py +13 -9
  197. maxframe/dataframe/reduction/cov.py +166 -0
  198. maxframe/dataframe/reduction/cummax.py +2 -2
  199. maxframe/dataframe/reduction/cummin.py +2 -2
  200. maxframe/dataframe/reduction/cumprod.py +2 -2
  201. maxframe/dataframe/reduction/cumsum.py +2 -2
  202. maxframe/dataframe/reduction/custom_reduction.py +2 -2
  203. maxframe/dataframe/reduction/idxmax.py +185 -0
  204. maxframe/dataframe/reduction/idxmin.py +185 -0
  205. maxframe/dataframe/reduction/kurtosis.py +37 -30
  206. maxframe/dataframe/reduction/max.py +2 -2
  207. maxframe/dataframe/reduction/mean.py +9 -7
  208. maxframe/dataframe/reduction/median.py +2 -2
  209. maxframe/dataframe/reduction/min.py +2 -2
  210. maxframe/dataframe/reduction/mode.py +144 -0
  211. maxframe/dataframe/reduction/nunique.py +19 -11
  212. maxframe/dataframe/reduction/prod.py +18 -13
  213. maxframe/dataframe/reduction/reduction_size.py +2 -2
  214. maxframe/dataframe/reduction/sem.py +13 -9
  215. maxframe/dataframe/reduction/skew.py +31 -27
  216. maxframe/dataframe/reduction/str_concat.py +10 -7
  217. maxframe/dataframe/reduction/sum.py +18 -14
  218. maxframe/dataframe/reduction/tests/test_reduction.py +12 -0
  219. maxframe/dataframe/reduction/unique.py +20 -3
  220. maxframe/dataframe/reduction/var.py +16 -12
  221. maxframe/dataframe/reshape/__init__.py +38 -0
  222. maxframe/dataframe/{misc → reshape}/pivot.py +1 -0
  223. maxframe/dataframe/{misc → reshape}/pivot_table.py +1 -0
  224. maxframe/dataframe/reshape/unstack.py +114 -0
  225. maxframe/dataframe/sort/__init__.py +16 -1
  226. maxframe/dataframe/sort/argsort.py +68 -0
  227. maxframe/dataframe/sort/core.py +2 -1
  228. maxframe/dataframe/sort/nlargest.py +238 -0
  229. maxframe/dataframe/sort/nsmallest.py +228 -0
  230. maxframe/dataframe/sort/rank.py +147 -0
  231. maxframe/dataframe/statistics/__init__.py +3 -3
  232. maxframe/dataframe/statistics/corr.py +1 -0
  233. maxframe/dataframe/statistics/quantile.py +2 -2
  234. maxframe/dataframe/tests/test_typing.py +104 -0
  235. maxframe/dataframe/tests/test_utils.py +66 -2
  236. maxframe/dataframe/tseries/__init__.py +19 -0
  237. maxframe/dataframe/tseries/at_time.py +61 -0
  238. maxframe/dataframe/tseries/between_time.py +122 -0
  239. maxframe/dataframe/typing_.py +185 -0
  240. maxframe/dataframe/utils.py +125 -52
  241. maxframe/dataframe/window/aggregation.py +8 -4
  242. maxframe/dataframe/window/core.py +14 -1
  243. maxframe/dataframe/window/ewm.py +1 -3
  244. maxframe/dataframe/window/expanding.py +37 -35
  245. maxframe/dataframe/window/rolling.py +49 -39
  246. maxframe/dataframe/window/tests/test_expanding.py +1 -7
  247. maxframe/dataframe/window/tests/test_rolling.py +1 -1
  248. maxframe/env.py +7 -4
  249. maxframe/errors.py +2 -2
  250. maxframe/io/odpsio/schema.py +9 -3
  251. maxframe/io/odpsio/tableio.py +7 -2
  252. maxframe/io/odpsio/tests/test_schema.py +198 -83
  253. maxframe/learn/__init__.py +10 -2
  254. maxframe/learn/cluster/__init__.py +15 -0
  255. maxframe/learn/cluster/_kmeans.py +782 -0
  256. maxframe/learn/contrib/llm/core.py +18 -7
  257. maxframe/learn/contrib/llm/deploy/__init__.py +13 -0
  258. maxframe/learn/contrib/llm/deploy/config.py +221 -0
  259. maxframe/learn/contrib/llm/deploy/core.py +247 -0
  260. maxframe/learn/contrib/llm/deploy/framework.py +35 -0
  261. maxframe/learn/contrib/llm/deploy/loader.py +360 -0
  262. maxframe/learn/contrib/llm/deploy/tests/__init__.py +13 -0
  263. maxframe/learn/contrib/llm/deploy/tests/test_register_models.py +359 -0
  264. maxframe/learn/contrib/llm/models/__init__.py +1 -0
  265. maxframe/learn/contrib/llm/models/dashscope.py +12 -6
  266. maxframe/learn/contrib/llm/models/managed.py +76 -11
  267. maxframe/learn/contrib/llm/models/openai.py +72 -0
  268. maxframe/learn/contrib/llm/tests/__init__.py +13 -0
  269. maxframe/learn/contrib/llm/tests/test_core.py +34 -0
  270. maxframe/learn/contrib/llm/tests/test_openai.py +187 -0
  271. maxframe/learn/contrib/llm/tests/test_text_gen.py +155 -0
  272. maxframe/learn/contrib/llm/text.py +348 -42
  273. maxframe/learn/contrib/models.py +4 -1
  274. maxframe/learn/contrib/xgboost/classifier.py +2 -0
  275. maxframe/learn/contrib/xgboost/core.py +113 -4
  276. maxframe/learn/contrib/xgboost/predict.py +4 -2
  277. maxframe/learn/contrib/xgboost/regressor.py +5 -0
  278. maxframe/learn/contrib/xgboost/train.py +7 -2
  279. maxframe/learn/core.py +66 -0
  280. maxframe/learn/linear_model/_base.py +58 -1
  281. maxframe/learn/linear_model/_lin_reg.py +1 -1
  282. maxframe/learn/metrics/__init__.py +6 -0
  283. maxframe/learn/metrics/_classification.py +145 -0
  284. maxframe/learn/metrics/_ranking.py +477 -0
  285. maxframe/learn/metrics/_scorer.py +60 -0
  286. maxframe/learn/metrics/pairwise/__init__.py +21 -0
  287. maxframe/learn/metrics/pairwise/core.py +77 -0
  288. maxframe/learn/metrics/pairwise/cosine.py +115 -0
  289. maxframe/learn/metrics/pairwise/euclidean.py +176 -0
  290. maxframe/learn/metrics/pairwise/haversine.py +96 -0
  291. maxframe/learn/metrics/pairwise/manhattan.py +80 -0
  292. maxframe/learn/metrics/pairwise/pairwise.py +127 -0
  293. maxframe/learn/metrics/pairwise/pairwise_distances_topk.py +121 -0
  294. maxframe/learn/metrics/pairwise/rbf_kernel.py +51 -0
  295. maxframe/learn/metrics/tests/__init__.py +13 -0
  296. maxframe/learn/metrics/tests/test_scorer.py +26 -0
  297. maxframe/learn/preprocessing/_data/min_max_scaler.py +34 -23
  298. maxframe/learn/preprocessing/_data/standard_scaler.py +34 -25
  299. maxframe/learn/utils/__init__.py +2 -1
  300. maxframe/learn/utils/checks.py +1 -2
  301. maxframe/learn/utils/core.py +59 -0
  302. maxframe/learn/utils/extmath.py +79 -9
  303. maxframe/learn/utils/odpsio.py +262 -0
  304. maxframe/learn/utils/validation.py +2 -2
  305. maxframe/lib/compat.py +40 -0
  306. maxframe/lib/dtypes_extension/__init__.py +16 -1
  307. maxframe/lib/dtypes_extension/_fake_arrow_dtype.py +604 -0
  308. maxframe/lib/dtypes_extension/blob.py +304 -0
  309. maxframe/lib/dtypes_extension/dtypes.py +40 -0
  310. maxframe/lib/dtypes_extension/tests/test_blob.py +88 -0
  311. maxframe/lib/dtypes_extension/tests/test_dtypes.py +16 -1
  312. maxframe/lib/dtypes_extension/tests/test_fake_arrow_dtype.py +75 -0
  313. maxframe/lib/filesystem/_oss_lib/common.py +124 -50
  314. maxframe/lib/filesystem/_oss_lib/glob.py +1 -1
  315. maxframe/lib/filesystem/_oss_lib/handle.py +21 -25
  316. maxframe/lib/filesystem/base.py +1 -1
  317. maxframe/lib/filesystem/core.py +1 -1
  318. maxframe/lib/filesystem/oss.py +115 -46
  319. maxframe/lib/filesystem/tests/test_oss.py +74 -36
  320. maxframe/lib/mmh3.cp37-win32.pyd +0 -0
  321. maxframe/lib/wrapped_pickle.py +10 -0
  322. maxframe/opcodes.py +41 -15
  323. maxframe/protocol.py +12 -0
  324. maxframe/remote/core.py +4 -0
  325. maxframe/serialization/__init__.py +11 -2
  326. maxframe/serialization/arrow.py +38 -13
  327. maxframe/serialization/blob.py +32 -0
  328. maxframe/serialization/core.cp37-win32.pyd +0 -0
  329. maxframe/serialization/core.pyx +39 -1
  330. maxframe/serialization/exception.py +2 -4
  331. maxframe/serialization/numpy.py +11 -0
  332. maxframe/serialization/pandas.py +46 -9
  333. maxframe/serialization/serializables/core.py +2 -2
  334. maxframe/serialization/tests/test_serial.py +31 -4
  335. maxframe/tensor/__init__.py +38 -8
  336. maxframe/tensor/arithmetic/__init__.py +19 -10
  337. maxframe/tensor/arithmetic/core.py +2 -2
  338. maxframe/tensor/arithmetic/iscomplexobj.py +53 -0
  339. maxframe/tensor/arithmetic/tests/test_arithmetic.py +6 -9
  340. maxframe/tensor/core.py +6 -2
  341. maxframe/tensor/datasource/tests/test_datasource.py +2 -1
  342. maxframe/tensor/extensions/__init__.py +2 -0
  343. maxframe/tensor/extensions/apply_chunk.py +3 -3
  344. maxframe/tensor/extensions/rebalance.py +65 -0
  345. maxframe/tensor/fft/__init__.py +32 -0
  346. maxframe/tensor/fft/core.py +168 -0
  347. maxframe/tensor/fft/fft.py +112 -0
  348. maxframe/tensor/fft/fft2.py +118 -0
  349. maxframe/tensor/fft/fftfreq.py +80 -0
  350. maxframe/tensor/fft/fftn.py +123 -0
  351. maxframe/tensor/fft/fftshift.py +79 -0
  352. maxframe/tensor/fft/hfft.py +112 -0
  353. maxframe/tensor/fft/ifft.py +114 -0
  354. maxframe/tensor/fft/ifft2.py +115 -0
  355. maxframe/tensor/fft/ifftn.py +123 -0
  356. maxframe/tensor/fft/ifftshift.py +73 -0
  357. maxframe/tensor/fft/ihfft.py +93 -0
  358. maxframe/tensor/fft/irfft.py +118 -0
  359. maxframe/tensor/fft/irfft2.py +62 -0
  360. maxframe/tensor/fft/irfftn.py +114 -0
  361. maxframe/tensor/fft/rfft.py +116 -0
  362. maxframe/tensor/fft/rfft2.py +63 -0
  363. maxframe/tensor/fft/rfftfreq.py +87 -0
  364. maxframe/tensor/fft/rfftn.py +113 -0
  365. maxframe/tensor/indexing/fill_diagonal.py +1 -7
  366. maxframe/tensor/linalg/__init__.py +7 -0
  367. maxframe/tensor/linalg/_einsumfunc.py +1025 -0
  368. maxframe/tensor/linalg/cholesky.py +117 -0
  369. maxframe/tensor/linalg/einsum.py +339 -0
  370. maxframe/tensor/linalg/lstsq.py +100 -0
  371. maxframe/tensor/linalg/matrix_norm.py +75 -0
  372. maxframe/tensor/linalg/norm.py +249 -0
  373. maxframe/tensor/linalg/solve.py +72 -0
  374. maxframe/tensor/linalg/solve_triangular.py +2 -2
  375. maxframe/tensor/linalg/vector_norm.py +113 -0
  376. maxframe/tensor/misc/__init__.py +24 -1
  377. maxframe/tensor/misc/argwhere.py +72 -0
  378. maxframe/tensor/misc/array_split.py +46 -0
  379. maxframe/tensor/misc/broadcast_arrays.py +57 -0
  380. maxframe/tensor/misc/copyto.py +130 -0
  381. maxframe/tensor/misc/delete.py +104 -0
  382. maxframe/tensor/misc/dsplit.py +68 -0
  383. maxframe/tensor/misc/ediff1d.py +74 -0
  384. maxframe/tensor/misc/expand_dims.py +85 -0
  385. maxframe/tensor/misc/flip.py +90 -0
  386. maxframe/tensor/misc/fliplr.py +64 -0
  387. maxframe/tensor/misc/flipud.py +68 -0
  388. maxframe/tensor/misc/hsplit.py +85 -0
  389. maxframe/tensor/misc/insert.py +139 -0
  390. maxframe/tensor/misc/moveaxis.py +83 -0
  391. maxframe/tensor/misc/result_type.py +88 -0
  392. maxframe/tensor/misc/roll.py +124 -0
  393. maxframe/tensor/misc/rollaxis.py +77 -0
  394. maxframe/tensor/misc/shape.py +89 -0
  395. maxframe/tensor/misc/split.py +190 -0
  396. maxframe/tensor/misc/tile.py +109 -0
  397. maxframe/tensor/misc/vsplit.py +74 -0
  398. maxframe/tensor/reduction/array_equal.py +2 -1
  399. maxframe/tensor/sort/__init__.py +2 -0
  400. maxframe/tensor/sort/argpartition.py +98 -0
  401. maxframe/tensor/sort/partition.py +228 -0
  402. maxframe/tensor/spatial/__init__.py +15 -0
  403. maxframe/tensor/spatial/distance/__init__.py +17 -0
  404. maxframe/tensor/spatial/distance/cdist.py +421 -0
  405. maxframe/tensor/spatial/distance/pdist.py +398 -0
  406. maxframe/tensor/spatial/distance/squareform.py +153 -0
  407. maxframe/tensor/special/__init__.py +159 -21
  408. maxframe/tensor/special/airy.py +55 -0
  409. maxframe/tensor/special/bessel.py +199 -0
  410. maxframe/tensor/special/core.py +65 -4
  411. maxframe/tensor/special/ellip_func_integrals.py +155 -0
  412. maxframe/tensor/special/ellip_harm.py +55 -0
  413. maxframe/tensor/special/err_fresnel.py +223 -0
  414. maxframe/tensor/special/gamma_funcs.py +303 -0
  415. maxframe/tensor/special/hypergeometric_funcs.py +69 -0
  416. maxframe/tensor/special/info_theory.py +189 -0
  417. maxframe/tensor/special/misc.py +21 -0
  418. maxframe/tensor/statistics/__init__.py +6 -0
  419. maxframe/tensor/statistics/corrcoef.py +77 -0
  420. maxframe/tensor/statistics/cov.py +222 -0
  421. maxframe/tensor/statistics/digitize.py +126 -0
  422. maxframe/tensor/statistics/histogram.py +520 -0
  423. maxframe/tensor/statistics/median.py +85 -0
  424. maxframe/tensor/statistics/ptp.py +89 -0
  425. maxframe/tensor/utils.py +3 -3
  426. maxframe/tests/test_udf.py +61 -0
  427. maxframe/tests/test_utils.py +51 -6
  428. maxframe/tests/utils.py +0 -2
  429. maxframe/typing_.py +2 -0
  430. maxframe/udf.py +130 -9
  431. maxframe/utils.py +254 -27
  432. {maxframe-2.0.0b2.dist-info → maxframe-2.3.0rc1.dist-info}/METADATA +3 -3
  433. {maxframe-2.0.0b2.dist-info → maxframe-2.3.0rc1.dist-info}/RECORD +442 -264
  434. maxframe_client/fetcher.py +35 -4
  435. maxframe_client/session/odps.py +7 -2
  436. maxframe_client/session/task.py +8 -1
  437. maxframe_client/tests/test_fetcher.py +76 -3
  438. maxframe_client/tests/test_session.py +28 -1
  439. maxframe/dataframe/arrays.py +0 -864
  440. /maxframe/dataframe/{misc → reshape}/melt.py +0 -0
  441. /maxframe/dataframe/{misc → reshape}/stack.py +0 -0
  442. {maxframe-2.0.0b2.dist-info → maxframe-2.3.0rc1.dist-info}/WHEEL +0 -0
  443. {maxframe-2.0.0b2.dist-info → maxframe-2.3.0rc1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,117 @@
1
+ # Copyright 1999-2025 Alibaba Group Holding Ltd.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import numpy as np
16
+ from numpy.linalg import LinAlgError
17
+
18
+ from ... import opcodes
19
+ from ...serialization.serializables import BoolField
20
+ from ..core import TensorOrder
21
+ from ..datasource import tensor as astensor
22
+ from ..operators import TensorHasInput, TensorOperatorMixin
23
+
24
+
25
+ class TensorCholesky(TensorHasInput, TensorOperatorMixin):
26
+ _op_type_ = opcodes.CHOLESKY
27
+
28
+ lower = BoolField("lower")
29
+
30
+ def __call__(self, a):
31
+ return self.new_tensor([a], a.shape, order=TensorOrder.C_ORDER)
32
+
33
+
34
+ def cholesky(a, lower=False):
35
+ """
36
+ Cholesky decomposition.
37
+
38
+ Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`,
39
+ where `L` is lower-triangular and .H is the conjugate transpose operator
40
+ (which is the ordinary transpose if `a` is real-valued). `a` must be
41
+ Hermitian (symmetric if real-valued) and positive-definite. Only `L` is
42
+ actually returned.
43
+
44
+ Parameters
45
+ ----------
46
+ a : (..., M, M) array_like
47
+ Hermitian (symmetric if all elements are real), positive-definite
48
+ input matrix.
49
+ lower : bool
50
+ Whether to compute the upper or lower triangular Cholesky
51
+ factorization. Default is upper-triangular.
52
+
53
+ Returns
54
+ -------
55
+ L : (..., M, M) array_like
56
+ Upper or lower-triangular Cholesky factor of `a`.
57
+
58
+ Raises
59
+ ------
60
+ LinAlgError
61
+ If the decomposition fails, for example, if `a` is not
62
+ positive-definite.
63
+
64
+ Notes
65
+ -----
66
+
67
+ Broadcasting rules apply, see the `mt.linalg` documentation for
68
+ details.
69
+
70
+ The Cholesky decomposition is often used as a fast way of solving
71
+
72
+ .. math:: A \\mathbf{x} = \\mathbf{b}
73
+
74
+ (when `A` is both Hermitian/symmetric and positive-definite).
75
+
76
+ First, we solve for :math:`\\mathbf{y}` in
77
+
78
+ .. math:: L \\mathbf{y} = \\mathbf{b},
79
+
80
+ and then for :math:`\\mathbf{x}` in
81
+
82
+ .. math:: L.H \\mathbf{x} = \\mathbf{y}.
83
+
84
+ Examples
85
+ --------
86
+ >>> import maxframe.tensor as mt
87
+
88
+ >>> A = mt.array([[1,-2j],[2j,5]])
89
+ >>> A.execute()
90
+ array([[ 1.+0.j, 0.-2.j],
91
+ [ 0.+2.j, 5.+0.j]])
92
+ >>> L = mt.linalg.cholesky(A, lower=True)
93
+ >>> L.execute()
94
+ array([[ 1.+0.j, 0.+0.j],
95
+ [ 0.+2.j, 1.+0.j]])
96
+ >>> mt.dot(L, L.T.conj()).execute() # verify that L * L.H = A
97
+ array([[ 1.+0.j, 0.-2.j],
98
+ [ 0.+2.j, 5.+0.j]])
99
+ >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
100
+ >>> mt.linalg.cholesky(A, lower=True).execute()
101
+ array([[ 1.+0.j, 0.+0.j],
102
+ [ 0.+2.j, 1.+0.j]])
103
+
104
+ """
105
+ a = astensor(a)
106
+
107
+ if a.ndim != 2: # pragma: no cover
108
+ raise LinAlgError(
109
+ f"{a.ndim}-dimensional array given. Tensor must be two-dimensional"
110
+ )
111
+ if a.shape[0] != a.shape[1]: # pragma: no cover
112
+ raise LinAlgError("Input must be square")
113
+
114
+ cho = np.linalg.cholesky(np.array([[1, 2], [2, 5]], dtype=a.dtype))
115
+
116
+ op = TensorCholesky(lower=lower, dtype=cho.dtype)
117
+ return op(a)
@@ -0,0 +1,339 @@
1
+ # Copyright 1999-2025 Alibaba Group Holding Ltd.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from ... import opcodes
16
+ from ...serialization.serializables import AnyField, StringField
17
+ from ..core import TensorOrder
18
+ from ..operators import TensorOperator, TensorOperatorMixin
19
+ from ._einsumfunc import einsum_path, parse_einsum_input
20
+
21
+
22
+ class TensorEinsum(TensorOperator, TensorOperatorMixin):
23
+ _op_type_ = opcodes.EINSUM
24
+
25
+ subscripts = StringField("subscripts")
26
+ optimize = AnyField("optimize")
27
+ order = StringField("order")
28
+ casting = StringField("casting")
29
+
30
+ def __call__(self, input_tensors, shape):
31
+ if self.order in "KA":
32
+ if any(t.order == TensorOrder.C_ORDER for t in input_tensors):
33
+ order = TensorOrder.C_ORDER
34
+ else:
35
+ order = TensorOrder.F_ORDER
36
+ else:
37
+ if self.order == "C":
38
+ order = TensorOrder.C_ORDER
39
+ else:
40
+ order = TensorOrder.F_ORDER
41
+ return self.new_tensor(
42
+ input_tensors, shape=shape, dtype=self.dtype, order=order
43
+ )
44
+
45
+
46
+ def einsum(
47
+ subscripts, *operands, dtype=None, order="K", casting="safe", optimize=False
48
+ ):
49
+ """
50
+ Evaluates the Einstein summation convention on the operands.
51
+
52
+ Using the Einstein summation convention, many common multi-dimensional,
53
+ linear algebraic array operations can be represented in a simple fashion.
54
+ In *implicit* mode `einsum` computes these values.
55
+
56
+ In *explicit* mode, `einsum` provides further flexibility to compute
57
+ other array operations that might not be considered classical Einstein
58
+ summation operations, by disabling, or forcing summation over specified
59
+ subscript labels.
60
+
61
+ See the notes and examples for clarification.
62
+
63
+ Parameters
64
+ ----------
65
+ subscripts : str
66
+ Specifies the subscripts for summation as comma separated list of
67
+ subscript labels. An implicit (classical Einstein summation)
68
+ calculation is performed unless the explicit indicator '->' is
69
+ included as well as subscript labels of the precise output form.
70
+ operands : list of array_like
71
+ These are the arrays for the operation.
72
+ dtype : {data-type, None}, optional
73
+ If provided, forces the calculation to use the data type specified.
74
+ Note that you may have to also give a more liberal `casting`
75
+ parameter to allow the conversions. Default is None.
76
+ order : {'C', 'F', 'A', 'K'}, optional
77
+ Controls the memory layout of the output. 'C' means it should
78
+ be C contiguous. 'F' means it should be Fortran contiguous,
79
+ 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
80
+ 'K' means it should be as close to the layout as the inputs as
81
+ is possible, including arbitrarily permuted axes.
82
+ Default is 'K'.
83
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
84
+ Controls what kind of data casting may occur. Setting this to
85
+ 'unsafe' is not recommended, as it can adversely affect accumulations.
86
+
87
+ * 'no' means the data types should not be cast at all.
88
+ * 'equiv' means only byte-order changes are allowed.
89
+ * 'safe' means only casts which can preserve values are allowed.
90
+ * 'same_kind' means only safe casts or casts within a kind,
91
+ like float64 to float32, are allowed.
92
+ * 'unsafe' means any data conversions may be done.
93
+
94
+ Default is 'safe'.
95
+ optimize : {False, True, 'greedy', 'optimal'}, optional
96
+ Controls if intermediate optimization should occur. No optimization
97
+ will occur if False and True will default to the 'greedy' algorithm.
98
+ Also accepts an explicit contraction list from the ``np.einsum_path``
99
+ function. See ``np.einsum_path`` for more details. Defaults to False.
100
+
101
+ Returns
102
+ -------
103
+ output : maxframe.tensor.Tensor
104
+ The calculation based on the Einstein summation convention.
105
+
106
+ The Einstein summation convention can be used to compute
107
+ many multi-dimensional, linear algebraic array operations. `einsum`
108
+ provides a succinct way of representing these.
109
+
110
+ A non-exhaustive list of these operations,
111
+ which can be computed by `einsum`, is shown below along with examples:
112
+
113
+ * Trace of an array, :py:func:`numpy.trace`.
114
+ * Return a diagonal, :py:func:`numpy.diag`.
115
+ * Array axis summations, :py:func:`numpy.sum`.
116
+ * Transpositions and permutations, :py:func:`numpy.transpose`.
117
+ * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
118
+ * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
119
+ * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
120
+ * Tensor contractions, :py:func:`numpy.tensordot`.
121
+ * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`.
122
+
123
+ The subscripts string is a comma-separated list of subscript labels,
124
+ where each label refers to a dimension of the corresponding operand.
125
+ Whenever a label is repeated it is summed, so ``mt.einsum('i,i', a, b)``
126
+ is equivalent to :py:func:`mt.inner(a,b) <maxframe.tensor.inner>`. If a label
127
+ appears only once, it is not summed, so ``mt.einsum('i', a)`` produces a
128
+ view of ``a`` with no changes. A further example ``mt.einsum('ij,jk', a, b)``
129
+ describes traditional matrix multiplication and is equivalent to
130
+ :py:func:`mt.matmul(a,b) <maxframe.tensor.matmul>`.
131
+
132
+ In *implicit mode*, the chosen subscripts are important
133
+ since the axes of the output are reordered alphabetically. This
134
+ means that ``mt.einsum('ij', a)`` doesn't affect a 2D array, while
135
+ ``mt.einsum('ji', a)`` takes its transpose. Additionally,
136
+ ``mt.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
137
+ ``mt.einsum('ij,jh', a, b)`` returns the transpose of the
138
+ multiplication since subscript 'h' precedes subscript 'i'.
139
+
140
+ In *explicit mode* the output can be directly controlled by
141
+ specifying output subscript labels. This requires the
142
+ identifier '->' as well as the list of output subscript labels.
143
+ This feature increases the flexibility of the function since
144
+ summing can be disabled or forced when required. The call
145
+ ``mt.einsum('i->', a)`` is like :py:func:`mt.sum(a, axis=-1) <maxframe.tensor.sum>`,
146
+ and ``mt.einsum('ii->i', a)`` is like :py:func:`mt.diag(a) <maxframe.tensor.diag>`.
147
+ The difference is that `einsum` does not allow broadcasting by default.
148
+ Additionally ``mt.einsum('ij,jh->ih', a, b)`` directly specifies the
149
+ order of the output subscript labels and therefore returns matrix
150
+ multiplication, unlike the example above in implicit mode.
151
+
152
+ To enable and control broadcasting, use an ellipsis. Default
153
+ NumPy-style broadcasting is done by adding an ellipsis
154
+ to the left of each term, like ``mt.einsum('...ii->...i', a)``.
155
+ To take the trace along the first and last axes,
156
+ you can do ``mt.einsum('i...i', a)``, or to do a matrix-matrix
157
+ product with the left-most indices instead of rightmost, one can do
158
+ ``mt.einsum('ij...,jk...->ik...', a, b)``.
159
+
160
+ When there is only one operand, no axes are summed, and no output
161
+ parameter is provided, a view into the operand is returned instead
162
+ of a new array. Thus, taking the diagonal as ``mt.einsum('ii->i', a)``
163
+ produces a view (changed in version 1.10.0).
164
+
165
+ `einsum` also provides an alternative way to provide the subscripts
166
+ and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
167
+ If the output shape is not provided in this format `einsum` will be
168
+ calculated in implicit mode, otherwise it will be performed explicitly.
169
+ The examples below have corresponding `einsum` calls with the two
170
+ parameter methods.
171
+
172
+ Examples
173
+ --------
174
+ >>> import maxframe.tensor as mt
175
+ >>> a = mt.arange(25).reshape(5,5)
176
+ >>> b = mt.arange(5)
177
+ >>> c = mt.arange(6).reshape(2,3)
178
+ Trace of a matrix:
179
+ >>> mt.einsum('ii', a).execute()
180
+ 60
181
+ >>> mt.einsum(a, [0,0]).execute()
182
+ 60
183
+ Extract the diagonal (requires explicit form):
184
+ >>> mt.einsum('ii->i', a).execute()
185
+ array([ 0, 6, 12, 18, 24])
186
+ >>> mt.einsum(a, [0,0], [0]).execute()
187
+ array([ 0, 6, 12, 18, 24])
188
+ >>> mt.diag(a).execute()
189
+ array([ 0, 6, 12, 18, 24])
190
+ Sum over an axis (requires explicit form):
191
+ >>> mt.einsum('ij->i', a).execute()
192
+ array([ 10, 35, 60, 85, 110])
193
+ >>> mt.einsum(a, [0,1], [0]).execute()
194
+ array([ 10, 35, 60, 85, 110])
195
+ >>> mt.sum(a, axis=1).execute()
196
+ array([ 10, 35, 60, 85, 110])
197
+ For higher dimensional arrays summing a single axis can be done with ellipsis:
198
+ >>> mt.einsum('...j->...', a).execute()
199
+ array([ 10, 35, 60, 85, 110])
200
+ >>> mt.einsum(a, [Ellipsis,1], [Ellipsis]).execute()
201
+ array([ 10, 35, 60, 85, 110])
202
+ Compute a matrix transpose, or reorder any number of axes:
203
+ >>> mt.einsum('ji', c).execute()
204
+ array([[0, 3],
205
+ [1, 4],
206
+ [2, 5]])
207
+ >>> mt.einsum('ij->ji', c).execute()
208
+ array([[0, 3],
209
+ [1, 4],
210
+ [2, 5]])
211
+ >>> mt.einsum(c, [1,0]).execute()
212
+ array([[0, 3],
213
+ [1, 4],
214
+ [2, 5]])
215
+ >>> mt.transpose(c).execute()
216
+ array([[0, 3],
217
+ [1, 4],
218
+ [2, 5]])
219
+ Vector inner products:
220
+ >>> mt.einsum('i,i', b, b).execute()
221
+ 30
222
+ >>> mt.einsum(b, [0], b, [0]).execute()
223
+ 30
224
+ >>> mt.inner(b,b).execute()
225
+ 30
226
+ Matrix vector multiplication:
227
+ >>> mt.einsum('ij,j', a, b).execute()
228
+ array([ 30, 80, 130, 180, 230])
229
+ >>> mt.einsum(a, [0,1], b, [1]).execute()
230
+ array([ 30, 80, 130, 180, 230])
231
+ >>> mt.dot(a, b).execute()
232
+ array([ 30, 80, 130, 180, 230])
233
+ >>> mt.einsum('...j,j', a, b).execute()
234
+ array([ 30, 80, 130, 180, 230])
235
+ Broadcasting and scalar multiplication:
236
+ >>> mt.einsum('..., ...', 3, c).execute()
237
+ array([[ 0, 3, 6],
238
+ [ 9, 12, 15]])
239
+ >>> mt.einsum(',ij', 3, c).execute()
240
+ array([[ 0, 3, 6],
241
+ [ 9, 12, 15]])
242
+ >>> mt.einsum(3, [Ellipsis], c, [Ellipsis]).execute()
243
+ array([[ 0, 3, 6],
244
+ [ 9, 12, 15]])
245
+ >>> mt.multiply(3, c).execute()
246
+ array([[ 0, 3, 6],
247
+ [ 9, 12, 15]])
248
+ Vector outer product:
249
+ >>> mt.einsum('i,j', mt.arange(2)+1, b).execute()
250
+ array([[0, 1, 2, 3, 4],
251
+ [0, 2, 4, 6, 8]])
252
+ >>> mt.einsum(mt.arange(2)+1, [0], b, [1]).execute()
253
+ array([[0, 1, 2, 3, 4],
254
+ [0, 2, 4, 6, 8]])
255
+ >>> mt.outer(mt.arange(2)+1, b).execute()
256
+ array([[0, 1, 2, 3, 4],
257
+ [0, 2, 4, 6, 8]])
258
+ Tensor contraction:
259
+ >>> a = mt.arange(60.).reshape(3,4,5)
260
+ >>> b = mt.arange(24.).reshape(4,3,2)
261
+ >>> mt.einsum('ijk,jil->kl', a, b).execute()
262
+ array([[4400., 4730.],
263
+ [4532., 4874.],
264
+ [4664., 5018.],
265
+ [4796., 5162.],
266
+ [4928., 5306.]])
267
+ >>> mt.einsum(a, [0,1,2], b, [1,0,3], [2,3]).execute()
268
+ array([[4400., 4730.],
269
+ [4532., 4874.],
270
+ [4664., 5018.],
271
+ [4796., 5162.],
272
+ [4928., 5306.]])
273
+ >>> mt.tensordot(a,b, axes=([1,0],[0,1])).execute()
274
+ array([[4400., 4730.],
275
+ [4532., 4874.],
276
+ [4664., 5018.],
277
+ [4796., 5162.],
278
+ [4928., 5306.]])
279
+ Writeable returned arrays (since version 1.10.0):
280
+ >>> a = mt.zeros((3, 3))
281
+ >>> mt.einsum('ii->i', a)[:] = 1
282
+ >>> a.execute()
283
+ array([[1., 0., 0.],
284
+ [0., 1., 0.],
285
+ [0., 0., 1.]])
286
+ Example of ellipsis use:
287
+ >>> a = mt.arange(6).reshape((3,2))
288
+ >>> b = mt.arange(12).reshape((4,3))
289
+ >>> mt.einsum('ki,jk->ij', a, b).execute()
290
+ array([[10, 28, 46, 64],
291
+ [13, 40, 67, 94]])
292
+ >>> mt.einsum('ki,...k->i...', a, b).execute()
293
+ array([[10, 28, 46, 64],
294
+ [13, 40, 67, 94]])
295
+ >>> mt.einsum('k...,jk', a, b).execute()
296
+ array([[10, 28, 46, 64],
297
+ [13, 40, 67, 94]])
298
+ Chained array operations. For more complicated contractions, speed ups
299
+ might be achieved by repeatedly computing a 'greedy' path or pre-computing the
300
+ 'optimal' path and repeatedly applying it, using an
301
+ `einsum_path` insertion (since version 1.12.0). Performance improvements can be
302
+ particularly significant with larger arrays:
303
+ >>> a = mt.ones(64).reshape(2,4,8)
304
+ Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
305
+ >>> for iteration in range(500):
306
+ ... _ = mt.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
307
+ Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
308
+ >>> for iteration in range(500):
309
+ ... _ = mt.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')
310
+ Greedy `einsum` (faster optimal path approximation): ~160ms
311
+ >>> for iteration in range(500):
312
+ ... _ = mt.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
313
+ Optimal `einsum` (best usage pattern in some use cases): ~110ms
314
+ >>> path = mt.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0]
315
+ >>> for iteration in range(500):
316
+ ... _ = mt.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)
317
+
318
+ """
319
+
320
+ all_inputs = [subscripts] + list(operands)
321
+ inputs, outputs, operands = parse_einsum_input(all_inputs)
322
+ subscripts = "->".join((inputs, outputs))
323
+ axes_shape = dict()
324
+ for axes, op in zip(inputs.split(","), operands):
325
+ for ax, s in zip(axes, op.shape):
326
+ axes_shape[ax] = s
327
+
328
+ if optimize:
329
+ optimize, _ = einsum_path(*all_inputs, optimize=optimize)
330
+
331
+ shape = tuple(axes_shape[ax] for ax in outputs)
332
+ op = TensorEinsum(
333
+ subscripts=subscripts,
334
+ optimize=optimize,
335
+ dtype=dtype or operands[0].dtype,
336
+ order=order,
337
+ casting=casting,
338
+ )
339
+ return op(operands, shape)
@@ -0,0 +1,100 @@
1
+ # Copyright 1999-2025 Alibaba Group Holding Ltd.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import numpy as np
16
+
17
+ from ...core import ExecutableTuple
18
+ from ...udf import builtin_function
19
+ from .svd import svd
20
+
21
+
22
+ @builtin_function
23
+ def _cut_residuals(residuals, full_rank):
24
+ return residuals if full_rank else np.array([], dtype=residuals.dtype)
25
+
26
+
27
+ def lstsq(a, b, rcond=None):
28
+ """
29
+ Return the least-squares solution to a linear matrix equation.
30
+
31
+ Computes the vector `x` that approximately solves the equation
32
+ ``a @ x = b``. The equation may be under-, well-, or over-determined
33
+ (i.e., the number of linearly independent rows of `a` can be less than,
34
+ equal to, or greater than its number of linearly independent columns).
35
+ If `a` is square and of full rank, then `x` (but for round-off error)
36
+ is the "exact" solution of the equation. Else, `x` minimizes the
37
+ Euclidean 2-norm :math:`||b - ax||`. If there are multiple minimizing
38
+ solutions, the one with the smallest 2-norm :math:`||x||` is returned.
39
+
40
+ Parameters
41
+ ----------
42
+ a : (M, N) array_like
43
+ "Coefficient" matrix.
44
+ b : {(M,), (M, K)} array_like
45
+ Ordinate or "dependent variable" values. If `b` is two-dimensional,
46
+ the least-squares solution is calculated for each of the `K` columns
47
+ of `b`.
48
+ rcond : float, optional
49
+ Cut-off ratio for small singular values of `a`.
50
+ For the purposes of rank determination, singular values are treated
51
+ as zero if they are smaller than `rcond` times the largest singular
52
+ value of `a`.
53
+ The default uses the machine precision times ``max(M, N)``. Passing
54
+ ``-1`` will use machine precision.
55
+
56
+ Returns
57
+ -------
58
+ x : {(N,), (N, K)} ndarray
59
+ Least-squares solution. If `b` is two-dimensional,
60
+ the solutions are in the `K` columns of `x`.
61
+ residuals : {(1,), (K,), (0,)} ndarray
62
+ Sums of squared residuals: Squared Euclidean 2-norm for each column in
63
+ ``b - a @ x``.
64
+ If the rank of `a` is < N or M <= N, this is an empty array.
65
+ If `b` is 1-dimensional, this is a (1,) shape array.
66
+ Otherwise the shape is (K,).
67
+ rank : int
68
+ Rank of matrix `a`.
69
+ s : (min(M, N),) ndarray
70
+ Singular values of `a`.
71
+
72
+ Raises
73
+ ------
74
+ LinAlgError
75
+ If computation does not converge.
76
+
77
+ Notes
78
+ -----
79
+ If `b` is a matrix, then all array results are returned as matrices.
80
+ """
81
+ # fixme when has_unknown_shape(a)
82
+
83
+ rcond = rcond if rcond is not None and rcond < 1 else None
84
+ if rcond is None:
85
+ rcond = max(a.shape) * np.finfo(a.dtype).eps
86
+ elif rcond == -1:
87
+ rcond = np.finfo(np.float64).eps
88
+
89
+ u, s, vt = svd(a)
90
+ cutoff = (s > s.max() * rcond).astype(int)
91
+ # v^T diag(1.0 / s) u_1^T b
92
+ x = vt.T * (1.0 / s * cutoff) @ u.T[: a.shape[1], :] @ b
93
+ residuals = b - a.dot(x)
94
+ residuals = abs(residuals**2).sum(axis=0, keepdims=b.ndim == 1)
95
+
96
+ rank = cutoff.sum()
97
+ residuals = residuals.mf.apply_chunk(
98
+ _cut_residuals, dtype=residuals.dtype, full_rank=rank == min(a.shape)
99
+ )
100
+ return ExecutableTuple((x, residuals, rank, s))
@@ -0,0 +1,75 @@
1
+ # Copyright 1999-2025 Alibaba Group Holding Ltd.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .norm import norm
16
+
17
+
18
+ def matrix_norm(x, *, keepdims=False, ord="fro"):
19
+ """
20
+ Computes the matrix norm of a matrix (or a stack of matrices) ``x``.
21
+
22
+ This function is Array API compatible.
23
+
24
+ Parameters
25
+ ----------
26
+ x : array_like
27
+ Input array having shape (..., M, N) and whose two innermost
28
+ dimensions form ``MxN`` matrices.
29
+ keepdims : bool, optional
30
+ If this is set to True, the axes which are normed over are left in
31
+ the result as dimensions with size one. Default: False.
32
+ ord : {1, -1, 2, -2, inf, -inf, 'fro', 'nuc'}, optional
33
+ The order of the norm. For details see the table under ``Notes``
34
+ in `numpy.linalg.norm`.
35
+
36
+ See Also
37
+ --------
38
+ numpy.linalg.norm : Generic norm function
39
+
40
+ Examples
41
+ --------
42
+ >>> import maxframe.tensor as mt
43
+ >>> from maxframe.tensor import linalg as LA
44
+ >>> a = mt.arange(9) - 4
45
+ >>> a.execute()
46
+ array([-4, -3, -2, ..., 2, 3, 4])
47
+ >>> b = a.reshape((3, 3))
48
+ >>> b.execute()
49
+ array([[-4, -3, -2],
50
+ [-1, 0, 1],
51
+ [ 2, 3, 4]])
52
+
53
+ >>> LA.matrix_norm(b).execute()
54
+ 7.745966692414834
55
+ >>> LA.matrix_norm(b, ord='fro').execute()
56
+ 7.745966692414834
57
+ >>> LA.matrix_norm(b, ord=np.inf).execute()
58
+ 9.0
59
+ >>> LA.matrix_norm(b, ord=-np.inf).execute()
60
+ 2.0
61
+
62
+ >>> LA.matrix_norm(b, ord=1).execute()
63
+ 7.0
64
+ >>> LA.matrix_norm(b, ord=-1).execute()
65
+ 6.0
66
+ >>> LA.matrix_norm(b, ord=2).execute()
67
+ 7.3484692283495345
68
+ >>> LA.matrix_norm(b, ord=-2).execute()
69
+ 1.8570331885190563e-016 # may vary
70
+
71
+ """
72
+ from ..datasource.array import asarray
73
+
74
+ x = asarray(x)
75
+ return norm(x, axis=(-2, -1), keepdims=keepdims, ord=ord)