maxframe 1.3.1__cp310-cp310-win32.whl → 2.0.0b2__cp310-cp310-win32.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of maxframe might be problematic. Click here for more details.
- maxframe/_utils.cp310-win32.pyd +0 -0
- maxframe/_utils.pyi +21 -0
- maxframe/_utils.pyx +4 -3
- maxframe/codegen/__init__.py +27 -0
- maxframe/{codegen.py → codegen/core.py} +49 -43
- maxframe/codegen/spe/__init__.py +16 -0
- maxframe/codegen/spe/core.py +307 -0
- maxframe/codegen/spe/dataframe/__init__.py +37 -0
- maxframe/codegen/spe/dataframe/accessors/__init__.py +15 -0
- maxframe/codegen/spe/dataframe/accessors/base.py +53 -0
- maxframe/codegen/spe/dataframe/accessors/dict_.py +194 -0
- maxframe/codegen/spe/dataframe/accessors/list_.py +80 -0
- maxframe/codegen/spe/dataframe/arithmetic.py +84 -0
- maxframe/codegen/spe/dataframe/datasource.py +181 -0
- maxframe/codegen/spe/dataframe/datastore.py +204 -0
- maxframe/codegen/spe/dataframe/extensions.py +63 -0
- maxframe/codegen/spe/dataframe/fetch.py +26 -0
- maxframe/codegen/spe/dataframe/groupby.py +224 -0
- maxframe/codegen/spe/dataframe/indexing.py +238 -0
- maxframe/codegen/spe/dataframe/merge.py +73 -0
- maxframe/codegen/spe/dataframe/misc.py +286 -0
- maxframe/codegen/spe/dataframe/missing.py +64 -0
- maxframe/codegen/spe/dataframe/reduction.py +160 -0
- maxframe/codegen/spe/dataframe/sort.py +83 -0
- maxframe/codegen/spe/dataframe/statistics.py +46 -0
- maxframe/codegen/spe/dataframe/tests/__init__.py +13 -0
- maxframe/codegen/spe/dataframe/tests/accessors/__init__.py +13 -0
- maxframe/codegen/spe/dataframe/tests/accessors/test_base.py +33 -0
- maxframe/codegen/spe/dataframe/tests/accessors/test_dict.py +310 -0
- maxframe/codegen/spe/dataframe/tests/accessors/test_list.py +137 -0
- maxframe/codegen/spe/dataframe/tests/indexing/__init__.py +13 -0
- maxframe/codegen/spe/dataframe/tests/indexing/conftest.py +58 -0
- maxframe/codegen/spe/dataframe/tests/indexing/test_getitem.py +124 -0
- maxframe/codegen/spe/dataframe/tests/indexing/test_iloc.py +76 -0
- maxframe/codegen/spe/dataframe/tests/indexing/test_indexing.py +39 -0
- maxframe/codegen/spe/dataframe/tests/indexing/test_rename.py +51 -0
- maxframe/codegen/spe/dataframe/tests/indexing/test_reset_index.py +88 -0
- maxframe/codegen/spe/dataframe/tests/indexing/test_sample.py +45 -0
- maxframe/codegen/spe/dataframe/tests/indexing/test_set_axis.py +45 -0
- maxframe/codegen/spe/dataframe/tests/indexing/test_set_index.py +41 -0
- maxframe/codegen/spe/dataframe/tests/indexing/test_setitem.py +46 -0
- maxframe/codegen/spe/dataframe/tests/misc/__init__.py +13 -0
- maxframe/codegen/spe/dataframe/tests/misc/test_apply.py +133 -0
- maxframe/codegen/spe/dataframe/tests/misc/test_drop_duplicates.py +92 -0
- maxframe/codegen/spe/dataframe/tests/misc/test_misc.py +234 -0
- maxframe/codegen/spe/dataframe/tests/missing/__init__.py +13 -0
- maxframe/codegen/spe/dataframe/tests/missing/test_checkna.py +94 -0
- maxframe/codegen/spe/dataframe/tests/missing/test_dropna.py +50 -0
- maxframe/codegen/spe/dataframe/tests/missing/test_fillna.py +94 -0
- maxframe/codegen/spe/dataframe/tests/missing/test_replace.py +45 -0
- maxframe/codegen/spe/dataframe/tests/test_arithmetic.py +73 -0
- maxframe/codegen/spe/dataframe/tests/test_datasource.py +184 -0
- maxframe/codegen/spe/dataframe/tests/test_datastore.py +200 -0
- maxframe/codegen/spe/dataframe/tests/test_extensions.py +88 -0
- maxframe/codegen/spe/dataframe/tests/test_groupby.py +225 -0
- maxframe/codegen/spe/dataframe/tests/test_merge.py +400 -0
- maxframe/codegen/spe/dataframe/tests/test_reduction.py +104 -0
- maxframe/codegen/spe/dataframe/tests/test_sort.py +159 -0
- maxframe/codegen/spe/dataframe/tests/test_statistics.py +70 -0
- maxframe/codegen/spe/dataframe/tests/test_tseries.py +29 -0
- maxframe/codegen/spe/dataframe/tests/test_value_counts.py +60 -0
- maxframe/codegen/spe/dataframe/tests/test_window.py +69 -0
- maxframe/codegen/spe/dataframe/tseries.py +46 -0
- maxframe/codegen/spe/dataframe/udf.py +62 -0
- maxframe/codegen/spe/dataframe/value_counts.py +31 -0
- maxframe/codegen/spe/dataframe/window.py +65 -0
- maxframe/codegen/spe/learn/__init__.py +15 -0
- maxframe/codegen/spe/learn/contrib/__init__.py +15 -0
- maxframe/codegen/spe/learn/contrib/lightgbm.py +160 -0
- maxframe/codegen/spe/learn/contrib/models.py +41 -0
- maxframe/codegen/spe/learn/contrib/pytorch.py +49 -0
- maxframe/codegen/spe/learn/contrib/tests/__init__.py +13 -0
- maxframe/codegen/spe/learn/contrib/tests/test_lightgbm.py +123 -0
- maxframe/codegen/spe/learn/contrib/tests/test_models.py +41 -0
- maxframe/codegen/spe/learn/contrib/tests/test_pytorch.py +53 -0
- maxframe/codegen/spe/learn/contrib/tests/test_xgboost.py +98 -0
- maxframe/codegen/spe/learn/contrib/xgboost.py +152 -0
- maxframe/codegen/spe/learn/metrics/__init__.py +15 -0
- maxframe/codegen/spe/learn/metrics/_classification.py +120 -0
- maxframe/codegen/spe/learn/metrics/tests/__init__.py +13 -0
- maxframe/codegen/spe/learn/metrics/tests/test_classification.py +93 -0
- maxframe/codegen/spe/learn/model_selection/__init__.py +13 -0
- maxframe/codegen/spe/learn/model_selection/tests/__init__.py +13 -0
- maxframe/codegen/spe/learn/model_selection/tests/test_split.py +41 -0
- maxframe/codegen/spe/learn/preprocessing/__init__.py +15 -0
- maxframe/codegen/spe/learn/preprocessing/_data.py +37 -0
- maxframe/codegen/spe/learn/preprocessing/_label.py +47 -0
- maxframe/codegen/spe/learn/preprocessing/tests/__init__.py +13 -0
- maxframe/codegen/spe/learn/preprocessing/tests/test_data.py +31 -0
- maxframe/codegen/spe/learn/preprocessing/tests/test_label.py +43 -0
- maxframe/codegen/spe/learn/utils/__init__.py +15 -0
- maxframe/codegen/spe/learn/utils/checks.py +55 -0
- maxframe/codegen/spe/learn/utils/multiclass.py +60 -0
- maxframe/codegen/spe/learn/utils/shuffle.py +85 -0
- maxframe/codegen/spe/learn/utils/sparsefuncs.py +35 -0
- maxframe/codegen/spe/learn/utils/tests/__init__.py +13 -0
- maxframe/codegen/spe/learn/utils/tests/test_checks.py +48 -0
- maxframe/codegen/spe/learn/utils/tests/test_multiclass.py +52 -0
- maxframe/codegen/spe/learn/utils/tests/test_shuffle.py +50 -0
- maxframe/codegen/spe/learn/utils/tests/test_sparsefuncs.py +34 -0
- maxframe/codegen/spe/learn/utils/tests/test_validation.py +44 -0
- maxframe/codegen/spe/learn/utils/validation.py +35 -0
- maxframe/codegen/spe/objects.py +26 -0
- maxframe/codegen/spe/remote.py +29 -0
- maxframe/codegen/spe/tensor/__init__.py +28 -0
- maxframe/codegen/spe/tensor/arithmetic.py +95 -0
- maxframe/codegen/spe/tensor/core.py +41 -0
- maxframe/codegen/spe/tensor/datasource.py +165 -0
- maxframe/codegen/spe/tensor/extensions.py +35 -0
- maxframe/codegen/spe/tensor/fetch.py +26 -0
- maxframe/codegen/spe/tensor/indexing.py +63 -0
- maxframe/codegen/spe/tensor/linalg.py +63 -0
- maxframe/codegen/spe/tensor/merge.py +31 -0
- maxframe/codegen/spe/tensor/misc.py +121 -0
- maxframe/codegen/spe/tensor/random.py +29 -0
- maxframe/codegen/spe/tensor/reduction.py +39 -0
- maxframe/codegen/spe/tensor/reshape.py +26 -0
- maxframe/codegen/spe/tensor/sort.py +42 -0
- maxframe/codegen/spe/tensor/special.py +35 -0
- maxframe/codegen/spe/tensor/statistics.py +24 -0
- maxframe/codegen/spe/tensor/tests/__init__.py +13 -0
- maxframe/codegen/spe/tensor/tests/test_arithmetic.py +103 -0
- maxframe/codegen/spe/tensor/tests/test_datasource.py +99 -0
- maxframe/codegen/spe/tensor/tests/test_extensions.py +37 -0
- maxframe/codegen/spe/tensor/tests/test_indexing.py +44 -0
- maxframe/codegen/spe/tensor/tests/test_linalg.py +38 -0
- maxframe/codegen/spe/tensor/tests/test_merge.py +28 -0
- maxframe/codegen/spe/tensor/tests/test_misc.py +94 -0
- maxframe/codegen/spe/tensor/tests/test_random.py +55 -0
- maxframe/codegen/spe/tensor/tests/test_reduction.py +65 -0
- maxframe/codegen/spe/tensor/tests/test_reshape.py +39 -0
- maxframe/codegen/spe/tensor/tests/test_sort.py +49 -0
- maxframe/codegen/spe/tensor/tests/test_special.py +28 -0
- maxframe/codegen/spe/tensor/tests/test_statistics.py +29 -0
- maxframe/codegen/spe/tests/__init__.py +13 -0
- maxframe/codegen/spe/tests/test_remote.py +29 -0
- maxframe/codegen/spe/tests/test_spe_codegen.py +141 -0
- maxframe/codegen/spe/utils.py +54 -0
- maxframe/codegen/tests/__init__.py +13 -0
- maxframe/{tests → codegen/tests}/test_codegen.py +3 -5
- maxframe/config/__init__.py +1 -1
- maxframe/config/config.py +50 -23
- maxframe/config/tests/test_config.py +4 -12
- maxframe/config/validators.py +5 -0
- maxframe/conftest.py +38 -10
- maxframe/core/__init__.py +1 -0
- maxframe/core/context.py +110 -0
- maxframe/core/entity/__init__.py +1 -0
- maxframe/core/entity/core.py +0 -7
- maxframe/core/entity/objects.py +19 -5
- maxframe/core/entity/output_types.py +11 -0
- maxframe/core/entity/tests/test_objects.py +11 -12
- maxframe/core/entity/tileables.py +3 -1
- maxframe/core/entity/utils.py +15 -0
- maxframe/core/graph/__init__.py +6 -1
- maxframe/core/graph/builder/base.py +5 -1
- maxframe/core/graph/core.cp310-win32.pyd +0 -0
- maxframe/core/graph/core.pyx +17 -6
- maxframe/core/graph/entity.py +18 -6
- maxframe/core/operator/__init__.py +8 -3
- maxframe/core/operator/base.py +35 -12
- maxframe/core/operator/core.py +37 -14
- maxframe/core/operator/fetch.py +5 -18
- maxframe/core/operator/objects.py +0 -20
- maxframe/core/operator/shuffle.py +6 -72
- maxframe/dataframe/__init__.py +1 -0
- maxframe/dataframe/accessors/datetime_/core.py +7 -4
- maxframe/dataframe/accessors/string_/core.py +9 -6
- maxframe/dataframe/arithmetic/core.py +31 -20
- maxframe/dataframe/arithmetic/tests/test_arithmetic.py +6 -0
- maxframe/dataframe/core.py +98 -91
- maxframe/dataframe/datasource/core.py +8 -1
- maxframe/dataframe/datasource/date_range.py +8 -0
- maxframe/dataframe/datasource/from_index.py +9 -5
- maxframe/dataframe/datasource/from_records.py +9 -2
- maxframe/dataframe/datasource/from_tensor.py +32 -21
- maxframe/dataframe/datasource/read_csv.py +8 -2
- maxframe/dataframe/datasource/read_odps_query.py +109 -19
- maxframe/dataframe/datasource/read_odps_table.py +20 -5
- maxframe/dataframe/datasource/read_parquet.py +8 -3
- maxframe/dataframe/datasource/tests/test_datasource.py +80 -1
- maxframe/dataframe/datastore/tests/test_to_odps.py +52 -1
- maxframe/dataframe/datastore/to_csv.py +7 -3
- maxframe/dataframe/datastore/to_odps.py +42 -6
- maxframe/dataframe/extensions/__init__.py +6 -1
- maxframe/dataframe/extensions/apply_chunk.py +96 -136
- maxframe/dataframe/extensions/flatjson.py +3 -2
- maxframe/dataframe/extensions/flatmap.py +15 -7
- maxframe/dataframe/fetch/core.py +12 -1
- maxframe/dataframe/groupby/__init__.py +7 -0
- maxframe/dataframe/groupby/aggregation.py +9 -8
- maxframe/dataframe/groupby/apply.py +50 -74
- maxframe/dataframe/groupby/apply_chunk.py +393 -0
- maxframe/dataframe/groupby/core.py +80 -17
- maxframe/dataframe/groupby/extensions.py +26 -0
- maxframe/dataframe/groupby/fill.py +9 -4
- maxframe/dataframe/groupby/sample.py +7 -7
- maxframe/dataframe/groupby/tests/test_groupby.py +3 -3
- maxframe/dataframe/groupby/transform.py +57 -54
- maxframe/dataframe/indexing/align.py +7 -6
- maxframe/dataframe/indexing/getitem.py +9 -8
- maxframe/dataframe/indexing/iloc.py +28 -23
- maxframe/dataframe/indexing/insert.py +7 -3
- maxframe/dataframe/indexing/loc.py +9 -8
- maxframe/dataframe/indexing/reindex.py +36 -30
- maxframe/dataframe/indexing/rename_axis.py +18 -10
- maxframe/dataframe/indexing/reset_index.py +0 -2
- maxframe/dataframe/indexing/sample.py +13 -9
- maxframe/dataframe/indexing/set_axis.py +9 -6
- maxframe/dataframe/indexing/setitem.py +8 -5
- maxframe/dataframe/indexing/where.py +12 -9
- maxframe/dataframe/merge/__init__.py +0 -1
- maxframe/dataframe/merge/concat.py +10 -31
- maxframe/dataframe/merge/merge.py +2 -24
- maxframe/dataframe/misc/__init__.py +6 -0
- maxframe/dataframe/misc/_duplicate.py +7 -3
- maxframe/dataframe/misc/apply.py +106 -139
- maxframe/dataframe/misc/astype.py +3 -2
- maxframe/dataframe/misc/case_when.py +11 -7
- maxframe/dataframe/misc/cut.py +11 -10
- maxframe/dataframe/misc/describe.py +7 -3
- maxframe/dataframe/misc/drop.py +13 -11
- maxframe/dataframe/misc/eval.py +0 -2
- maxframe/dataframe/misc/get_dummies.py +78 -49
- maxframe/dataframe/misc/isin.py +13 -10
- maxframe/dataframe/misc/map.py +21 -6
- maxframe/dataframe/misc/melt.py +8 -1
- maxframe/dataframe/misc/pivot.py +232 -0
- maxframe/dataframe/misc/pivot_table.py +52 -40
- maxframe/dataframe/misc/rechunk.py +59 -0
- maxframe/dataframe/misc/shift.py +7 -4
- maxframe/dataframe/misc/stack.py +5 -3
- maxframe/dataframe/misc/tests/test_misc.py +167 -1
- maxframe/dataframe/misc/transform.py +63 -65
- maxframe/dataframe/misc/value_counts.py +7 -4
- maxframe/dataframe/missing/dropna.py +16 -7
- maxframe/dataframe/missing/fillna.py +18 -10
- maxframe/dataframe/missing/replace.py +10 -6
- maxframe/dataframe/missing/tests/test_missing.py +2 -2
- maxframe/dataframe/operators.py +1 -27
- maxframe/dataframe/reduction/aggregation.py +65 -3
- maxframe/dataframe/reduction/core.py +3 -1
- maxframe/dataframe/reduction/median.py +1 -1
- maxframe/dataframe/reduction/tests/test_reduction.py +33 -0
- maxframe/dataframe/reduction/unique.py +53 -7
- maxframe/dataframe/statistics/corr.py +9 -6
- maxframe/dataframe/statistics/quantile.py +9 -6
- maxframe/dataframe/tseries/to_datetime.py +6 -4
- maxframe/dataframe/utils.py +219 -31
- maxframe/dataframe/window/rolling.py +7 -4
- maxframe/env.py +1 -0
- maxframe/errors.py +9 -0
- maxframe/extension.py +13 -2
- maxframe/io/objects/core.py +67 -51
- maxframe/io/objects/tensor.py +73 -17
- maxframe/io/objects/tests/test_object_io.py +10 -55
- maxframe/io/odpsio/arrow.py +15 -2
- maxframe/io/odpsio/schema.py +43 -13
- maxframe/io/odpsio/tableio.py +63 -11
- maxframe/io/odpsio/tests/test_arrow.py +1 -2
- maxframe/io/odpsio/tests/test_schema.py +114 -1
- maxframe/io/odpsio/tests/test_tableio.py +42 -0
- maxframe/io/odpsio/tests/test_volumeio.py +21 -58
- maxframe/io/odpsio/volumeio.py +23 -8
- maxframe/learn/__init__.py +2 -2
- maxframe/learn/contrib/__init__.py +2 -2
- maxframe/learn/contrib/graph/connected_components.py +2 -1
- maxframe/learn/contrib/lightgbm/__init__.py +33 -0
- maxframe/learn/contrib/lightgbm/_predict.py +138 -0
- maxframe/learn/contrib/lightgbm/_train.py +163 -0
- maxframe/learn/contrib/lightgbm/callback.py +114 -0
- maxframe/learn/contrib/lightgbm/classifier.py +199 -0
- maxframe/learn/contrib/lightgbm/core.py +372 -0
- maxframe/learn/contrib/lightgbm/dataset.py +153 -0
- maxframe/learn/contrib/lightgbm/regressor.py +29 -0
- maxframe/learn/contrib/lightgbm/tests/__init__.py +13 -0
- maxframe/learn/contrib/lightgbm/tests/test_callback.py +58 -0
- maxframe/learn/contrib/models.py +38 -9
- maxframe/learn/contrib/utils.py +55 -0
- maxframe/learn/contrib/xgboost/callback.py +86 -0
- maxframe/learn/contrib/xgboost/classifier.py +26 -30
- maxframe/learn/contrib/xgboost/core.py +54 -42
- maxframe/learn/contrib/xgboost/dmatrix.py +19 -12
- maxframe/learn/contrib/xgboost/predict.py +16 -9
- maxframe/learn/contrib/xgboost/regressor.py +28 -27
- maxframe/learn/contrib/xgboost/tests/test_callback.py +41 -0
- maxframe/learn/contrib/xgboost/train.py +59 -16
- maxframe/learn/core.py +252 -0
- maxframe/learn/datasets/__init__.py +20 -0
- maxframe/learn/datasets/samples_generator.py +628 -0
- maxframe/learn/linear_model/__init__.py +15 -0
- maxframe/learn/linear_model/_base.py +163 -0
- maxframe/learn/linear_model/_lin_reg.py +175 -0
- maxframe/learn/metrics/__init__.py +25 -0
- maxframe/learn/metrics/_check_targets.py +95 -0
- maxframe/learn/metrics/_classification.py +1121 -0
- maxframe/learn/metrics/_regression.py +256 -0
- maxframe/learn/model_selection/__init__.py +15 -0
- maxframe/learn/model_selection/_split.py +451 -0
- maxframe/learn/model_selection/tests/__init__.py +13 -0
- maxframe/learn/model_selection/tests/test_split.py +156 -0
- maxframe/learn/preprocessing/__init__.py +16 -0
- maxframe/learn/preprocessing/_data/__init__.py +17 -0
- maxframe/learn/preprocessing/_data/min_max_scaler.py +390 -0
- maxframe/learn/preprocessing/_data/normalize.py +127 -0
- maxframe/learn/preprocessing/_data/standard_scaler.py +503 -0
- maxframe/learn/preprocessing/_data/utils.py +79 -0
- maxframe/learn/preprocessing/_label/__init__.py +16 -0
- maxframe/learn/preprocessing/_label/_label_binarizer.py +599 -0
- maxframe/learn/preprocessing/_label/_label_encoder.py +174 -0
- maxframe/learn/utils/__init__.py +4 -0
- maxframe/learn/utils/_encode.py +314 -0
- maxframe/learn/utils/checks.py +161 -0
- maxframe/learn/utils/core.py +33 -0
- maxframe/learn/utils/extmath.py +176 -0
- maxframe/learn/utils/multiclass.py +292 -0
- maxframe/learn/utils/shuffle.py +114 -0
- maxframe/learn/utils/sparsefuncs.py +87 -0
- maxframe/learn/utils/validation.py +775 -0
- maxframe/lib/__init__.py +0 -2
- maxframe/lib/compat.py +145 -0
- maxframe/lib/filesystem/_oss_lib/glob.py +1 -1
- maxframe/lib/mmh3.cp310-win32.pyd +0 -0
- maxframe/lib/sparse/__init__.py +10 -15
- maxframe/lib/sparse/array.py +45 -33
- maxframe/lib/sparse/core.py +0 -2
- maxframe/lib/sparse/linalg.py +31 -0
- maxframe/lib/sparse/matrix.py +5 -2
- maxframe/lib/sparse/tests/__init__.py +0 -2
- maxframe/lib/sparse/tests/test_sparse.py +53 -53
- maxframe/lib/sparse/vector.py +0 -2
- maxframe/mixin.py +59 -2
- maxframe/opcodes.py +13 -5
- maxframe/protocol.py +67 -14
- maxframe/remote/core.py +16 -14
- maxframe/remote/run_script.py +6 -3
- maxframe/serialization/__init__.py +2 -0
- maxframe/serialization/core.cp310-win32.pyd +0 -0
- maxframe/serialization/core.pxd +3 -0
- maxframe/serialization/core.pyi +3 -1
- maxframe/serialization/core.pyx +82 -4
- maxframe/serialization/pandas.py +5 -1
- maxframe/serialization/serializables/core.py +6 -5
- maxframe/serialization/serializables/field.py +2 -2
- maxframe/serialization/serializables/tests/test_field_type.py +3 -5
- maxframe/serialization/tests/test_serial.py +27 -0
- maxframe/session.py +4 -71
- maxframe/sperunner.py +165 -0
- maxframe/tensor/__init__.py +35 -2
- maxframe/tensor/arithmetic/__init__.py +2 -4
- maxframe/tensor/arithmetic/abs.py +0 -2
- maxframe/tensor/arithmetic/absolute.py +0 -2
- maxframe/tensor/arithmetic/add.py +34 -4
- maxframe/tensor/arithmetic/angle.py +0 -2
- maxframe/tensor/arithmetic/arccos.py +1 -4
- maxframe/tensor/arithmetic/arccosh.py +1 -3
- maxframe/tensor/arithmetic/arcsin.py +0 -2
- maxframe/tensor/arithmetic/arcsinh.py +0 -2
- maxframe/tensor/arithmetic/arctan.py +0 -2
- maxframe/tensor/arithmetic/arctan2.py +0 -2
- maxframe/tensor/arithmetic/arctanh.py +0 -2
- maxframe/tensor/arithmetic/around.py +0 -2
- maxframe/tensor/arithmetic/bitand.py +0 -2
- maxframe/tensor/arithmetic/bitor.py +1 -3
- maxframe/tensor/arithmetic/bitxor.py +1 -3
- maxframe/tensor/arithmetic/cbrt.py +0 -2
- maxframe/tensor/arithmetic/ceil.py +0 -2
- maxframe/tensor/arithmetic/clip.py +13 -13
- maxframe/tensor/arithmetic/conj.py +0 -2
- maxframe/tensor/arithmetic/copysign.py +0 -2
- maxframe/tensor/arithmetic/core.py +47 -39
- maxframe/tensor/arithmetic/cos.py +1 -3
- maxframe/tensor/arithmetic/cosh.py +0 -2
- maxframe/tensor/arithmetic/deg2rad.py +0 -2
- maxframe/tensor/arithmetic/degrees.py +0 -2
- maxframe/tensor/arithmetic/divide.py +0 -2
- maxframe/tensor/arithmetic/equal.py +0 -2
- maxframe/tensor/arithmetic/exp.py +1 -3
- maxframe/tensor/arithmetic/exp2.py +0 -2
- maxframe/tensor/arithmetic/expm1.py +0 -2
- maxframe/tensor/arithmetic/fabs.py +0 -2
- maxframe/tensor/arithmetic/fix.py +0 -2
- maxframe/tensor/arithmetic/float_power.py +0 -2
- maxframe/tensor/arithmetic/floor.py +0 -2
- maxframe/tensor/arithmetic/floordiv.py +0 -2
- maxframe/tensor/arithmetic/fmax.py +0 -2
- maxframe/tensor/arithmetic/fmin.py +0 -2
- maxframe/tensor/arithmetic/fmod.py +0 -2
- maxframe/tensor/arithmetic/frexp.py +6 -2
- maxframe/tensor/arithmetic/greater.py +0 -2
- maxframe/tensor/arithmetic/greater_equal.py +0 -2
- maxframe/tensor/arithmetic/hypot.py +0 -2
- maxframe/tensor/arithmetic/i0.py +1 -3
- maxframe/tensor/arithmetic/imag.py +0 -2
- maxframe/tensor/arithmetic/invert.py +1 -3
- maxframe/tensor/arithmetic/isclose.py +0 -2
- maxframe/tensor/arithmetic/iscomplex.py +0 -2
- maxframe/tensor/arithmetic/isfinite.py +1 -3
- maxframe/tensor/arithmetic/isinf.py +0 -2
- maxframe/tensor/arithmetic/isnan.py +0 -2
- maxframe/tensor/arithmetic/isreal.py +0 -2
- maxframe/tensor/arithmetic/ldexp.py +0 -2
- maxframe/tensor/arithmetic/less.py +0 -2
- maxframe/tensor/arithmetic/less_equal.py +0 -2
- maxframe/tensor/arithmetic/log.py +1 -3
- maxframe/tensor/arithmetic/log10.py +1 -3
- maxframe/tensor/arithmetic/log1p.py +1 -3
- maxframe/tensor/arithmetic/log2.py +1 -3
- maxframe/tensor/arithmetic/logaddexp.py +0 -2
- maxframe/tensor/arithmetic/logaddexp2.py +0 -2
- maxframe/tensor/arithmetic/logical_and.py +0 -2
- maxframe/tensor/arithmetic/logical_not.py +1 -3
- maxframe/tensor/arithmetic/logical_or.py +0 -2
- maxframe/tensor/arithmetic/logical_xor.py +0 -2
- maxframe/tensor/arithmetic/lshift.py +0 -2
- maxframe/tensor/arithmetic/maximum.py +0 -2
- maxframe/tensor/arithmetic/minimum.py +0 -2
- maxframe/tensor/arithmetic/mod.py +0 -2
- maxframe/tensor/arithmetic/modf.py +6 -2
- maxframe/tensor/arithmetic/multiply.py +37 -4
- maxframe/tensor/arithmetic/nan_to_num.py +0 -2
- maxframe/tensor/arithmetic/negative.py +0 -2
- maxframe/tensor/arithmetic/nextafter.py +0 -2
- maxframe/tensor/arithmetic/not_equal.py +0 -2
- maxframe/tensor/arithmetic/positive.py +0 -2
- maxframe/tensor/arithmetic/power.py +0 -2
- maxframe/tensor/arithmetic/rad2deg.py +0 -2
- maxframe/tensor/arithmetic/radians.py +0 -2
- maxframe/tensor/arithmetic/real.py +0 -2
- maxframe/tensor/arithmetic/reciprocal.py +5 -3
- maxframe/tensor/arithmetic/rint.py +1 -3
- maxframe/tensor/arithmetic/rshift.py +0 -2
- maxframe/tensor/arithmetic/setimag.py +0 -2
- maxframe/tensor/arithmetic/setreal.py +0 -2
- maxframe/tensor/arithmetic/sign.py +0 -2
- maxframe/tensor/arithmetic/signbit.py +0 -2
- maxframe/tensor/arithmetic/sin.py +0 -2
- maxframe/tensor/arithmetic/sinc.py +1 -3
- maxframe/tensor/arithmetic/sinh.py +0 -2
- maxframe/tensor/arithmetic/spacing.py +0 -2
- maxframe/tensor/arithmetic/sqrt.py +0 -2
- maxframe/tensor/arithmetic/square.py +0 -2
- maxframe/tensor/arithmetic/subtract.py +4 -2
- maxframe/tensor/arithmetic/tan.py +0 -2
- maxframe/tensor/arithmetic/tanh.py +0 -2
- maxframe/tensor/arithmetic/tests/__init__.py +0 -2
- maxframe/tensor/arithmetic/tests/test_arithmetic.py +43 -9
- maxframe/tensor/arithmetic/truediv.py +0 -2
- maxframe/tensor/arithmetic/trunc.py +0 -2
- maxframe/tensor/arithmetic/utils.py +32 -6
- maxframe/tensor/array_utils.py +3 -25
- maxframe/tensor/core.py +6 -6
- maxframe/tensor/datasource/__init__.py +10 -2
- maxframe/tensor/datasource/arange.py +0 -2
- maxframe/tensor/datasource/array.py +3 -22
- maxframe/tensor/datasource/core.py +15 -10
- maxframe/tensor/datasource/diag.py +140 -0
- maxframe/tensor/datasource/diagflat.py +69 -0
- maxframe/tensor/datasource/empty.py +0 -2
- maxframe/tensor/datasource/eye.py +95 -0
- maxframe/tensor/datasource/from_dataframe.py +0 -2
- maxframe/tensor/datasource/from_dense.py +0 -17
- maxframe/tensor/datasource/from_sparse.py +0 -2
- maxframe/tensor/datasource/full.py +0 -2
- maxframe/tensor/datasource/identity.py +54 -0
- maxframe/tensor/datasource/indices.py +115 -0
- maxframe/tensor/datasource/linspace.py +140 -0
- maxframe/tensor/datasource/meshgrid.py +135 -0
- maxframe/tensor/datasource/ones.py +8 -3
- maxframe/tensor/datasource/tests/test_datasource.py +32 -1
- maxframe/tensor/datasource/tri_array.py +107 -0
- maxframe/tensor/datasource/zeros.py +7 -3
- maxframe/tensor/extensions/__init__.py +31 -0
- maxframe/tensor/extensions/accessor.py +25 -0
- maxframe/tensor/extensions/apply_chunk.py +137 -0
- maxframe/tensor/indexing/__init__.py +1 -1
- maxframe/tensor/indexing/choose.py +8 -6
- maxframe/tensor/indexing/compress.py +0 -2
- maxframe/tensor/indexing/extract.py +0 -2
- maxframe/tensor/indexing/fill_diagonal.py +9 -6
- maxframe/tensor/indexing/flatnonzero.py +1 -3
- maxframe/tensor/indexing/getitem.py +10 -43
- maxframe/tensor/indexing/nonzero.py +2 -4
- maxframe/tensor/indexing/setitem.py +19 -9
- maxframe/tensor/indexing/slice.py +6 -3
- maxframe/tensor/indexing/take.py +0 -2
- maxframe/tensor/indexing/tests/__init__.py +0 -2
- maxframe/tensor/indexing/tests/test_indexing.py +0 -2
- maxframe/tensor/indexing/unravel_index.py +6 -6
- maxframe/tensor/lib/__init__.py +16 -0
- maxframe/tensor/lib/index_tricks.py +404 -0
- maxframe/tensor/linalg/__init__.py +36 -0
- maxframe/tensor/linalg/dot.py +145 -0
- maxframe/tensor/linalg/inner.py +36 -0
- maxframe/tensor/linalg/inv.py +83 -0
- maxframe/tensor/linalg/lu.py +115 -0
- maxframe/tensor/linalg/matmul.py +225 -0
- maxframe/tensor/linalg/qr.py +124 -0
- maxframe/tensor/linalg/solve_triangular.py +103 -0
- maxframe/tensor/linalg/svd.py +167 -0
- maxframe/tensor/linalg/tensordot.py +213 -0
- maxframe/tensor/linalg/vdot.py +73 -0
- maxframe/tensor/merge/__init__.py +4 -0
- maxframe/tensor/merge/append.py +74 -0
- maxframe/tensor/merge/column_stack.py +63 -0
- maxframe/tensor/merge/concatenate.py +3 -2
- maxframe/tensor/merge/dstack.py +71 -0
- maxframe/tensor/merge/hstack.py +70 -0
- maxframe/tensor/merge/stack.py +0 -2
- maxframe/tensor/merge/tests/test_merge.py +0 -2
- maxframe/tensor/misc/__init__.py +18 -5
- maxframe/tensor/misc/astype.py +10 -8
- maxframe/tensor/misc/broadcast_to.py +1 -1
- maxframe/tensor/misc/copy.py +64 -0
- maxframe/tensor/misc/diff.py +115 -0
- maxframe/tensor/misc/flatten.py +63 -0
- maxframe/tensor/misc/in1d.py +94 -0
- maxframe/tensor/misc/isin.py +130 -0
- maxframe/tensor/misc/ndim.py +53 -0
- maxframe/tensor/misc/ravel.py +0 -2
- maxframe/tensor/misc/repeat.py +129 -0
- maxframe/tensor/misc/searchsorted.py +147 -0
- maxframe/tensor/misc/setdiff1d.py +58 -0
- maxframe/tensor/misc/squeeze.py +117 -0
- maxframe/tensor/misc/swapaxes.py +113 -0
- maxframe/tensor/misc/tests/test_misc.py +0 -2
- maxframe/tensor/misc/transpose.py +8 -4
- maxframe/tensor/misc/trapezoid.py +123 -0
- maxframe/tensor/misc/unique.py +0 -1
- maxframe/tensor/misc/where.py +10 -8
- maxframe/tensor/operators.py +0 -34
- maxframe/tensor/random/__init__.py +3 -5
- maxframe/tensor/random/binomial.py +0 -2
- maxframe/tensor/random/bytes.py +0 -2
- maxframe/tensor/random/chisquare.py +0 -2
- maxframe/tensor/random/choice.py +9 -8
- maxframe/tensor/random/core.py +20 -5
- maxframe/tensor/random/dirichlet.py +0 -2
- maxframe/tensor/random/exponential.py +0 -2
- maxframe/tensor/random/f.py +2 -4
- maxframe/tensor/random/gamma.py +0 -2
- maxframe/tensor/random/geometric.py +0 -2
- maxframe/tensor/random/gumbel.py +0 -2
- maxframe/tensor/random/hypergeometric.py +0 -2
- maxframe/tensor/random/laplace.py +2 -4
- maxframe/tensor/random/logistic.py +0 -2
- maxframe/tensor/random/lognormal.py +0 -2
- maxframe/tensor/random/logseries.py +0 -2
- maxframe/tensor/random/multinomial.py +0 -2
- maxframe/tensor/random/multivariate_normal.py +0 -2
- maxframe/tensor/random/negative_binomial.py +0 -2
- maxframe/tensor/random/noncentral_chisquare.py +0 -2
- maxframe/tensor/random/noncentral_f.py +1 -3
- maxframe/tensor/random/normal.py +0 -2
- maxframe/tensor/random/pareto.py +0 -2
- maxframe/tensor/random/permutation.py +6 -3
- maxframe/tensor/random/poisson.py +0 -2
- maxframe/tensor/random/power.py +0 -2
- maxframe/tensor/random/rand.py +0 -2
- maxframe/tensor/random/randint.py +0 -2
- maxframe/tensor/random/randn.py +0 -2
- maxframe/tensor/random/random_integers.py +0 -2
- maxframe/tensor/random/random_sample.py +0 -2
- maxframe/tensor/random/rayleigh.py +0 -2
- maxframe/tensor/random/standard_cauchy.py +0 -2
- maxframe/tensor/random/standard_exponential.py +0 -2
- maxframe/tensor/random/standard_gamma.py +0 -2
- maxframe/tensor/random/standard_normal.py +0 -2
- maxframe/tensor/random/standard_t.py +0 -2
- maxframe/tensor/random/tests/__init__.py +0 -2
- maxframe/tensor/random/tests/test_random.py +0 -2
- maxframe/tensor/random/triangular.py +0 -2
- maxframe/tensor/random/uniform.py +0 -2
- maxframe/tensor/random/vonmises.py +0 -2
- maxframe/tensor/random/wald.py +0 -2
- maxframe/tensor/random/weibull.py +0 -2
- maxframe/tensor/random/zipf.py +0 -2
- maxframe/tensor/reduction/__init__.py +0 -2
- maxframe/tensor/reduction/all.py +0 -2
- maxframe/tensor/reduction/allclose.py +0 -2
- maxframe/tensor/reduction/any.py +0 -2
- maxframe/tensor/reduction/argmax.py +1 -3
- maxframe/tensor/reduction/argmin.py +1 -3
- maxframe/tensor/reduction/array_equal.py +0 -2
- maxframe/tensor/reduction/core.py +0 -2
- maxframe/tensor/reduction/count_nonzero.py +0 -2
- maxframe/tensor/reduction/cumprod.py +0 -2
- maxframe/tensor/reduction/cumsum.py +0 -2
- maxframe/tensor/reduction/max.py +0 -2
- maxframe/tensor/reduction/mean.py +0 -2
- maxframe/tensor/reduction/min.py +0 -2
- maxframe/tensor/reduction/nanargmax.py +0 -2
- maxframe/tensor/reduction/nanargmin.py +0 -2
- maxframe/tensor/reduction/nancumprod.py +0 -2
- maxframe/tensor/reduction/nancumsum.py +0 -2
- maxframe/tensor/reduction/nanmax.py +0 -2
- maxframe/tensor/reduction/nanmean.py +0 -2
- maxframe/tensor/reduction/nanmin.py +0 -2
- maxframe/tensor/reduction/nanprod.py +0 -2
- maxframe/tensor/reduction/nanstd.py +0 -2
- maxframe/tensor/reduction/nansum.py +0 -2
- maxframe/tensor/reduction/nanvar.py +0 -2
- maxframe/tensor/reduction/prod.py +0 -2
- maxframe/tensor/reduction/std.py +0 -2
- maxframe/tensor/reduction/sum.py +0 -2
- maxframe/tensor/reduction/tests/test_reduction.py +1 -4
- maxframe/tensor/reduction/var.py +0 -2
- maxframe/tensor/reshape/__init__.py +0 -2
- maxframe/tensor/reshape/reshape.py +6 -5
- maxframe/tensor/reshape/tests/__init__.py +0 -2
- maxframe/tensor/reshape/tests/test_reshape.py +0 -2
- maxframe/tensor/sort/__init__.py +16 -0
- maxframe/tensor/sort/argsort.py +150 -0
- maxframe/tensor/sort/sort.py +295 -0
- maxframe/tensor/special/__init__.py +37 -0
- maxframe/tensor/special/core.py +38 -0
- maxframe/tensor/special/misc.py +142 -0
- maxframe/tensor/special/statistical.py +56 -0
- maxframe/tensor/statistics/__init__.py +5 -0
- maxframe/tensor/statistics/average.py +143 -0
- maxframe/tensor/statistics/bincount.py +133 -0
- maxframe/tensor/statistics/quantile.py +10 -8
- maxframe/tensor/ufunc/__init__.py +0 -2
- maxframe/tensor/ufunc/ufunc.py +0 -2
- maxframe/tensor/utils.py +21 -3
- maxframe/tests/test_protocol.py +3 -3
- maxframe/tests/test_utils.py +210 -1
- maxframe/tests/utils.py +59 -1
- maxframe/udf.py +76 -6
- maxframe/utils.py +418 -17
- {maxframe-1.3.1.dist-info → maxframe-2.0.0b2.dist-info}/METADATA +4 -1
- maxframe-2.0.0b2.dist-info/RECORD +939 -0
- {maxframe-1.3.1.dist-info → maxframe-2.0.0b2.dist-info}/WHEEL +1 -1
- maxframe_client/clients/framedriver.py +19 -3
- maxframe_client/fetcher.py +113 -6
- maxframe_client/session/odps.py +173 -38
- maxframe_client/session/task.py +3 -1
- maxframe_client/tests/test_session.py +41 -5
- maxframe-1.3.1.dist-info/RECORD +0 -705
- {maxframe-1.3.1.dist-info → maxframe-2.0.0b2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,599 @@
|
|
|
1
|
+
# Copyright 1999-2025 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import List
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import scipy.sparse as sps
|
|
19
|
+
|
|
20
|
+
from ....udf import builtin_function
|
|
21
|
+
|
|
22
|
+
try:
|
|
23
|
+
from sklearn.utils.multiclass import type_of_target as sk_type_of_target
|
|
24
|
+
except ImportError:
|
|
25
|
+
sk_type_of_target = lambda _: None
|
|
26
|
+
|
|
27
|
+
from .... import opcodes
|
|
28
|
+
from .... import tensor as mt
|
|
29
|
+
from ....core import ENTITY_TYPE, OutputType
|
|
30
|
+
from ....core.operator import Operator
|
|
31
|
+
from ....serialization.serializables import AnyField, BoolField, Int32Field
|
|
32
|
+
from ....tensor.core import TensorOrder
|
|
33
|
+
from ....typing_ import EntityType, TileableType
|
|
34
|
+
from ...core import BaseEstimator, LearnOperatorMixin, TransformerMixin
|
|
35
|
+
from ...utils.multiclass import type_of_target, unique_labels
|
|
36
|
+
from ...utils.validation import _num_samples, check_array, check_is_fitted
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class LabelBinarizer(TransformerMixin, BaseEstimator):
|
|
40
|
+
"""Binarize labels in a one-vs-all fashion.
|
|
41
|
+
|
|
42
|
+
Several regression and binary classification algorithms are
|
|
43
|
+
available in scikit-learn. A simple way to extend these algorithms
|
|
44
|
+
to the multi-class classification case is to use the so-called
|
|
45
|
+
one-vs-all scheme.
|
|
46
|
+
|
|
47
|
+
At learning time, this simply consists in learning one regressor
|
|
48
|
+
or binary classifier per class. In doing so, one needs to convert
|
|
49
|
+
multi-class labels to binary labels (belong or does not belong
|
|
50
|
+
to the class). LabelBinarizer makes this process easy with the
|
|
51
|
+
transform method.
|
|
52
|
+
|
|
53
|
+
At prediction time, one assigns the class for which the corresponding
|
|
54
|
+
model gave the greatest confidence. LabelBinarizer makes this easy
|
|
55
|
+
with the inverse_transform method.
|
|
56
|
+
|
|
57
|
+
Read more in the :ref:`User Guide <preprocessing_targets>`.
|
|
58
|
+
|
|
59
|
+
Parameters
|
|
60
|
+
----------
|
|
61
|
+
|
|
62
|
+
neg_label : int, default=0
|
|
63
|
+
Value with which negative labels must be encoded.
|
|
64
|
+
|
|
65
|
+
pos_label : int, default=1
|
|
66
|
+
Value with which positive labels must be encoded.
|
|
67
|
+
|
|
68
|
+
sparse_output : bool, default=False
|
|
69
|
+
True if the returned array from transform is desired to be in sparse
|
|
70
|
+
CSR format.
|
|
71
|
+
|
|
72
|
+
Attributes
|
|
73
|
+
----------
|
|
74
|
+
|
|
75
|
+
classes_ : ndarray of shape (n_classes,)
|
|
76
|
+
Holds the label for each class.
|
|
77
|
+
|
|
78
|
+
y_type_ : str
|
|
79
|
+
Represents the type of the target data as evaluated by
|
|
80
|
+
utils.multiclass.type_of_target. Possible type are 'continuous',
|
|
81
|
+
'continuous-multioutput', 'binary', 'multiclass',
|
|
82
|
+
'multiclass-multioutput', 'multilabel-indicator', and 'unknown'.
|
|
83
|
+
|
|
84
|
+
sparse_input_ : bool
|
|
85
|
+
True if the input data to transform is given as a sparse matrix, False
|
|
86
|
+
otherwise.
|
|
87
|
+
|
|
88
|
+
Examples
|
|
89
|
+
--------
|
|
90
|
+
>>> from maxframe.learn import preprocessing
|
|
91
|
+
>>> lb = preprocessing.LabelBinarizer()
|
|
92
|
+
>>> lb.fit([1, 2, 6, 4, 2])
|
|
93
|
+
LabelBinarizer()
|
|
94
|
+
>>> lb.classes_.execute()
|
|
95
|
+
array([1, 2, 4, 6])
|
|
96
|
+
>>> lb.transform([1, 6]).execute()
|
|
97
|
+
array([[1, 0, 0, 0],
|
|
98
|
+
[0, 0, 0, 1]])
|
|
99
|
+
|
|
100
|
+
Binary targets transform to a column vector
|
|
101
|
+
|
|
102
|
+
>>> lb = preprocessing.LabelBinarizer()
|
|
103
|
+
>>> lb.fit_transform(['yes', 'no', 'no', 'yes']).execute()
|
|
104
|
+
array([[1],
|
|
105
|
+
[0],
|
|
106
|
+
[0],
|
|
107
|
+
[1]])
|
|
108
|
+
|
|
109
|
+
Passing a 2D matrix for multilabel classification
|
|
110
|
+
|
|
111
|
+
>>> import numpy as np
|
|
112
|
+
>>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]]))
|
|
113
|
+
LabelBinarizer()
|
|
114
|
+
>>> lb.classes_.execute()
|
|
115
|
+
array([0, 1, 2])
|
|
116
|
+
>>> lb.transform([0, 1, 2, 1]).execute()
|
|
117
|
+
array([[1, 0, 0],
|
|
118
|
+
[0, 1, 0],
|
|
119
|
+
[0, 0, 1],
|
|
120
|
+
[0, 1, 0]])
|
|
121
|
+
|
|
122
|
+
See Also
|
|
123
|
+
--------
|
|
124
|
+
label_binarize : Function to perform the transform operation of
|
|
125
|
+
LabelBinarizer with fixed classes.
|
|
126
|
+
OneHotEncoder : Encode categorical features using a one-hot aka one-of-K
|
|
127
|
+
scheme.
|
|
128
|
+
"""
|
|
129
|
+
|
|
130
|
+
def __init__(self, *, neg_label=0, pos_label=1, sparse_output=False):
|
|
131
|
+
if neg_label >= pos_label:
|
|
132
|
+
raise ValueError(
|
|
133
|
+
"neg_label={0} must be strictly less than "
|
|
134
|
+
"pos_label={1}.".format(neg_label, pos_label)
|
|
135
|
+
)
|
|
136
|
+
|
|
137
|
+
if sparse_output and (pos_label == 0 or neg_label != 0):
|
|
138
|
+
raise ValueError(
|
|
139
|
+
"Sparse binarization is only supported with non "
|
|
140
|
+
"zero pos_label and zero neg_label, got "
|
|
141
|
+
"pos_label={0} and neg_label={1}"
|
|
142
|
+
"".format(pos_label, neg_label)
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
self.neg_label = neg_label
|
|
146
|
+
self.pos_label = pos_label
|
|
147
|
+
self.sparse_output = sparse_output
|
|
148
|
+
|
|
149
|
+
@staticmethod
|
|
150
|
+
@builtin_function
|
|
151
|
+
def _check_y_type(value, y):
|
|
152
|
+
if isinstance(y, np.ndarray):
|
|
153
|
+
y = y.item()
|
|
154
|
+
if "multioutput" in y:
|
|
155
|
+
raise ValueError(
|
|
156
|
+
"Multioutput target data is not supported with label binarization"
|
|
157
|
+
)
|
|
158
|
+
return value
|
|
159
|
+
|
|
160
|
+
def fit(self, y, check=True, execute=False, session=None, run_kwargs=None):
|
|
161
|
+
"""Fit label binarizer.
|
|
162
|
+
|
|
163
|
+
Parameters
|
|
164
|
+
----------
|
|
165
|
+
y : ndarray of shape (n_samples,) or (n_samples, n_classes)
|
|
166
|
+
Target values. The 2-d matrix should only contain 0 and 1,
|
|
167
|
+
represents multilabel classification.
|
|
168
|
+
|
|
169
|
+
Returns
|
|
170
|
+
-------
|
|
171
|
+
self : returns an instance of self.
|
|
172
|
+
"""
|
|
173
|
+
y = mt.tensor(y)
|
|
174
|
+
self.y_type_ = type_of_target(y)
|
|
175
|
+
|
|
176
|
+
if _num_samples(y) == 0: # pragma: no cover
|
|
177
|
+
raise ValueError("y has 0 samples: %r" % y)
|
|
178
|
+
|
|
179
|
+
if check:
|
|
180
|
+
y = y.mf.apply_chunk(
|
|
181
|
+
self._check_y_type,
|
|
182
|
+
args=(self.y_type_,),
|
|
183
|
+
shape=y.shape,
|
|
184
|
+
dtype=y.dtype,
|
|
185
|
+
sparse=y.issparse(),
|
|
186
|
+
)
|
|
187
|
+
|
|
188
|
+
self.sparse_input_ = mt.tensor(y).issparse()
|
|
189
|
+
self.classes_ = unique_labels(y)
|
|
190
|
+
if execute:
|
|
191
|
+
self.execute(session=session, **(run_kwargs or {}))
|
|
192
|
+
return self
|
|
193
|
+
|
|
194
|
+
def fit_transform(
|
|
195
|
+
self, y, check=True, execute=False, session=None, run_kwargs=None
|
|
196
|
+
):
|
|
197
|
+
"""Fit label binarizer and transform multi-class labels to binary
|
|
198
|
+
labels.
|
|
199
|
+
|
|
200
|
+
The output of transform is sometimes referred to as
|
|
201
|
+
the 1-of-K coding scheme.
|
|
202
|
+
|
|
203
|
+
Parameters
|
|
204
|
+
----------
|
|
205
|
+
y : {ndarray, sparse matrix} of shape (n_samples,) or \
|
|
206
|
+
(n_samples, n_classes)
|
|
207
|
+
Target values. The 2-d matrix should only contain 0 and 1,
|
|
208
|
+
represents multilabel classification. Sparse matrix can be
|
|
209
|
+
CSR, CSC, COO, DOK, or LIL.
|
|
210
|
+
|
|
211
|
+
Returns
|
|
212
|
+
-------
|
|
213
|
+
Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
|
|
214
|
+
Shape will be (n_samples, 1) for binary problems. Sparse matrix
|
|
215
|
+
will be of CSR format.
|
|
216
|
+
"""
|
|
217
|
+
return self.fit(
|
|
218
|
+
y, check=check, execute=execute, session=session, run_kwargs=run_kwargs
|
|
219
|
+
).transform(
|
|
220
|
+
y, check=check, execute=execute, session=session, run_kwargs=run_kwargs
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
@staticmethod
|
|
224
|
+
@builtin_function
|
|
225
|
+
def _check_y_type_src_target(val, yt_src, yt_target):
|
|
226
|
+
if isinstance(yt_src, np.ndarray):
|
|
227
|
+
yt_src = yt_src.item()
|
|
228
|
+
if isinstance(yt_target, np.ndarray):
|
|
229
|
+
yt_target = yt_target.item()
|
|
230
|
+
y_is_multilabel = yt_target.startswith("multilabel")
|
|
231
|
+
if y_is_multilabel and not yt_src.startswith("multilabel"):
|
|
232
|
+
raise ValueError("The object was not fitted with multilabel input.")
|
|
233
|
+
return val
|
|
234
|
+
|
|
235
|
+
def transform(self, y, check=True, execute=False, session=None, run_kwargs=None):
|
|
236
|
+
"""Transform multi-class labels to binary labels.
|
|
237
|
+
|
|
238
|
+
The output of transform is sometimes referred to by some authors as
|
|
239
|
+
the 1-of-K coding scheme.
|
|
240
|
+
|
|
241
|
+
Parameters
|
|
242
|
+
----------
|
|
243
|
+
y : {array, sparse matrix} of shape (n_samples,) or \
|
|
244
|
+
(n_samples, n_classes)
|
|
245
|
+
Target values. The 2-d matrix should only contain 0 and 1,
|
|
246
|
+
represents multilabel classification. Sparse matrix can be
|
|
247
|
+
CSR, CSC, COO, DOK, or LIL.
|
|
248
|
+
|
|
249
|
+
Returns
|
|
250
|
+
-------
|
|
251
|
+
Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
|
|
252
|
+
Shape will be (n_samples, 1) for binary problems. Sparse matrix
|
|
253
|
+
will be of CSR format.
|
|
254
|
+
"""
|
|
255
|
+
check_is_fitted(self)
|
|
256
|
+
|
|
257
|
+
y = mt.tensor(y)
|
|
258
|
+
target = type_of_target(y)
|
|
259
|
+
|
|
260
|
+
if check:
|
|
261
|
+
y = y.mf.apply_chunk(
|
|
262
|
+
self._check_y_type_src_target,
|
|
263
|
+
args=(self.y_type_, target),
|
|
264
|
+
shape=y.shape,
|
|
265
|
+
dtype=y.dtype,
|
|
266
|
+
)
|
|
267
|
+
|
|
268
|
+
return label_binarize(
|
|
269
|
+
y,
|
|
270
|
+
classes=self.classes_,
|
|
271
|
+
pos_label=self.pos_label,
|
|
272
|
+
neg_label=self.neg_label,
|
|
273
|
+
sparse_output=self.sparse_output,
|
|
274
|
+
execute=execute,
|
|
275
|
+
session=session,
|
|
276
|
+
run_kwargs=run_kwargs,
|
|
277
|
+
)
|
|
278
|
+
|
|
279
|
+
def inverse_transform(self, Y, threshold=None):
|
|
280
|
+
"""Transform binary labels back to multi-class labels.
|
|
281
|
+
|
|
282
|
+
Parameters
|
|
283
|
+
----------
|
|
284
|
+
Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
|
|
285
|
+
Target values. All sparse matrices are converted to CSR before
|
|
286
|
+
inverse transformation.
|
|
287
|
+
|
|
288
|
+
threshold : float, default=None
|
|
289
|
+
Threshold used in the binary and multi-label cases.
|
|
290
|
+
|
|
291
|
+
Use 0 when ``Y`` contains the output of decision_function
|
|
292
|
+
(classifier).
|
|
293
|
+
Use 0.5 when ``Y`` contains the output of predict_proba.
|
|
294
|
+
|
|
295
|
+
If None, the threshold is assumed to be half way between
|
|
296
|
+
neg_label and pos_label.
|
|
297
|
+
|
|
298
|
+
Returns
|
|
299
|
+
-------
|
|
300
|
+
y : {ndarray, sparse matrix} of shape (n_samples,)
|
|
301
|
+
Target values. Sparse matrix will be of CSR format.
|
|
302
|
+
|
|
303
|
+
Notes
|
|
304
|
+
-----
|
|
305
|
+
In the case when the binary labels are fractional
|
|
306
|
+
(probabilistic), inverse_transform chooses the class with the
|
|
307
|
+
greatest value. Typically, this allows to use the output of a
|
|
308
|
+
linear model's decision_function method directly as the input
|
|
309
|
+
of inverse_transform.
|
|
310
|
+
"""
|
|
311
|
+
check_is_fitted(self)
|
|
312
|
+
|
|
313
|
+
if threshold is None:
|
|
314
|
+
threshold = (self.pos_label + self.neg_label) / 2.0
|
|
315
|
+
|
|
316
|
+
Y = mt.tensor(Y)
|
|
317
|
+
shape = (Y.shape[0],) if self.y_type_ != "multilabel-indicator" else Y.shape
|
|
318
|
+
y_inv = Y.mf.apply_chunk(
|
|
319
|
+
_inverse_binarize,
|
|
320
|
+
args=(self.y_type_, self.classes_, threshold),
|
|
321
|
+
dtype=self.classes_.dtype,
|
|
322
|
+
shape=shape,
|
|
323
|
+
sparse=False,
|
|
324
|
+
)
|
|
325
|
+
if self.sparse_input_:
|
|
326
|
+
y_inv = y_inv.tosparse()
|
|
327
|
+
elif y_inv.issparse():
|
|
328
|
+
y_inv = y_inv.todense()
|
|
329
|
+
|
|
330
|
+
return y_inv
|
|
331
|
+
|
|
332
|
+
|
|
333
|
+
class LabelBinarizeOp(Operator, LearnOperatorMixin):
|
|
334
|
+
_op_type_ = opcodes.LABEL_BINARIZE
|
|
335
|
+
|
|
336
|
+
y = AnyField("y")
|
|
337
|
+
classes = AnyField("classes", default=None)
|
|
338
|
+
n_classes = Int32Field("n_classes", default=None)
|
|
339
|
+
neg_label = Int32Field("neg_label", default=None)
|
|
340
|
+
pos_label = Int32Field("pos_label", default=None)
|
|
341
|
+
sparse_output = BoolField("sparse_output", default=None)
|
|
342
|
+
y_type = AnyField("y_type", default=None)
|
|
343
|
+
# for chunk
|
|
344
|
+
pos_switch = BoolField("pos_switch", default=None)
|
|
345
|
+
|
|
346
|
+
def __call__(
|
|
347
|
+
self,
|
|
348
|
+
y: TileableType,
|
|
349
|
+
classes: TileableType,
|
|
350
|
+
y_type: TileableType = None,
|
|
351
|
+
check: bool = True,
|
|
352
|
+
):
|
|
353
|
+
inputs = []
|
|
354
|
+
if check and not isinstance(y, list):
|
|
355
|
+
# XXX Workaround that will be removed when list of list format is
|
|
356
|
+
# dropped
|
|
357
|
+
self.y = y = check_array(y, accept_sparse=True, ensure_2d=False, dtype=None)
|
|
358
|
+
|
|
359
|
+
for arg in (y, classes, y_type):
|
|
360
|
+
if isinstance(arg, ENTITY_TYPE):
|
|
361
|
+
inputs.append(arg)
|
|
362
|
+
|
|
363
|
+
self.sparse = self.sparse_output
|
|
364
|
+
self.output_types = [OutputType.tensor]
|
|
365
|
+
n_classes = len(classes) if classes is not None else self.n_classes
|
|
366
|
+
if n_classes == 2:
|
|
367
|
+
n_dim1 = 1
|
|
368
|
+
else:
|
|
369
|
+
n_dim1 = n_classes
|
|
370
|
+
return self.new_tileable(
|
|
371
|
+
inputs,
|
|
372
|
+
shape=(mt.asarray(y).shape[0], n_dim1),
|
|
373
|
+
dtype=np.dtype(int),
|
|
374
|
+
order=TensorOrder.C_ORDER,
|
|
375
|
+
)
|
|
376
|
+
|
|
377
|
+
@classmethod
|
|
378
|
+
def _set_inputs(cls, op: "LabelBinarizeOp", inputs: List[EntityType]):
|
|
379
|
+
super()._set_inputs(op, inputs)
|
|
380
|
+
input_it = iter(op.inputs)
|
|
381
|
+
if isinstance(op.y, ENTITY_TYPE):
|
|
382
|
+
op.y = next(input_it)
|
|
383
|
+
if isinstance(op.classes, ENTITY_TYPE):
|
|
384
|
+
op.classes = next(input_it)
|
|
385
|
+
if isinstance(op.y_type, ENTITY_TYPE):
|
|
386
|
+
op.y_type = next(input_it)
|
|
387
|
+
|
|
388
|
+
|
|
389
|
+
def _label_binarize(
|
|
390
|
+
y,
|
|
391
|
+
*,
|
|
392
|
+
classes=None,
|
|
393
|
+
n_classes=None,
|
|
394
|
+
neg_label=0,
|
|
395
|
+
pos_label=1,
|
|
396
|
+
sparse_output=False,
|
|
397
|
+
y_type=None,
|
|
398
|
+
):
|
|
399
|
+
"""
|
|
400
|
+
Internal label binarize function with additional arguments.
|
|
401
|
+
|
|
402
|
+
Special Parameters
|
|
403
|
+
------------------
|
|
404
|
+
n_classes : int
|
|
405
|
+
Number of classes. If provided, will use 0..n_classes - 1 as classes.
|
|
406
|
+
y_type : str
|
|
407
|
+
Type of label. If provided, the OP will use the value directly to reduce
|
|
408
|
+
potential execution.
|
|
409
|
+
"""
|
|
410
|
+
op = LabelBinarizeOp(
|
|
411
|
+
y=y,
|
|
412
|
+
classes=classes,
|
|
413
|
+
n_classes=n_classes,
|
|
414
|
+
neg_label=neg_label,
|
|
415
|
+
pos_label=pos_label,
|
|
416
|
+
sparse_output=sparse_output,
|
|
417
|
+
y_type=y_type,
|
|
418
|
+
)
|
|
419
|
+
return op(y, classes)
|
|
420
|
+
|
|
421
|
+
|
|
422
|
+
def label_binarize(
|
|
423
|
+
y,
|
|
424
|
+
*,
|
|
425
|
+
classes,
|
|
426
|
+
neg_label=0,
|
|
427
|
+
pos_label=1,
|
|
428
|
+
sparse_output=False,
|
|
429
|
+
execute=False,
|
|
430
|
+
session=None,
|
|
431
|
+
run_kwargs=None,
|
|
432
|
+
):
|
|
433
|
+
"""Binarize labels in a one-vs-all fashion.
|
|
434
|
+
|
|
435
|
+
Several regression and binary classification algorithms are
|
|
436
|
+
available in scikit-learn. A simple way to extend these algorithms
|
|
437
|
+
to the multi-class classification case is to use the so-called
|
|
438
|
+
one-vs-all scheme.
|
|
439
|
+
|
|
440
|
+
This function makes it possible to compute this transformation for a
|
|
441
|
+
fixed set of class labels known ahead of time.
|
|
442
|
+
|
|
443
|
+
Parameters
|
|
444
|
+
----------
|
|
445
|
+
y : array-like
|
|
446
|
+
Sequence of integer labels or multilabel data to encode.
|
|
447
|
+
|
|
448
|
+
classes : array-like of shape (n_classes,)
|
|
449
|
+
Uniquely holds the label for each class.
|
|
450
|
+
|
|
451
|
+
neg_label : int, default=0
|
|
452
|
+
Value with which negative labels must be encoded.
|
|
453
|
+
|
|
454
|
+
pos_label : int, default=1
|
|
455
|
+
Value with which positive labels must be encoded.
|
|
456
|
+
|
|
457
|
+
sparse_output : bool, default=False,
|
|
458
|
+
Set to true if output binary array is desired in CSR sparse format.
|
|
459
|
+
|
|
460
|
+
Returns
|
|
461
|
+
-------
|
|
462
|
+
Y : {tensor, sparse tensor} of shape (n_samples, n_classes)
|
|
463
|
+
Shape will be (n_samples, 1) for binary problems.
|
|
464
|
+
|
|
465
|
+
Examples
|
|
466
|
+
--------
|
|
467
|
+
>>> from maxframe.learn.preprocessing import label_binarize
|
|
468
|
+
>>> label_binarize([1, 6], classes=[1, 2, 4, 6])
|
|
469
|
+
array([[1, 0, 0, 0],
|
|
470
|
+
[0, 0, 0, 1]])
|
|
471
|
+
|
|
472
|
+
The class ordering is preserved:
|
|
473
|
+
|
|
474
|
+
>>> label_binarize([1, 6], classes=[1, 6, 4, 2])
|
|
475
|
+
array([[1, 0, 0, 0],
|
|
476
|
+
[0, 1, 0, 0]])
|
|
477
|
+
|
|
478
|
+
Binary targets transform to a column vector
|
|
479
|
+
|
|
480
|
+
>>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes'])
|
|
481
|
+
array([[1],
|
|
482
|
+
[0],
|
|
483
|
+
[0],
|
|
484
|
+
[1]])
|
|
485
|
+
|
|
486
|
+
See Also
|
|
487
|
+
--------
|
|
488
|
+
LabelBinarizer : Class used to wrap the functionality of label_binarize and
|
|
489
|
+
allow for fitting to classes independently of the transform operation.
|
|
490
|
+
"""
|
|
491
|
+
result = _label_binarize(
|
|
492
|
+
y,
|
|
493
|
+
classes=classes,
|
|
494
|
+
neg_label=neg_label,
|
|
495
|
+
pos_label=pos_label,
|
|
496
|
+
sparse_output=sparse_output,
|
|
497
|
+
)
|
|
498
|
+
if not execute:
|
|
499
|
+
return result
|
|
500
|
+
return result.execute(session=session, **(run_kwargs or {}))
|
|
501
|
+
|
|
502
|
+
|
|
503
|
+
@builtin_function
|
|
504
|
+
def _inverse_binarize(y, output_type, classes, threshold):
|
|
505
|
+
if output_type == "multiclass":
|
|
506
|
+
return _inverse_binarize_multiclass(y, classes)
|
|
507
|
+
else:
|
|
508
|
+
return _inverse_binarize_thresholding(y, output_type, classes, threshold)
|
|
509
|
+
|
|
510
|
+
|
|
511
|
+
def _inverse_binarize_multiclass(y, classes): # pragma: no cover
|
|
512
|
+
"""Inverse label binarization transformation for multiclass.
|
|
513
|
+
|
|
514
|
+
Multiclass uses the maximal score instead of a threshold.
|
|
515
|
+
"""
|
|
516
|
+
from sklearn.utils.sparsefuncs import min_max_axis
|
|
517
|
+
|
|
518
|
+
classes = np.asarray(classes)
|
|
519
|
+
|
|
520
|
+
if sps.issparse(y):
|
|
521
|
+
# Find the argmax for each row in y where y is a CSR matrix
|
|
522
|
+
|
|
523
|
+
y = y.tocsr()
|
|
524
|
+
n_samples, n_outputs = y.shape
|
|
525
|
+
outputs = np.arange(n_outputs)
|
|
526
|
+
row_max = min_max_axis(y, 1)[1]
|
|
527
|
+
row_nnz = np.diff(y.indptr)
|
|
528
|
+
|
|
529
|
+
y_data_repeated_max = np.repeat(row_max, row_nnz)
|
|
530
|
+
# picks out all indices obtaining the maximum per row
|
|
531
|
+
y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data)
|
|
532
|
+
|
|
533
|
+
# For corner case where last row has a max of 0
|
|
534
|
+
if row_max[-1] == 0:
|
|
535
|
+
y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)])
|
|
536
|
+
|
|
537
|
+
# Gets the index of the first argmax in each row from y_i_all_argmax
|
|
538
|
+
index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1])
|
|
539
|
+
# first argmax of each row
|
|
540
|
+
y_ind_ext = np.append(y.indices, [0])
|
|
541
|
+
y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]]
|
|
542
|
+
# Handle rows of all 0
|
|
543
|
+
y_i_argmax[np.where(row_nnz == 0)[0]] = 0
|
|
544
|
+
|
|
545
|
+
# Handles rows with max of 0 that contain negative numbers
|
|
546
|
+
samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)]
|
|
547
|
+
for i in samples:
|
|
548
|
+
ind = y.indices[y.indptr[i] : y.indptr[i + 1]]
|
|
549
|
+
y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0]
|
|
550
|
+
|
|
551
|
+
return classes[y_i_argmax]
|
|
552
|
+
else:
|
|
553
|
+
return classes.take(y.argmax(axis=1), mode="clip")
|
|
554
|
+
|
|
555
|
+
|
|
556
|
+
def _inverse_binarize_thresholding(
|
|
557
|
+
y, output_type, classes, threshold
|
|
558
|
+
): # pragma: no cover
|
|
559
|
+
"""Inverse label binarization transformation using thresholding."""
|
|
560
|
+
|
|
561
|
+
if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2:
|
|
562
|
+
raise ValueError("output_type='binary', but y.shape = {0}".format(y.shape))
|
|
563
|
+
|
|
564
|
+
if output_type != "binary" and y.shape[1] != len(classes):
|
|
565
|
+
raise ValueError(
|
|
566
|
+
"The number of class is not equal to the number of dimension of y."
|
|
567
|
+
)
|
|
568
|
+
|
|
569
|
+
classes = np.asarray(classes)
|
|
570
|
+
|
|
571
|
+
# Perform thresholding
|
|
572
|
+
if sps.issparse(y):
|
|
573
|
+
if threshold > 0:
|
|
574
|
+
if y.format not in ("csr", "csc"):
|
|
575
|
+
y = y.tocsr()
|
|
576
|
+
y.data = np.array(y.data > threshold, dtype=int)
|
|
577
|
+
y.eliminate_zeros()
|
|
578
|
+
else:
|
|
579
|
+
y = np.array(y.toarray() > threshold, dtype=int)
|
|
580
|
+
else:
|
|
581
|
+
y = np.array(y > threshold, dtype=int)
|
|
582
|
+
|
|
583
|
+
# Inverse transform data
|
|
584
|
+
if output_type == "binary":
|
|
585
|
+
if sps.issparse(y):
|
|
586
|
+
y = y.toarray()
|
|
587
|
+
if y.ndim == 2 and y.shape[1] == 2:
|
|
588
|
+
return classes[y[:, 1]]
|
|
589
|
+
else:
|
|
590
|
+
if len(classes) == 1:
|
|
591
|
+
return np.repeat(classes[0], len(y))
|
|
592
|
+
else:
|
|
593
|
+
return classes[y.ravel()]
|
|
594
|
+
|
|
595
|
+
elif output_type == "multilabel-indicator":
|
|
596
|
+
return y
|
|
597
|
+
|
|
598
|
+
else:
|
|
599
|
+
raise ValueError("{0} format is not supported".format(output_type))
|