maxframe 1.0.0rc2__cp311-cp311-win32.whl → 1.0.0rc4__cp311-cp311-win32.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of maxframe might be problematic. Click here for more details.
- maxframe/_utils.cp311-win32.pyd +0 -0
- maxframe/codegen.py +4 -2
- maxframe/config/config.py +28 -9
- maxframe/config/validators.py +42 -12
- maxframe/conftest.py +56 -14
- maxframe/core/__init__.py +2 -13
- maxframe/core/entity/__init__.py +0 -4
- maxframe/core/entity/executable.py +1 -1
- maxframe/core/entity/objects.py +45 -2
- maxframe/core/entity/output_types.py +0 -3
- maxframe/core/entity/tests/test_objects.py +43 -0
- maxframe/core/entity/tileables.py +5 -78
- maxframe/core/graph/__init__.py +2 -2
- maxframe/core/graph/builder/__init__.py +0 -1
- maxframe/core/graph/builder/base.py +5 -4
- maxframe/core/graph/builder/tileable.py +4 -4
- maxframe/core/graph/builder/utils.py +4 -8
- maxframe/core/graph/core.cp311-win32.pyd +0 -0
- maxframe/core/graph/entity.py +9 -33
- maxframe/core/operator/__init__.py +2 -9
- maxframe/core/operator/base.py +3 -5
- maxframe/core/operator/objects.py +0 -9
- maxframe/core/operator/utils.py +55 -0
- maxframe/dataframe/arithmetic/docstring.py +26 -2
- maxframe/dataframe/arithmetic/equal.py +4 -2
- maxframe/dataframe/arithmetic/greater.py +4 -2
- maxframe/dataframe/arithmetic/greater_equal.py +4 -2
- maxframe/dataframe/arithmetic/less.py +2 -2
- maxframe/dataframe/arithmetic/less_equal.py +4 -2
- maxframe/dataframe/arithmetic/not_equal.py +4 -2
- maxframe/dataframe/core.py +2 -0
- maxframe/dataframe/datasource/read_odps_query.py +67 -8
- maxframe/dataframe/datasource/read_odps_table.py +4 -2
- maxframe/dataframe/datasource/tests/test_datasource.py +35 -6
- maxframe/dataframe/datastore/to_odps.py +8 -1
- maxframe/dataframe/extensions/__init__.py +3 -0
- maxframe/dataframe/extensions/flatmap.py +326 -0
- maxframe/dataframe/extensions/tests/test_extensions.py +62 -1
- maxframe/dataframe/indexing/add_prefix_suffix.py +1 -1
- maxframe/dataframe/indexing/rename.py +11 -0
- maxframe/dataframe/initializer.py +11 -1
- maxframe/dataframe/misc/drop_duplicates.py +18 -1
- maxframe/dataframe/operators.py +1 -17
- maxframe/dataframe/reduction/core.py +2 -2
- maxframe/dataframe/tests/test_initializer.py +33 -2
- maxframe/io/objects/__init__.py +24 -0
- maxframe/io/objects/core.py +140 -0
- maxframe/io/objects/tensor.py +76 -0
- maxframe/io/objects/tests/__init__.py +13 -0
- maxframe/io/objects/tests/test_object_io.py +97 -0
- maxframe/{odpsio → io/odpsio}/__init__.py +2 -0
- maxframe/{odpsio → io/odpsio}/arrow.py +4 -4
- maxframe/{odpsio → io/odpsio}/schema.py +10 -8
- maxframe/{odpsio → io/odpsio}/tableio.py +50 -38
- maxframe/io/odpsio/tests/__init__.py +13 -0
- maxframe/{odpsio → io/odpsio}/tests/test_schema.py +3 -7
- maxframe/{odpsio → io/odpsio}/tests/test_tableio.py +3 -3
- maxframe/{odpsio → io/odpsio}/tests/test_volumeio.py +4 -6
- maxframe/io/odpsio/volumeio.py +63 -0
- maxframe/learn/contrib/__init__.py +2 -1
- maxframe/learn/contrib/graph/__init__.py +15 -0
- maxframe/learn/contrib/graph/connected_components.py +215 -0
- maxframe/learn/contrib/graph/tests/__init__.py +13 -0
- maxframe/learn/contrib/graph/tests/test_connected_components.py +53 -0
- maxframe/learn/contrib/xgboost/classifier.py +26 -2
- maxframe/learn/contrib/xgboost/core.py +87 -2
- maxframe/learn/contrib/xgboost/dmatrix.py +1 -4
- maxframe/learn/contrib/xgboost/predict.py +27 -44
- maxframe/learn/contrib/xgboost/regressor.py +3 -10
- maxframe/learn/contrib/xgboost/train.py +27 -16
- maxframe/{core/operator/fuse.py → learn/core.py} +7 -10
- maxframe/lib/mmh3.cp311-win32.pyd +0 -0
- maxframe/opcodes.py +3 -0
- maxframe/protocol.py +7 -16
- maxframe/remote/core.py +4 -8
- maxframe/serialization/__init__.py +1 -0
- maxframe/serialization/core.cp311-win32.pyd +0 -0
- maxframe/session.py +9 -2
- maxframe/tensor/__init__.py +10 -2
- maxframe/tensor/arithmetic/isclose.py +1 -0
- maxframe/tensor/arithmetic/tests/test_arithmetic.py +21 -17
- maxframe/tensor/core.py +5 -136
- maxframe/tensor/datasource/array.py +3 -0
- maxframe/tensor/datasource/full.py +1 -1
- maxframe/tensor/datasource/tests/test_datasource.py +1 -1
- maxframe/tensor/indexing/flatnonzero.py +1 -1
- maxframe/tensor/indexing/getitem.py +2 -0
- maxframe/tensor/merge/__init__.py +2 -0
- maxframe/tensor/merge/concatenate.py +101 -0
- maxframe/tensor/merge/tests/test_merge.py +30 -1
- maxframe/tensor/merge/vstack.py +74 -0
- maxframe/tensor/{base → misc}/__init__.py +2 -0
- maxframe/tensor/{base → misc}/atleast_1d.py +0 -2
- maxframe/tensor/misc/atleast_2d.py +70 -0
- maxframe/tensor/misc/atleast_3d.py +85 -0
- maxframe/tensor/misc/tests/__init__.py +13 -0
- maxframe/tensor/{base → misc}/transpose.py +22 -18
- maxframe/tensor/operators.py +1 -7
- maxframe/tensor/random/core.py +1 -1
- maxframe/tensor/reduction/count_nonzero.py +1 -0
- maxframe/tensor/reduction/mean.py +1 -0
- maxframe/tensor/reduction/nanmean.py +1 -0
- maxframe/tensor/reduction/nanvar.py +2 -0
- maxframe/tensor/reduction/tests/test_reduction.py +12 -1
- maxframe/tensor/reduction/var.py +2 -0
- maxframe/tensor/utils.py +2 -22
- maxframe/typing_.py +4 -1
- maxframe/udf.py +8 -9
- maxframe/utils.py +49 -73
- maxframe-1.0.0rc4.dist-info/METADATA +104 -0
- {maxframe-1.0.0rc2.dist-info → maxframe-1.0.0rc4.dist-info}/RECORD +129 -114
- {maxframe-1.0.0rc2.dist-info → maxframe-1.0.0rc4.dist-info}/WHEEL +1 -1
- maxframe_client/fetcher.py +33 -50
- maxframe_client/session/consts.py +3 -0
- maxframe_client/session/graph.py +8 -2
- maxframe_client/session/odps.py +134 -27
- maxframe_client/session/task.py +58 -20
- maxframe_client/tests/test_fetcher.py +1 -1
- maxframe_client/tests/test_session.py +27 -3
- maxframe/core/entity/chunks.py +0 -68
- maxframe/core/entity/fuse.py +0 -73
- maxframe/core/graph/builder/chunk.py +0 -430
- maxframe/odpsio/volumeio.py +0 -95
- maxframe-1.0.0rc2.dist-info/METADATA +0 -177
- /maxframe/{odpsio → core/entity}/tests/__init__.py +0 -0
- /maxframe/{tensor/base/tests → io}/__init__.py +0 -0
- /maxframe/{odpsio → io/odpsio}/tests/test_arrow.py +0 -0
- /maxframe/tensor/{base → misc}/astype.py +0 -0
- /maxframe/tensor/{base → misc}/broadcast_to.py +0 -0
- /maxframe/tensor/{base → misc}/ravel.py +0 -0
- /maxframe/tensor/{base/tests/test_base.py → misc/tests/test_misc.py} +0 -0
- /maxframe/tensor/{base → misc}/unique.py +0 -0
- /maxframe/tensor/{base → misc}/where.py +0 -0
- {maxframe-1.0.0rc2.dist-info → maxframe-1.0.0rc4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
# Copyright 1999-2024 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
@@ -18,9 +18,9 @@ import pyarrow as pa
|
|
|
18
18
|
import pytest
|
|
19
19
|
from odps import types as odps_types
|
|
20
20
|
|
|
21
|
-
from
|
|
22
|
-
from
|
|
23
|
-
from
|
|
21
|
+
from .... import dataframe as md
|
|
22
|
+
from .... import tensor as mt
|
|
23
|
+
from ....core import OutputType
|
|
24
24
|
from ..schema import (
|
|
25
25
|
arrow_schema_to_odps_schema,
|
|
26
26
|
build_dataframe_table_meta,
|
|
@@ -270,10 +270,6 @@ def test_odps_arrow_schema_conversion():
|
|
|
270
270
|
|
|
271
271
|
with pytest.raises(TypeError):
|
|
272
272
|
arrow_schema_to_odps_schema(pa.schema([("col1", pa.float16())]))
|
|
273
|
-
with pytest.raises(TypeError):
|
|
274
|
-
odps_schema_to_arrow_schema(
|
|
275
|
-
odps_types.OdpsSchema([odps_types.Column("col1", "json")])
|
|
276
|
-
)
|
|
277
273
|
|
|
278
274
|
|
|
279
275
|
def test_build_column_name():
|
|
@@ -20,9 +20,9 @@ import pyarrow as pa
|
|
|
20
20
|
import pytest
|
|
21
21
|
from odps import ODPS
|
|
22
22
|
|
|
23
|
-
from
|
|
24
|
-
from
|
|
25
|
-
from
|
|
23
|
+
from ....config import options
|
|
24
|
+
from ....tests.utils import flaky, tn
|
|
25
|
+
from ....utils import config_odps_default_options
|
|
26
26
|
from ..tableio import ODPSTableIO
|
|
27
27
|
|
|
28
28
|
|
|
@@ -15,7 +15,7 @@
|
|
|
15
15
|
import pytest
|
|
16
16
|
from odps import ODPS
|
|
17
17
|
|
|
18
|
-
from
|
|
18
|
+
from ....tests.utils import tn
|
|
19
19
|
from ..volumeio import ODPSVolumeReader, ODPSVolumeWriter
|
|
20
20
|
|
|
21
21
|
|
|
@@ -69,19 +69,17 @@ def create_volume(request, oss_config):
|
|
|
69
69
|
oss_config.oss_bucket.batch_delete_objects(keys)
|
|
70
70
|
|
|
71
71
|
|
|
72
|
-
@pytest.mark.parametrize("create_volume", ["
|
|
72
|
+
@pytest.mark.parametrize("create_volume", ["external"], indirect=True)
|
|
73
73
|
def test_read_write_volume(create_volume):
|
|
74
74
|
test_vol_dir = "test_vol_dir"
|
|
75
75
|
|
|
76
76
|
odps_entry = ODPS.from_environments()
|
|
77
77
|
|
|
78
78
|
writer = ODPSVolumeWriter(odps_entry, create_volume, test_vol_dir)
|
|
79
|
-
write_session_id = writer.create_write_session()
|
|
80
79
|
|
|
81
80
|
writer = ODPSVolumeWriter(odps_entry, create_volume, test_vol_dir)
|
|
82
|
-
writer.write_file("file1", b"content1"
|
|
83
|
-
writer.write_file("file2", b"content2"
|
|
84
|
-
writer.commit(["file1", "file2"], write_session_id)
|
|
81
|
+
writer.write_file("file1", b"content1")
|
|
82
|
+
writer.write_file("file2", b"content2")
|
|
85
83
|
|
|
86
84
|
reader = ODPSVolumeReader(odps_entry, create_volume, test_vol_dir)
|
|
87
85
|
assert reader.read_file("file1") == b"content1"
|
|
@@ -0,0 +1,63 @@
|
|
|
1
|
+
# Copyright 1999-2024 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import inspect
|
|
16
|
+
from typing import Iterator, List, Optional, Union
|
|
17
|
+
|
|
18
|
+
from odps import ODPS
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class ODPSVolumeReader:
|
|
22
|
+
def __init__(self, odps_entry: ODPS, volume_name: str, volume_dir: str):
|
|
23
|
+
self._odps_entry = odps_entry
|
|
24
|
+
self._volume = odps_entry.get_volume(volume_name)
|
|
25
|
+
self._volume_dir = volume_dir
|
|
26
|
+
|
|
27
|
+
def list_files(self) -> List[str]:
|
|
28
|
+
def _get_file_name(vol_file):
|
|
29
|
+
if hasattr(vol_file, "name"):
|
|
30
|
+
return vol_file.name
|
|
31
|
+
return vol_file.path.rsplit("/", 1)[-1]
|
|
32
|
+
|
|
33
|
+
return [
|
|
34
|
+
_get_file_name(f)
|
|
35
|
+
for f in self._odps_entry.list_volume_files(
|
|
36
|
+
f"/{self._volume.name}/{self._volume_dir}"
|
|
37
|
+
)
|
|
38
|
+
]
|
|
39
|
+
|
|
40
|
+
def read_file(self, file_name: str) -> bytes:
|
|
41
|
+
with self._volume.open_reader(self._volume_dir + "/" + file_name) as reader:
|
|
42
|
+
return reader.read()
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class ODPSVolumeWriter:
|
|
46
|
+
def __init__(
|
|
47
|
+
self,
|
|
48
|
+
odps_entry: ODPS,
|
|
49
|
+
volume_name: str,
|
|
50
|
+
volume_dir: str,
|
|
51
|
+
schema_name: Optional[str] = None,
|
|
52
|
+
):
|
|
53
|
+
self._odps_entry = odps_entry
|
|
54
|
+
self._volume = odps_entry.get_volume(volume_name, schema=schema_name)
|
|
55
|
+
self._volume_dir = volume_dir
|
|
56
|
+
|
|
57
|
+
def write_file(self, file_name: str, data: Union[bytes, Iterator[bytes]]):
|
|
58
|
+
with self._volume.open_writer(self._volume_dir + "/" + file_name) as writer:
|
|
59
|
+
if not inspect.isgenerator(data):
|
|
60
|
+
writer.write(data)
|
|
61
|
+
else:
|
|
62
|
+
for chunk in data:
|
|
63
|
+
writer.write(chunk)
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
# Copyright 1999-2024 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from .connected_components import connected_components
|
|
@@ -0,0 +1,215 @@
|
|
|
1
|
+
# Copyright 1999-2024 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import numpy as np
|
|
16
|
+
import pandas as pd
|
|
17
|
+
|
|
18
|
+
from maxframe import opcodes
|
|
19
|
+
|
|
20
|
+
from ....core import OutputType
|
|
21
|
+
from ....dataframe.operators import DataFrameOperator, DataFrameOperatorMixin
|
|
22
|
+
from ....dataframe.utils import make_dtypes, parse_index
|
|
23
|
+
from ....serialization.serializables import Int32Field, StringField
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class DataFrameConnectedComponentsOperator(DataFrameOperator, DataFrameOperatorMixin):
|
|
27
|
+
_op_type_ = opcodes.CONNECTED_COMPONENTS
|
|
28
|
+
|
|
29
|
+
vertex_col1 = StringField("vertex_col1", default=None)
|
|
30
|
+
vertex_col2 = StringField("vertex_col2", default=None)
|
|
31
|
+
max_iter = Int32Field("max_iter", default=6)
|
|
32
|
+
|
|
33
|
+
def __call__(self, df):
|
|
34
|
+
node_id_dtype = df.dtypes[self.vertex_col1]
|
|
35
|
+
dtypes = make_dtypes({"id": node_id_dtype, "component": node_id_dtype})
|
|
36
|
+
# this will return a dataframe and a bool flag
|
|
37
|
+
new_dataframe_tileable_kw = {
|
|
38
|
+
"shape": (np.nan, 2),
|
|
39
|
+
"index_value": parse_index(pd.RangeIndex(0)),
|
|
40
|
+
"columns_value": parse_index(dtypes.index, store_data=True),
|
|
41
|
+
"dtypes": dtypes,
|
|
42
|
+
}
|
|
43
|
+
new_scalar_tileable_kw = {"dtype": np.dtype(np.bool_), "shape": ()}
|
|
44
|
+
return self.new_tileables(
|
|
45
|
+
[df],
|
|
46
|
+
kws=[new_dataframe_tileable_kw, new_scalar_tileable_kw],
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
@property
|
|
50
|
+
def output_limit(self):
|
|
51
|
+
return 2
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def connected_components(
|
|
55
|
+
dataframe, vertex_col1: str, vertex_col2: str, max_iter: int = 6
|
|
56
|
+
):
|
|
57
|
+
"""
|
|
58
|
+
The connected components algorithm labels each node as belonging to a specific connected component with the ID of
|
|
59
|
+
its lowest-numbered vertex.
|
|
60
|
+
|
|
61
|
+
Parameters
|
|
62
|
+
----------
|
|
63
|
+
dataframe : DataFrame
|
|
64
|
+
A DataFrame containing the edges of the graph.
|
|
65
|
+
|
|
66
|
+
vertex_col1 : str
|
|
67
|
+
The name of the column in `dataframe` that contains the one of edge vertices. The column value must be an
|
|
68
|
+
integer.
|
|
69
|
+
|
|
70
|
+
vertex_col2 : str
|
|
71
|
+
The name of the column in `dataframe` that contains the other one of edge vertices. The column value must be an
|
|
72
|
+
integer.
|
|
73
|
+
|
|
74
|
+
max_iter : int
|
|
75
|
+
The algorithm use large and small star transformation to find all connected components, `max_iter`
|
|
76
|
+
controls the max round of the iterations before finds all edges. Default is 6.
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
Returns
|
|
80
|
+
-------
|
|
81
|
+
DataFrame
|
|
82
|
+
Return dataFrame contains all connected component edges by two columns `id` and `component`. `component` is
|
|
83
|
+
the lowest-numbered vertex in the connected components.
|
|
84
|
+
|
|
85
|
+
Notes
|
|
86
|
+
-------
|
|
87
|
+
After `execute()`, the dataframe has a bool member `flag` to indicate if the `connected_components` already
|
|
88
|
+
converged in `max_iter` rounds. `True` means the dataframe already contains all edges of the connected components.
|
|
89
|
+
If `False` you can run `connected_components` more times to reach the converged state.
|
|
90
|
+
|
|
91
|
+
Examples
|
|
92
|
+
--------
|
|
93
|
+
>>> import numpy as np
|
|
94
|
+
>>> import maxframe.dataframe as md
|
|
95
|
+
>>> import maxframe.learn.contrib.graph.connected_components
|
|
96
|
+
>>> df = md.DataFrame({'x': [4, 1], 'y': [0, 4]})
|
|
97
|
+
>>> df.execute()
|
|
98
|
+
x y
|
|
99
|
+
0 4 1
|
|
100
|
+
1 0 4
|
|
101
|
+
|
|
102
|
+
Get connected components with 1 round iteration.
|
|
103
|
+
|
|
104
|
+
>>> components, converged = connected_components(df, "x", "y", 1)
|
|
105
|
+
>>> session.execute(components, converged)
|
|
106
|
+
>>> components
|
|
107
|
+
A B
|
|
108
|
+
0 1 0
|
|
109
|
+
1 4 0
|
|
110
|
+
|
|
111
|
+
>>> converged
|
|
112
|
+
True
|
|
113
|
+
|
|
114
|
+
Sometimes, a single iteration may not be sufficient to propagate the connectivity of all edges.
|
|
115
|
+
By default, `connected_components` performs 6 iterations of calculations.
|
|
116
|
+
If you are unsure whether the connected components have converged, you can check the `flag` variable in
|
|
117
|
+
the output DataFrame after calling `execute()`.
|
|
118
|
+
|
|
119
|
+
>>> df = md.DataFrame({'x': [4, 1, 7, 5, 8, 11, 11], 'y': [0, 4, 4, 7, 7, 9, 13]})
|
|
120
|
+
>>> df.execute()
|
|
121
|
+
x y
|
|
122
|
+
0 4 0
|
|
123
|
+
1 1 4
|
|
124
|
+
2 7 4
|
|
125
|
+
3 5 7
|
|
126
|
+
4 8 7
|
|
127
|
+
5 11 9
|
|
128
|
+
6 11 13
|
|
129
|
+
|
|
130
|
+
>>> components, converged = connected_components(df, "x", "y", 1)
|
|
131
|
+
>>> session.execute(components, converged)
|
|
132
|
+
>>> components
|
|
133
|
+
id component
|
|
134
|
+
0 4 0
|
|
135
|
+
1 7 0
|
|
136
|
+
2 8 4
|
|
137
|
+
3 13 9
|
|
138
|
+
4 1 0
|
|
139
|
+
5 5 0
|
|
140
|
+
6 11 9
|
|
141
|
+
|
|
142
|
+
If `flag` is True, it means convergence has been achieved.
|
|
143
|
+
|
|
144
|
+
>>> converged
|
|
145
|
+
False
|
|
146
|
+
|
|
147
|
+
You can determine whether to continue iterating or to use a larger number of iterations
|
|
148
|
+
(but not too large, which would result in wasted computational overhead).
|
|
149
|
+
|
|
150
|
+
>>> components, converged = connected_components(components, "id", "component", 1)
|
|
151
|
+
>>> session.execute(components, converged)
|
|
152
|
+
>>> components
|
|
153
|
+
id component
|
|
154
|
+
0 4 0
|
|
155
|
+
1 7 0
|
|
156
|
+
2 13 9
|
|
157
|
+
3 1 0
|
|
158
|
+
4 5 0
|
|
159
|
+
5 11 9
|
|
160
|
+
6 8 0
|
|
161
|
+
|
|
162
|
+
>>> components, converged = connected_components(df, "x", "y")
|
|
163
|
+
>>> session.execute(components, converged)
|
|
164
|
+
>>> components
|
|
165
|
+
id component
|
|
166
|
+
0 4 0
|
|
167
|
+
1 7 0
|
|
168
|
+
2 13 9
|
|
169
|
+
3 1 0
|
|
170
|
+
4 5 0
|
|
171
|
+
5 11 9
|
|
172
|
+
6 8 0
|
|
173
|
+
"""
|
|
174
|
+
|
|
175
|
+
# Check if vertex columns are provided
|
|
176
|
+
if not vertex_col1 or not vertex_col2:
|
|
177
|
+
raise ValueError("Both vertex_col1 and vertex_col2 must be provided.")
|
|
178
|
+
|
|
179
|
+
# Check if max_iter is provided and within the valid range
|
|
180
|
+
if max_iter is None:
|
|
181
|
+
raise ValueError("max_iter must be provided.")
|
|
182
|
+
if not (1 <= max_iter <= 50):
|
|
183
|
+
raise ValueError("max_iter must be an integer between 1 and 50.")
|
|
184
|
+
|
|
185
|
+
# Verify that the vertex columns exist in the dataframe
|
|
186
|
+
missing_cols = [
|
|
187
|
+
col for col in (vertex_col1, vertex_col2) if col not in dataframe.dtypes
|
|
188
|
+
]
|
|
189
|
+
if missing_cols:
|
|
190
|
+
raise ValueError(
|
|
191
|
+
f"The following required columns {missing_cols} are not in {list(dataframe.dtypes.index)}"
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
# Ensure that the vertex columns are of integer type
|
|
195
|
+
# TODO support string dtype
|
|
196
|
+
incorrect_dtypes = [
|
|
197
|
+
col
|
|
198
|
+
for col in (vertex_col1, vertex_col2)
|
|
199
|
+
if dataframe[col].dtype != np.dtype("int")
|
|
200
|
+
]
|
|
201
|
+
if incorrect_dtypes:
|
|
202
|
+
dtypes_str = ", ".join(str(dataframe[col].dtype) for col in incorrect_dtypes)
|
|
203
|
+
raise ValueError(
|
|
204
|
+
f"Columns {incorrect_dtypes} should be of integer type, but found {dtypes_str}."
|
|
205
|
+
)
|
|
206
|
+
|
|
207
|
+
op = DataFrameConnectedComponentsOperator(
|
|
208
|
+
vertex_col1=vertex_col1,
|
|
209
|
+
vertex_col2=vertex_col2,
|
|
210
|
+
_output_types=[OutputType.dataframe, OutputType.scalar],
|
|
211
|
+
max_iter=max_iter,
|
|
212
|
+
)
|
|
213
|
+
return op(
|
|
214
|
+
dataframe,
|
|
215
|
+
)
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
# Copyright 1999-2024 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
# Copyright 1999-2024 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import numpy as np
|
|
16
|
+
import pytest
|
|
17
|
+
|
|
18
|
+
from ..... import dataframe as md
|
|
19
|
+
from .....dataframe.core import DataFrameData
|
|
20
|
+
from .....tensor.core import TensorData
|
|
21
|
+
from .. import connected_components
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@pytest.fixture
|
|
25
|
+
def df1():
|
|
26
|
+
return md.DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]})
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@pytest.fixture
|
|
30
|
+
def df2():
|
|
31
|
+
return md.DataFrame(
|
|
32
|
+
[[1, "2"], [1, "2"]],
|
|
33
|
+
columns=["a", "b"],
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def test_connected_components(df1, df2):
|
|
38
|
+
edges, flag = connected_components(df1, "a", "b")
|
|
39
|
+
assert edges.op.max_iter == 6
|
|
40
|
+
assert edges.shape == (np.nan, 2)
|
|
41
|
+
assert isinstance(edges.data, DataFrameData)
|
|
42
|
+
assert isinstance(flag.data, TensorData)
|
|
43
|
+
assert flag.shape == ()
|
|
44
|
+
assert "id" in edges.dtypes and "component" in edges.dtypes
|
|
45
|
+
|
|
46
|
+
with pytest.raises(ValueError):
|
|
47
|
+
connected_components(df1, "a", "x")
|
|
48
|
+
|
|
49
|
+
with pytest.raises(ValueError):
|
|
50
|
+
connected_components(df1, "a", "b", 0)
|
|
51
|
+
|
|
52
|
+
with pytest.raises(ValueError):
|
|
53
|
+
connected_components(df2, "a", "b")
|
|
@@ -14,7 +14,8 @@
|
|
|
14
14
|
|
|
15
15
|
import numpy as np
|
|
16
16
|
|
|
17
|
-
from ....tensor import argmax
|
|
17
|
+
from ....tensor import argmax, transpose
|
|
18
|
+
from ....tensor.merge.vstack import _vstack
|
|
18
19
|
from ..utils import make_import_error_func
|
|
19
20
|
from .core import XGBScikitLearnBase, xgboost
|
|
20
21
|
|
|
@@ -42,7 +43,10 @@ else:
|
|
|
42
43
|
sample_weight_eval_set=None,
|
|
43
44
|
base_margin_eval_set=None,
|
|
44
45
|
num_class=None,
|
|
46
|
+
**kw,
|
|
45
47
|
):
|
|
48
|
+
session = kw.pop("session", None)
|
|
49
|
+
run_kwargs = kw.pop("run_kwargs", dict())
|
|
46
50
|
dtrain, evals = wrap_evaluation_matrices(
|
|
47
51
|
None,
|
|
48
52
|
X,
|
|
@@ -68,6 +72,8 @@ else:
|
|
|
68
72
|
evals=evals,
|
|
69
73
|
evals_result=self.evals_result_,
|
|
70
74
|
num_class=num_class,
|
|
75
|
+
session=session,
|
|
76
|
+
run_kwargs=run_kwargs,
|
|
71
77
|
)
|
|
72
78
|
self._Booster = result
|
|
73
79
|
return self
|
|
@@ -83,4 +89,22 @@ else:
|
|
|
83
89
|
def predict_proba(self, data, ntree_limit=None, flag=False, **kw):
|
|
84
90
|
if ntree_limit is not None:
|
|
85
91
|
raise NotImplementedError("ntree_limit is not currently supported")
|
|
86
|
-
|
|
92
|
+
prediction = predict(self.get_booster(), data, flag=flag, **kw)
|
|
93
|
+
if len(prediction.shape) == 2 and prediction.shape[1] == self.n_classes_:
|
|
94
|
+
# multi-class
|
|
95
|
+
return prediction
|
|
96
|
+
if (
|
|
97
|
+
len(prediction.shape) == 2
|
|
98
|
+
and self.n_classes_ == 2
|
|
99
|
+
and prediction.shape[1] >= self.n_classes_
|
|
100
|
+
):
|
|
101
|
+
# multi-label
|
|
102
|
+
return prediction
|
|
103
|
+
# binary logistic function
|
|
104
|
+
classone_probs = prediction
|
|
105
|
+
classzero_probs = 1.0 - classone_probs
|
|
106
|
+
return transpose(_vstack((classzero_probs, classone_probs)))
|
|
107
|
+
|
|
108
|
+
@property
|
|
109
|
+
def classes_(self) -> np.ndarray:
|
|
110
|
+
return np.arange(self.n_classes_)
|
|
@@ -12,15 +12,67 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import Any, Callable, List, Optional, Tuple
|
|
15
|
+
from typing import Any, Callable, Dict, List, Optional, Tuple
|
|
16
16
|
|
|
17
17
|
try:
|
|
18
18
|
import xgboost
|
|
19
19
|
except ImportError:
|
|
20
20
|
xgboost = None
|
|
21
21
|
|
|
22
|
+
from ...core import Model, ModelData
|
|
22
23
|
from .dmatrix import DMatrix
|
|
23
24
|
|
|
25
|
+
|
|
26
|
+
class BoosterData(ModelData):
|
|
27
|
+
__slots__ = ("_evals_result",)
|
|
28
|
+
|
|
29
|
+
_evals_result: Dict
|
|
30
|
+
|
|
31
|
+
def __init__(self, *args, evals_result=None, **kwargs):
|
|
32
|
+
super().__init__(*args, **kwargs)
|
|
33
|
+
self._evals_result = evals_result if evals_result is not None else dict()
|
|
34
|
+
|
|
35
|
+
def execute(self, session=None, **kw):
|
|
36
|
+
# The evals_result should be fetched when BoosterData.execute() is called.
|
|
37
|
+
result = super().execute(session=session, **kw)
|
|
38
|
+
if self.op.has_evals_result and self.key == self.op.outputs[0].key:
|
|
39
|
+
self._evals_result.update(self.op.outputs[1].fetch(session=session))
|
|
40
|
+
return result
|
|
41
|
+
|
|
42
|
+
def predict(
|
|
43
|
+
self,
|
|
44
|
+
data,
|
|
45
|
+
output_margin=False,
|
|
46
|
+
pred_leaf=False,
|
|
47
|
+
pred_contribs=False,
|
|
48
|
+
approx_contribs=False,
|
|
49
|
+
pred_interactions=False,
|
|
50
|
+
validate_features=True,
|
|
51
|
+
training=False,
|
|
52
|
+
iteration_range=None,
|
|
53
|
+
strict_shape=False,
|
|
54
|
+
):
|
|
55
|
+
from .predict import predict
|
|
56
|
+
|
|
57
|
+
return predict(
|
|
58
|
+
self,
|
|
59
|
+
data,
|
|
60
|
+
output_margin=output_margin,
|
|
61
|
+
pred_leaf=pred_leaf,
|
|
62
|
+
pred_contribs=pred_contribs,
|
|
63
|
+
approx_contribs=approx_contribs,
|
|
64
|
+
pred_interactions=pred_interactions,
|
|
65
|
+
validate_features=validate_features,
|
|
66
|
+
training=training,
|
|
67
|
+
iteration_range=iteration_range,
|
|
68
|
+
strict_shape=strict_shape,
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class Booster(Model):
|
|
73
|
+
pass
|
|
74
|
+
|
|
75
|
+
|
|
24
76
|
if not xgboost:
|
|
25
77
|
XGBScikitLearnBase = None
|
|
26
78
|
else:
|
|
@@ -40,7 +92,9 @@ else:
|
|
|
40
92
|
**kw,
|
|
41
93
|
):
|
|
42
94
|
"""
|
|
43
|
-
Fit the regressor.
|
|
95
|
+
Fit the regressor. Note that fit() is an eager-execution
|
|
96
|
+
API. The call will be blocked until training finished.
|
|
97
|
+
|
|
44
98
|
Parameters
|
|
45
99
|
----------
|
|
46
100
|
X : array_like
|
|
@@ -72,6 +126,37 @@ else:
|
|
|
72
126
|
"""
|
|
73
127
|
raise NotImplementedError
|
|
74
128
|
|
|
129
|
+
def evals_result(self, **kw) -> Dict:
|
|
130
|
+
"""Return the evaluation results.
|
|
131
|
+
|
|
132
|
+
If **eval_set** is passed to the :py:meth:`fit` function, you can call
|
|
133
|
+
``evals_result()`` to get evaluation results for all passed **eval_sets**. When
|
|
134
|
+
**eval_metric** is also passed to the :py:meth:`fit` function, the
|
|
135
|
+
**evals_result** will contain the **eval_metrics** passed to the :py:meth:`fit`
|
|
136
|
+
function.
|
|
137
|
+
|
|
138
|
+
The returned evaluation result is a dictionary:
|
|
139
|
+
|
|
140
|
+
.. code-block:: python
|
|
141
|
+
|
|
142
|
+
{'validation_0': {'logloss': ['0.604835', '0.531479']},
|
|
143
|
+
'validation_1': {'logloss': ['0.41965', '0.17686']}}
|
|
144
|
+
|
|
145
|
+
Note that evals_result() will be blocked until the train is finished.
|
|
146
|
+
|
|
147
|
+
Returns
|
|
148
|
+
-------
|
|
149
|
+
evals_result
|
|
150
|
+
|
|
151
|
+
"""
|
|
152
|
+
result = super().evals_result()
|
|
153
|
+
if not self._Booster.op.has_evals_result or len(result) != 0:
|
|
154
|
+
return result
|
|
155
|
+
session = kw.pop("session", None)
|
|
156
|
+
run_kwargs = kw.pop("run_kwargs", dict())
|
|
157
|
+
self._Booster.execute(session=session, **run_kwargs)
|
|
158
|
+
return super().evals_result()
|
|
159
|
+
|
|
75
160
|
def wrap_evaluation_matrices(
|
|
76
161
|
missing: float,
|
|
77
162
|
X: Any,
|
|
@@ -99,10 +99,7 @@ def check_array_like(y: TileableType, name: str) -> TileableType:
|
|
|
99
99
|
y = convert_to_tensor_or_dataframe(y)
|
|
100
100
|
if isinstance(y, DATAFRAME_TYPE):
|
|
101
101
|
y = y.iloc[:, 0]
|
|
102
|
-
|
|
103
|
-
if y.ndim != 1:
|
|
104
|
-
raise ValueError(f"Expecting 1-d {name}, got: {y.ndim}-d")
|
|
105
|
-
return y
|
|
102
|
+
return astensor(y)
|
|
106
103
|
|
|
107
104
|
|
|
108
105
|
def to_dmatrix(
|