maxframe 1.0.0rc1__cp38-cp38-macosx_10_9_universal2.whl → 1.0.0rc3__cp38-cp38-macosx_10_9_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of maxframe might be problematic. Click here for more details.
- maxframe/_utils.cpython-38-darwin.so +0 -0
- maxframe/codegen.py +3 -6
- maxframe/config/config.py +49 -10
- maxframe/config/validators.py +42 -11
- maxframe/conftest.py +15 -2
- maxframe/core/__init__.py +2 -13
- maxframe/core/entity/__init__.py +0 -4
- maxframe/core/entity/objects.py +46 -3
- maxframe/core/entity/output_types.py +0 -3
- maxframe/core/entity/tests/test_objects.py +43 -0
- maxframe/core/entity/tileables.py +5 -78
- maxframe/core/graph/__init__.py +2 -2
- maxframe/core/graph/builder/__init__.py +0 -1
- maxframe/core/graph/builder/base.py +5 -4
- maxframe/core/graph/builder/tileable.py +4 -4
- maxframe/core/graph/builder/utils.py +4 -8
- maxframe/core/graph/core.cpython-38-darwin.so +0 -0
- maxframe/core/graph/entity.py +9 -33
- maxframe/core/operator/__init__.py +2 -9
- maxframe/core/operator/base.py +3 -5
- maxframe/core/operator/objects.py +0 -9
- maxframe/core/operator/utils.py +55 -0
- maxframe/dataframe/__init__.py +1 -1
- maxframe/dataframe/arithmetic/around.py +5 -17
- maxframe/dataframe/arithmetic/core.py +15 -7
- maxframe/dataframe/arithmetic/docstring.py +5 -55
- maxframe/dataframe/arithmetic/tests/test_arithmetic.py +22 -0
- maxframe/dataframe/core.py +5 -5
- maxframe/dataframe/datasource/date_range.py +2 -2
- maxframe/dataframe/datasource/read_odps_query.py +7 -1
- maxframe/dataframe/datasource/read_odps_table.py +3 -2
- maxframe/dataframe/datasource/tests/test_datasource.py +14 -0
- maxframe/dataframe/datastore/to_odps.py +1 -1
- maxframe/dataframe/groupby/cum.py +0 -1
- maxframe/dataframe/groupby/tests/test_groupby.py +4 -0
- maxframe/dataframe/indexing/add_prefix_suffix.py +1 -1
- maxframe/dataframe/indexing/rename.py +3 -37
- maxframe/dataframe/indexing/sample.py +0 -1
- maxframe/dataframe/indexing/set_index.py +68 -1
- maxframe/dataframe/merge/merge.py +236 -2
- maxframe/dataframe/merge/tests/test_merge.py +123 -0
- maxframe/dataframe/misc/apply.py +3 -10
- maxframe/dataframe/misc/case_when.py +1 -1
- maxframe/dataframe/misc/describe.py +2 -2
- maxframe/dataframe/misc/drop_duplicates.py +4 -25
- maxframe/dataframe/misc/eval.py +4 -0
- maxframe/dataframe/misc/pct_change.py +1 -83
- maxframe/dataframe/misc/transform.py +1 -30
- maxframe/dataframe/misc/value_counts.py +4 -17
- maxframe/dataframe/missing/dropna.py +1 -1
- maxframe/dataframe/missing/fillna.py +5 -5
- maxframe/dataframe/operators.py +1 -17
- maxframe/dataframe/reduction/core.py +2 -2
- maxframe/dataframe/sort/sort_values.py +1 -11
- maxframe/dataframe/statistics/quantile.py +5 -17
- maxframe/dataframe/utils.py +4 -7
- maxframe/io/objects/__init__.py +24 -0
- maxframe/io/objects/core.py +140 -0
- maxframe/io/objects/tensor.py +76 -0
- maxframe/io/objects/tests/__init__.py +13 -0
- maxframe/io/objects/tests/test_object_io.py +97 -0
- maxframe/{odpsio → io/odpsio}/__init__.py +3 -1
- maxframe/{odpsio → io/odpsio}/arrow.py +12 -8
- maxframe/{odpsio → io/odpsio}/schema.py +15 -12
- maxframe/io/odpsio/tableio.py +702 -0
- maxframe/io/odpsio/tests/__init__.py +13 -0
- maxframe/{odpsio → io/odpsio}/tests/test_schema.py +19 -18
- maxframe/{odpsio → io/odpsio}/tests/test_tableio.py +50 -23
- maxframe/{odpsio → io/odpsio}/tests/test_volumeio.py +4 -6
- maxframe/io/odpsio/volumeio.py +57 -0
- maxframe/learn/contrib/xgboost/classifier.py +26 -2
- maxframe/learn/contrib/xgboost/core.py +87 -2
- maxframe/learn/contrib/xgboost/dmatrix.py +3 -6
- maxframe/learn/contrib/xgboost/predict.py +21 -7
- maxframe/learn/contrib/xgboost/regressor.py +3 -10
- maxframe/learn/contrib/xgboost/train.py +27 -17
- maxframe/{core/operator/fuse.py → learn/core.py} +7 -10
- maxframe/lib/mmh3.cpython-38-darwin.so +0 -0
- maxframe/protocol.py +41 -17
- maxframe/remote/core.py +4 -8
- maxframe/serialization/__init__.py +1 -0
- maxframe/serialization/core.cpython-38-darwin.so +0 -0
- maxframe/serialization/serializables/core.py +48 -9
- maxframe/tensor/__init__.py +69 -2
- maxframe/tensor/arithmetic/isclose.py +1 -0
- maxframe/tensor/arithmetic/tests/test_arithmetic.py +21 -17
- maxframe/tensor/core.py +5 -136
- maxframe/tensor/datasource/array.py +3 -0
- maxframe/tensor/datasource/full.py +1 -1
- maxframe/tensor/datasource/tests/test_datasource.py +1 -1
- maxframe/tensor/indexing/flatnonzero.py +1 -1
- maxframe/tensor/merge/__init__.py +2 -0
- maxframe/tensor/merge/concatenate.py +98 -0
- maxframe/tensor/merge/tests/test_merge.py +30 -1
- maxframe/tensor/merge/vstack.py +70 -0
- maxframe/tensor/{base → misc}/__init__.py +2 -0
- maxframe/tensor/{base → misc}/atleast_1d.py +0 -2
- maxframe/tensor/misc/atleast_2d.py +70 -0
- maxframe/tensor/misc/atleast_3d.py +85 -0
- maxframe/tensor/misc/tests/__init__.py +13 -0
- maxframe/tensor/{base → misc}/transpose.py +22 -18
- maxframe/tensor/{base → misc}/unique.py +2 -2
- maxframe/tensor/operators.py +1 -7
- maxframe/tensor/random/core.py +1 -1
- maxframe/tensor/reduction/count_nonzero.py +1 -0
- maxframe/tensor/reduction/mean.py +1 -0
- maxframe/tensor/reduction/nanmean.py +1 -0
- maxframe/tensor/reduction/nanvar.py +2 -0
- maxframe/tensor/reduction/tests/test_reduction.py +12 -1
- maxframe/tensor/reduction/var.py +2 -0
- maxframe/tensor/statistics/quantile.py +2 -2
- maxframe/tensor/utils.py +2 -22
- maxframe/tests/utils.py +11 -2
- maxframe/typing_.py +4 -1
- maxframe/udf.py +8 -9
- maxframe/utils.py +32 -70
- {maxframe-1.0.0rc1.dist-info → maxframe-1.0.0rc3.dist-info}/METADATA +25 -25
- {maxframe-1.0.0rc1.dist-info → maxframe-1.0.0rc3.dist-info}/RECORD +133 -123
- {maxframe-1.0.0rc1.dist-info → maxframe-1.0.0rc3.dist-info}/WHEEL +1 -1
- maxframe_client/fetcher.py +60 -68
- maxframe_client/session/graph.py +8 -2
- maxframe_client/session/odps.py +58 -22
- maxframe_client/tests/test_fetcher.py +21 -3
- maxframe_client/tests/test_session.py +27 -4
- maxframe/core/entity/chunks.py +0 -68
- maxframe/core/entity/fuse.py +0 -73
- maxframe/core/graph/builder/chunk.py +0 -430
- maxframe/odpsio/tableio.py +0 -322
- maxframe/odpsio/volumeio.py +0 -95
- /maxframe/{odpsio → core/entity}/tests/__init__.py +0 -0
- /maxframe/{tensor/base/tests → io}/__init__.py +0 -0
- /maxframe/{odpsio → io/odpsio}/tests/test_arrow.py +0 -0
- /maxframe/tensor/{base → misc}/astype.py +0 -0
- /maxframe/tensor/{base → misc}/broadcast_to.py +0 -0
- /maxframe/tensor/{base → misc}/ravel.py +0 -0
- /maxframe/tensor/{base/tests/test_base.py → misc/tests/test_misc.py} +0 -0
- /maxframe/tensor/{base → misc}/where.py +0 -0
- {maxframe-1.0.0rc1.dist-info → maxframe-1.0.0rc3.dist-info}/top_level.txt +0 -0
|
@@ -12,10 +12,10 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
from typing import Generator
|
|
15
|
+
from typing import Generator
|
|
16
16
|
|
|
17
17
|
from ...mode import enter_mode
|
|
18
|
-
from ..entity import
|
|
18
|
+
from ..entity import TileableGraph
|
|
19
19
|
from .base import AbstractGraphBuilder
|
|
20
20
|
|
|
21
21
|
|
|
@@ -26,9 +26,9 @@ class TileableGraphBuilder(AbstractGraphBuilder):
|
|
|
26
26
|
super().__init__(graph=graph)
|
|
27
27
|
|
|
28
28
|
@enter_mode(build=True, kernel=True)
|
|
29
|
-
def _build(self) ->
|
|
29
|
+
def _build(self) -> TileableGraph:
|
|
30
30
|
self._add_nodes(self._graph, list(self._graph.result_tileables), set())
|
|
31
31
|
return self._graph
|
|
32
32
|
|
|
33
|
-
def build(self) -> Generator[
|
|
33
|
+
def build(self) -> Generator[TileableGraph, None, None]:
|
|
34
34
|
yield self._build()
|
|
@@ -13,12 +13,11 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
15
|
import itertools
|
|
16
|
-
from typing import List
|
|
16
|
+
from typing import List
|
|
17
17
|
|
|
18
18
|
from ....typing_ import TileableType
|
|
19
19
|
from ...mode import enter_mode
|
|
20
|
-
from ..entity import
|
|
21
|
-
from .chunk import ChunkGraphBuilder
|
|
20
|
+
from ..entity import EntityGraph, TileableGraph
|
|
22
21
|
from .tileable import TileableGraphBuilder
|
|
23
22
|
|
|
24
23
|
|
|
@@ -28,14 +27,11 @@ def build_graph(
|
|
|
28
27
|
tile: bool = False,
|
|
29
28
|
fuse_enabled: bool = True,
|
|
30
29
|
**chunk_graph_build_kwargs
|
|
31
|
-
) ->
|
|
30
|
+
) -> EntityGraph:
|
|
32
31
|
tileables = list(itertools.chain(*(tileable.op.outputs for tileable in tileables)))
|
|
33
32
|
tileable_graph = TileableGraph(tileables)
|
|
34
33
|
tileable_graph_builder = TileableGraphBuilder(tileable_graph)
|
|
35
34
|
tileable_graph = next(tileable_graph_builder.build())
|
|
36
35
|
if not tile:
|
|
37
36
|
return tileable_graph
|
|
38
|
-
|
|
39
|
-
tileable_graph, fuse_enabled=fuse_enabled, **chunk_graph_build_kwargs
|
|
40
|
-
)
|
|
41
|
-
return next(chunk_graph_builder.build())
|
|
37
|
+
raise NotImplementedError
|
|
Binary file
|
maxframe/core/graph/entity.py
CHANGED
|
@@ -13,9 +13,9 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
15
|
from abc import ABCMeta, abstractmethod
|
|
16
|
-
from typing import Dict, Iterable, List
|
|
16
|
+
from typing import Dict, Iterable, List
|
|
17
17
|
|
|
18
|
-
from ...core import
|
|
18
|
+
from ...core import Tileable
|
|
19
19
|
from ...serialization.core import buffered
|
|
20
20
|
from ...serialization.serializables import BoolField, DictField, ListField, Serializable
|
|
21
21
|
from ...serialization.serializables.core import SerializableSerializer
|
|
@@ -97,26 +97,6 @@ class TileableGraph(EntityGraph, Iterable[Tileable]):
|
|
|
97
97
|
return self._logic_key
|
|
98
98
|
|
|
99
99
|
|
|
100
|
-
class ChunkGraph(EntityGraph, Iterable[Chunk]):
|
|
101
|
-
_result_chunks: List[Chunk]
|
|
102
|
-
|
|
103
|
-
def __init__(self, result_chunks: List[Chunk] = None):
|
|
104
|
-
super().__init__()
|
|
105
|
-
self._result_chunks = result_chunks
|
|
106
|
-
|
|
107
|
-
@property
|
|
108
|
-
def result_chunks(self):
|
|
109
|
-
return self._result_chunks
|
|
110
|
-
|
|
111
|
-
@property
|
|
112
|
-
def results(self):
|
|
113
|
-
return self._result_chunks
|
|
114
|
-
|
|
115
|
-
@results.setter
|
|
116
|
-
def results(self, new_results):
|
|
117
|
-
self._result_chunks = new_results
|
|
118
|
-
|
|
119
|
-
|
|
120
100
|
class SerializableGraph(Serializable):
|
|
121
101
|
_is_chunk = BoolField("is_chunk")
|
|
122
102
|
# TODO(qinxuye): remove this logic when we handle fetch elegantly,
|
|
@@ -132,12 +112,11 @@ class SerializableGraph(Serializable):
|
|
|
132
112
|
_results = ListField("results")
|
|
133
113
|
|
|
134
114
|
@classmethod
|
|
135
|
-
def from_graph(cls, graph:
|
|
115
|
+
def from_graph(cls, graph: EntityGraph) -> "SerializableGraph":
|
|
136
116
|
from ..operator import Fetch
|
|
137
117
|
|
|
138
|
-
is_chunk = isinstance(graph, ChunkGraph)
|
|
139
118
|
return SerializableGraph(
|
|
140
|
-
_is_chunk=
|
|
119
|
+
_is_chunk=False,
|
|
141
120
|
_fetch_nodes=[chunk for chunk in graph if isinstance(chunk.op, Fetch)],
|
|
142
121
|
_nodes=graph._nodes,
|
|
143
122
|
_predecessors=graph._predecessors,
|
|
@@ -145,9 +124,8 @@ class SerializableGraph(Serializable):
|
|
|
145
124
|
_results=graph.results,
|
|
146
125
|
)
|
|
147
126
|
|
|
148
|
-
def to_graph(self) ->
|
|
149
|
-
|
|
150
|
-
graph = graph_cls(self._results)
|
|
127
|
+
def to_graph(self) -> EntityGraph:
|
|
128
|
+
graph = TileableGraph(self._results)
|
|
151
129
|
graph._nodes.update(self._nodes)
|
|
152
130
|
graph._predecessors.update(self._predecessors)
|
|
153
131
|
graph._successors.update(self._successors)
|
|
@@ -156,14 +134,12 @@ class SerializableGraph(Serializable):
|
|
|
156
134
|
|
|
157
135
|
class GraphSerializer(SerializableSerializer):
|
|
158
136
|
@buffered
|
|
159
|
-
def serial(self, obj:
|
|
137
|
+
def serial(self, obj: EntityGraph, context: Dict):
|
|
160
138
|
serializable_graph = SerializableGraph.from_graph(obj)
|
|
161
139
|
return [], [serializable_graph], False
|
|
162
140
|
|
|
163
|
-
def deserial(
|
|
164
|
-
|
|
165
|
-
) -> Union[TileableGraph, ChunkGraph]:
|
|
166
|
-
serializable_graph: SerializableGraph = subs[0]
|
|
141
|
+
def deserial(self, serialized: List, context: Dict, subs: List) -> TileableGraph:
|
|
142
|
+
serializable_graph: EntityGraph = subs[0]
|
|
167
143
|
return serializable_graph.to_graph()
|
|
168
144
|
|
|
169
145
|
|
|
@@ -22,13 +22,6 @@ from .base import (
|
|
|
22
22
|
)
|
|
23
23
|
from .core import TileableOperatorMixin, estimate_size, execute
|
|
24
24
|
from .fetch import Fetch, FetchMixin, FetchShuffle, ShuffleFetchType
|
|
25
|
-
from .
|
|
26
|
-
from .objects import (
|
|
27
|
-
MergeDictOperator,
|
|
28
|
-
ObjectFetch,
|
|
29
|
-
ObjectFuseChunk,
|
|
30
|
-
ObjectFuseChunkMixin,
|
|
31
|
-
ObjectOperator,
|
|
32
|
-
ObjectOperatorMixin,
|
|
33
|
-
)
|
|
25
|
+
from .objects import MergeDictOperator, ObjectFetch, ObjectOperator, ObjectOperatorMixin
|
|
34
26
|
from .shuffle import MapReduceOperator, ShuffleProxy
|
|
27
|
+
from .utils import add_fetch_builder, build_fetch
|
maxframe/core/operator/base.py
CHANGED
|
@@ -12,11 +12,10 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
import functools
|
|
16
15
|
import weakref
|
|
17
16
|
from copy import deepcopy
|
|
18
17
|
from enum import Enum
|
|
19
|
-
from functools import partial
|
|
18
|
+
from functools import lru_cache, partial
|
|
20
19
|
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
|
21
20
|
|
|
22
21
|
from ...serialization.core import Placeholder
|
|
@@ -37,7 +36,6 @@ from ...serialization.serializables.core import SerializableSerializer
|
|
|
37
36
|
from ...typing_ import OperatorType
|
|
38
37
|
from ...utils import AttributeDict, classproperty, get_user_call_point, tokenize
|
|
39
38
|
from ..base import Base
|
|
40
|
-
from ..entity.chunks import Chunk
|
|
41
39
|
from ..entity.core import ENTITY_TYPE, Entity, EntityData
|
|
42
40
|
from ..entity.output_types import OutputType
|
|
43
41
|
from ..entity.tileables import Tileable
|
|
@@ -90,7 +88,7 @@ class SchedulingHint(Serializable):
|
|
|
90
88
|
priority = Int32Field("priority", default=None)
|
|
91
89
|
|
|
92
90
|
@classproperty
|
|
93
|
-
@
|
|
91
|
+
@lru_cache(1)
|
|
94
92
|
def all_hint_names(cls):
|
|
95
93
|
return list(cls._FIELDS)
|
|
96
94
|
|
|
@@ -341,7 +339,7 @@ class Operator(Base, OperatorLogicKeyGeneratorMixin, metaclass=OperatorMetaclass
|
|
|
341
339
|
raise ValueError("Outputs' size exceeds limitation")
|
|
342
340
|
|
|
343
341
|
@property
|
|
344
|
-
def outputs(self) -> List[
|
|
342
|
+
def outputs(self) -> List[Tileable]:
|
|
345
343
|
outputs = self._outputs
|
|
346
344
|
if outputs:
|
|
347
345
|
return [ref() for ref in outputs]
|
|
@@ -17,7 +17,6 @@ from ..entity import OutputType, register_fetch_class
|
|
|
17
17
|
from .base import Operator
|
|
18
18
|
from .core import TileableOperatorMixin
|
|
19
19
|
from .fetch import Fetch, FetchMixin
|
|
20
|
-
from .fuse import Fuse, FuseChunkMixin
|
|
21
20
|
|
|
22
21
|
|
|
23
22
|
class ObjectOperator(Operator):
|
|
@@ -28,14 +27,6 @@ class ObjectOperatorMixin(TileableOperatorMixin):
|
|
|
28
27
|
_output_type_ = OutputType.object
|
|
29
28
|
|
|
30
29
|
|
|
31
|
-
class ObjectFuseChunkMixin(FuseChunkMixin, ObjectOperatorMixin):
|
|
32
|
-
__slots__ = ()
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
class ObjectFuseChunk(ObjectFuseChunkMixin, Fuse):
|
|
36
|
-
pass
|
|
37
|
-
|
|
38
|
-
|
|
39
30
|
class ObjectFetch(FetchMixin, ObjectOperatorMixin, Fetch):
|
|
40
31
|
_output_type_ = OutputType.object
|
|
41
32
|
|
|
@@ -0,0 +1,55 @@
|
|
|
1
|
+
# Copyright 1999-2024 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from ...typing_ import EntityType, TileableType
|
|
16
|
+
from ..entity import TILEABLE_TYPE
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def build_fetch_tileable(tileable: TileableType) -> TileableType:
|
|
20
|
+
if tileable.is_coarse():
|
|
21
|
+
chunks = None
|
|
22
|
+
else:
|
|
23
|
+
chunks = []
|
|
24
|
+
for c in tileable.chunks:
|
|
25
|
+
fetch_chunk = build_fetch(c, index=c.index)
|
|
26
|
+
chunks.append(fetch_chunk)
|
|
27
|
+
|
|
28
|
+
tileable_op = tileable.op
|
|
29
|
+
params = tileable.params.copy()
|
|
30
|
+
|
|
31
|
+
new_op = tileable_op.get_fetch_op_cls(tileable)(_id=tileable_op.id)
|
|
32
|
+
return new_op.new_tileables(
|
|
33
|
+
None,
|
|
34
|
+
chunks=chunks,
|
|
35
|
+
nsplits=tileable.nsplits,
|
|
36
|
+
_key=tileable.key,
|
|
37
|
+
_id=tileable.id,
|
|
38
|
+
**params,
|
|
39
|
+
)[0]
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
_type_to_builder = [
|
|
43
|
+
(TILEABLE_TYPE, build_fetch_tileable),
|
|
44
|
+
]
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def build_fetch(entity: EntityType, **kw) -> EntityType:
|
|
48
|
+
for entity_types, func in _type_to_builder:
|
|
49
|
+
if isinstance(entity, entity_types):
|
|
50
|
+
return func(entity, **kw)
|
|
51
|
+
raise TypeError(f"Type {type(entity)} not supported")
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def add_fetch_builder(entity_type, builder_func):
|
|
55
|
+
_type_to_builder.append((entity_type, builder_func))
|
maxframe/dataframe/__init__.py
CHANGED
|
@@ -43,20 +43,20 @@ def around(df, decimals=0, *args, **kwargs):
|
|
|
43
43
|
return op(df)
|
|
44
44
|
|
|
45
45
|
|
|
46
|
+
# FIXME Series input of decimals not supported yet
|
|
46
47
|
around.__frame_doc__ = """
|
|
47
48
|
Round a DataFrame to a variable number of decimal places.
|
|
48
49
|
|
|
49
50
|
Parameters
|
|
50
51
|
----------
|
|
51
|
-
decimals : int, dict
|
|
52
|
+
decimals : int, dict
|
|
52
53
|
Number of decimal places to round each column to. If an int is
|
|
53
54
|
given, round each column to the same number of places.
|
|
54
55
|
Otherwise dict and Series round to variable numbers of places.
|
|
55
56
|
Column names should be in the keys if `decimals` is a
|
|
56
|
-
dict-like
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
ignored.
|
|
57
|
+
dict-like. Any columns not included in `decimals` will be left
|
|
58
|
+
as is. Elements of `decimals` which are not columns of the
|
|
59
|
+
input will be ignored.
|
|
60
60
|
*args
|
|
61
61
|
Additional keywords have no effect but might be accepted for
|
|
62
62
|
compatibility with numpy.
|
|
@@ -107,18 +107,6 @@ places as value
|
|
|
107
107
|
1 0.0 1.0
|
|
108
108
|
2 0.7 0.0
|
|
109
109
|
3 0.2 0.0
|
|
110
|
-
|
|
111
|
-
Using a Series, the number of places for specific columns can be
|
|
112
|
-
specified with the column names as index and the number of
|
|
113
|
-
decimal places as value
|
|
114
|
-
|
|
115
|
-
>>> decimals = md.Series([0, 1], index=['cats', 'dogs'])
|
|
116
|
-
>>> df.round(decimals).execute()
|
|
117
|
-
dogs cats
|
|
118
|
-
0 0.2 0.0
|
|
119
|
-
1 0.0 1.0
|
|
120
|
-
2 0.7 0.0
|
|
121
|
-
3 0.2 0.0
|
|
122
110
|
"""
|
|
123
111
|
around.__series_doc__ = """
|
|
124
112
|
Round each value in a Series to the given number of decimals.
|
|
@@ -39,7 +39,7 @@ class DataFrameBinOpMixin(DataFrameOperatorMixin):
|
|
|
39
39
|
raise NotImplementedError
|
|
40
40
|
|
|
41
41
|
@classmethod
|
|
42
|
-
def _calc_properties(cls, x1, x2=None, axis="columns"):
|
|
42
|
+
def _calc_properties(cls, x1, x2=None, axis="columns", level=None):
|
|
43
43
|
if isinstance(x1, DATAFRAME_TYPE) and (
|
|
44
44
|
x2 is None or pd.api.types.is_scalar(x2) or isinstance(x2, TENSOR_TYPE)
|
|
45
45
|
):
|
|
@@ -108,7 +108,9 @@ class DataFrameBinOpMixin(DataFrameOperatorMixin):
|
|
|
108
108
|
index = copy.copy(x1.index_value)
|
|
109
109
|
index_shape = x1.shape[0]
|
|
110
110
|
else:
|
|
111
|
-
index = infer_index_value(
|
|
111
|
+
index = infer_index_value(
|
|
112
|
+
x1.index_value, x2.index_value, level=level
|
|
113
|
+
)
|
|
112
114
|
if index.key == x1.index_value.key == x2.index_value.key and (
|
|
113
115
|
not np.isnan(x1.shape[0]) or not np.isnan(x2.shape[0])
|
|
114
116
|
):
|
|
@@ -141,7 +143,9 @@ class DataFrameBinOpMixin(DataFrameOperatorMixin):
|
|
|
141
143
|
column_shape = len(dtypes)
|
|
142
144
|
else: # pragma: no cover
|
|
143
145
|
dtypes = x1.dtypes # FIXME
|
|
144
|
-
columns = infer_index_value(
|
|
146
|
+
columns = infer_index_value(
|
|
147
|
+
x1.columns_value, x2.index_value, level=level
|
|
148
|
+
)
|
|
145
149
|
column_shape = np.nan
|
|
146
150
|
else:
|
|
147
151
|
assert axis == "index" or axis == 0
|
|
@@ -169,7 +173,9 @@ class DataFrameBinOpMixin(DataFrameOperatorMixin):
|
|
|
169
173
|
],
|
|
170
174
|
index=x1.dtypes.index,
|
|
171
175
|
)
|
|
172
|
-
index = infer_index_value(
|
|
176
|
+
index = infer_index_value(
|
|
177
|
+
x1.index_value, x2.index_value, level=level
|
|
178
|
+
)
|
|
173
179
|
index_shape = np.nan
|
|
174
180
|
return {
|
|
175
181
|
"shape": (index_shape, column_shape),
|
|
@@ -187,7 +193,9 @@ class DataFrameBinOpMixin(DataFrameOperatorMixin):
|
|
|
187
193
|
index = copy.copy(x1.index_value)
|
|
188
194
|
index_shape = x1.shape[0]
|
|
189
195
|
else:
|
|
190
|
-
index = infer_index_value(
|
|
196
|
+
index = infer_index_value(
|
|
197
|
+
x1.index_value, x2.index_value, level=level
|
|
198
|
+
)
|
|
191
199
|
if index.key == x1.index_value.key == x2.index_value.key and (
|
|
192
200
|
not np.isnan(x1.shape[0]) or not np.isnan(x2.shape[0])
|
|
193
201
|
):
|
|
@@ -237,14 +245,14 @@ class DataFrameBinOpMixin(DataFrameOperatorMixin):
|
|
|
237
245
|
self._check_inputs(x1, x2)
|
|
238
246
|
if isinstance(x1, DATAFRAME_TYPE) or isinstance(x2, DATAFRAME_TYPE):
|
|
239
247
|
df1, df2 = (x1, x2) if isinstance(x1, DATAFRAME_TYPE) else (x2, x1)
|
|
240
|
-
kw = self._calc_properties(df1, df2, axis=self.axis)
|
|
248
|
+
kw = self._calc_properties(df1, df2, axis=self.axis, level=self.level)
|
|
241
249
|
if not pd.api.types.is_scalar(df2):
|
|
242
250
|
return self.new_dataframe([x1, x2], **kw)
|
|
243
251
|
else:
|
|
244
252
|
return self.new_dataframe([df1], **kw)
|
|
245
253
|
if isinstance(x1, SERIES_TYPE) or isinstance(x2, SERIES_TYPE):
|
|
246
254
|
s1, s2 = (x1, x2) if isinstance(x1, SERIES_TYPE) else (x2, x1)
|
|
247
|
-
kw = self._calc_properties(s1, s2)
|
|
255
|
+
kw = self._calc_properties(s1, s2, level=self.level)
|
|
248
256
|
if not pd.api.types.is_scalar(s2):
|
|
249
257
|
return self.new_series([x1, x2], **kw)
|
|
250
258
|
else:
|
|
@@ -12,6 +12,7 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
+
# FIXME:https://github.com/aliyun/alibabacloud-odps-maxframe-client/issues/17
|
|
15
16
|
_flex_doc_FRAME = """
|
|
16
17
|
Get {desc} of dataframe and other, element-wise (binary operator `{op_name}`).
|
|
17
18
|
Equivalent to ``{equiv}``, but with support to substitute a fill_value
|
|
@@ -127,44 +128,15 @@ circle 0
|
|
|
127
128
|
triangle 3
|
|
128
129
|
rectangle 4
|
|
129
130
|
|
|
130
|
-
>>> (df * other).execute()
|
|
131
|
-
angles degrees
|
|
132
|
-
circle 0 NaN
|
|
133
|
-
triangle 9 NaN
|
|
134
|
-
rectangle 16 NaN
|
|
135
|
-
|
|
136
131
|
>>> df.mul(other, fill_value=0).execute()
|
|
137
132
|
angles degrees
|
|
138
133
|
circle 0 0.0
|
|
139
134
|
triangle 9 0.0
|
|
140
135
|
rectangle 16 0.0
|
|
141
136
|
|
|
142
|
-
Divide by a MultiIndex by level.
|
|
143
|
-
|
|
144
|
-
>>> df_multindex = md.DataFrame({{'angles': [0, 3, 4, 4, 5, 6],
|
|
145
|
-
... 'degrees': [360, 180, 360, 360, 540, 720]}},
|
|
146
|
-
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
|
|
147
|
-
... ['circle', 'triangle', 'rectangle',
|
|
148
|
-
... 'square', 'pentagon', 'hexagon']])
|
|
149
|
-
>>> df_multindex.execute()
|
|
150
|
-
angles degrees
|
|
151
|
-
A circle 0 360
|
|
152
|
-
triangle 3 180
|
|
153
|
-
rectangle 4 360
|
|
154
|
-
B square 4 360
|
|
155
|
-
pentagon 5 540
|
|
156
|
-
hexagon 6 720
|
|
157
|
-
|
|
158
|
-
>>> df.div(df_multindex, level=1, fill_value=0).execute()
|
|
159
|
-
angles degrees
|
|
160
|
-
A circle NaN 1.0
|
|
161
|
-
triangle 1.0 1.0
|
|
162
|
-
rectangle 1.0 1.0
|
|
163
|
-
B square 0.0 0.0
|
|
164
|
-
pentagon 0.0 0.0
|
|
165
|
-
hexagon 0.0 0.0
|
|
166
137
|
"""
|
|
167
138
|
|
|
139
|
+
# FIXME:https://github.com/aliyun/alibabacloud-odps-maxframe-client/issues/28
|
|
168
140
|
_flex_doc_SERIES = """
|
|
169
141
|
Return {desc} of series and other, element-wise (binary operator `{op_name}`).
|
|
170
142
|
|
|
@@ -213,6 +185,7 @@ e NaN
|
|
|
213
185
|
dtype: float64
|
|
214
186
|
"""
|
|
215
187
|
|
|
188
|
+
# FIXME: https://github.com/aliyun/alibabacloud-odps-maxframe-client/issues/48
|
|
216
189
|
_flex_comp_doc_FRAME = """
|
|
217
190
|
Get {desc} of dataframe and other, element-wise (binary operator `{op_name}`).
|
|
218
191
|
Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
|
|
@@ -257,7 +230,8 @@ Mismatched indices will be unioned together.
|
|
|
257
230
|
|
|
258
231
|
Examples
|
|
259
232
|
--------
|
|
260
|
-
>>>
|
|
233
|
+
>>> import maxframe.dataframe as md
|
|
234
|
+
>>> df = md.DataFrame({{'cost': [250, 150, 100],
|
|
261
235
|
... 'revenue': [100, 250, 300]}},
|
|
262
236
|
... index=['A', 'B', 'C'])
|
|
263
237
|
>>> df.execute()
|
|
@@ -332,30 +306,6 @@ A False False
|
|
|
332
306
|
B False False
|
|
333
307
|
C False True
|
|
334
308
|
D False False
|
|
335
|
-
|
|
336
|
-
Compare to a MultiIndex by level.
|
|
337
|
-
|
|
338
|
-
>>> df_multindex = pd.DataFrame({{'cost': [250, 150, 100, 150, 300, 220],
|
|
339
|
-
... 'revenue': [100, 250, 300, 200, 175, 225]}},
|
|
340
|
-
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
|
|
341
|
-
... ['A', 'B', 'C', 'A', 'B', 'C']])
|
|
342
|
-
>>> df_multindex.execute()
|
|
343
|
-
cost revenue
|
|
344
|
-
Q1 A 250 100
|
|
345
|
-
B 150 250
|
|
346
|
-
C 100 300
|
|
347
|
-
Q2 A 150 200
|
|
348
|
-
B 300 175
|
|
349
|
-
C 220 225
|
|
350
|
-
|
|
351
|
-
>>> df.le(df_multindex, level=1).execute()
|
|
352
|
-
cost revenue
|
|
353
|
-
Q1 A True True
|
|
354
|
-
B True True
|
|
355
|
-
C True True
|
|
356
|
-
Q2 A False True
|
|
357
|
-
B True False
|
|
358
|
-
C True False
|
|
359
309
|
"""
|
|
360
310
|
|
|
361
311
|
|
|
@@ -239,6 +239,28 @@ def test_dataframe_and_series_with_shuffle(func_name, func_opts):
|
|
|
239
239
|
assert df2.columns_value.key != df1.columns_value.key
|
|
240
240
|
|
|
241
241
|
|
|
242
|
+
@pytest.mark.parametrize("func_name, func_opts", binary_functions.items())
|
|
243
|
+
def test_dataframe_and_series_with_multiindex(func_name, func_opts):
|
|
244
|
+
data1 = pd.DataFrame(
|
|
245
|
+
np.random.rand(10, 10),
|
|
246
|
+
index=pd.MultiIndex.from_arrays(
|
|
247
|
+
[list("AAAAABBBBB"), [4, 9, 3, 2, 1, 5, 8, 6, 7, 10]]
|
|
248
|
+
),
|
|
249
|
+
columns=[4, 1, 3, 2, 10, 5, 9, 8, 6, 7],
|
|
250
|
+
)
|
|
251
|
+
data1 = to_boolean_if_needed(func_opts.func_name, data1)
|
|
252
|
+
df1 = from_pandas(data1, chunk_size=5)
|
|
253
|
+
s1 = from_pandas_series(data1[10].reset_index(level=0, drop=True), chunk_size=6)
|
|
254
|
+
|
|
255
|
+
df2 = getattr(df1, func_opts.func_name)(s1, level=1, axis=0)
|
|
256
|
+
|
|
257
|
+
# test df2's index and columns
|
|
258
|
+
assert df2.shape == (np.nan, df1.shape[1])
|
|
259
|
+
assert df2.index_value.key != df1.index_value.key
|
|
260
|
+
assert df2.index_value.names == df1.index_value.names
|
|
261
|
+
assert df2.columns_value.key == df1.columns_value.key
|
|
262
|
+
|
|
263
|
+
|
|
242
264
|
@pytest.mark.parametrize("func_name, func_opts", binary_functions.items())
|
|
243
265
|
def test_series_and_series_with_align_map(func_name, func_opts):
|
|
244
266
|
data1 = pd.DataFrame(
|
maxframe/dataframe/core.py
CHANGED
|
@@ -1086,11 +1086,11 @@ class Series(HasShapeTileable, _ToPandasMixin):
|
|
|
1086
1086
|
--------
|
|
1087
1087
|
>>> import maxframe.dataframe as md
|
|
1088
1088
|
>>> s = md.Series({'a': 1, 'b': 2, 'c': 3})
|
|
1089
|
-
>>> s.ndim
|
|
1089
|
+
>>> s.ndim
|
|
1090
1090
|
1
|
|
1091
1091
|
|
|
1092
1092
|
>>> df = md.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
|
|
1093
|
-
>>> df.ndim
|
|
1093
|
+
>>> df.ndim
|
|
1094
1094
|
2
|
|
1095
1095
|
"""
|
|
1096
1096
|
return super().ndim
|
|
@@ -1520,7 +1520,7 @@ class BaseDataFrameData(HasShapeTileableData, _ToPandasMixin):
|
|
|
1520
1520
|
self._columns_value = parse_index(dtypes.index, store_data=True)
|
|
1521
1521
|
self._dtypes_value = DtypesValue(key=tokenize(dtypes), value=dtypes)
|
|
1522
1522
|
new_shape = list(self._shape)
|
|
1523
|
-
new_shape[
|
|
1523
|
+
new_shape[-1] = len(dtypes)
|
|
1524
1524
|
self._shape = tuple(new_shape)
|
|
1525
1525
|
|
|
1526
1526
|
@property
|
|
@@ -1761,11 +1761,11 @@ class DataFrame(HasShapeTileable, _ToPandasMixin):
|
|
|
1761
1761
|
--------
|
|
1762
1762
|
>>> import maxframe.dataframe as md
|
|
1763
1763
|
>>> s = md.Series({'a': 1, 'b': 2, 'c': 3})
|
|
1764
|
-
>>> s.ndim
|
|
1764
|
+
>>> s.ndim
|
|
1765
1765
|
1
|
|
1766
1766
|
|
|
1767
1767
|
>>> df = md.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
|
|
1768
|
-
>>> df.ndim
|
|
1768
|
+
>>> df.ndim
|
|
1769
1769
|
2
|
|
1770
1770
|
"""
|
|
1771
1771
|
return super().ndim
|
|
@@ -22,7 +22,7 @@ from pandas._libs.tslibs import timezones
|
|
|
22
22
|
from pandas.tseries.frequencies import to_offset
|
|
23
23
|
from pandas.tseries.offsets import Tick
|
|
24
24
|
|
|
25
|
-
from ... import opcodes
|
|
25
|
+
from ... import opcodes
|
|
26
26
|
from ...core import OutputType
|
|
27
27
|
from ...serialization.serializables import AnyField, BoolField, Int64Field, StringField
|
|
28
28
|
from ...utils import no_default, pd_release_version
|
|
@@ -117,7 +117,7 @@ def generate_range_count(
|
|
|
117
117
|
|
|
118
118
|
|
|
119
119
|
class DataFrameDateRange(DataFrameOperator, DataFrameOperatorMixin):
|
|
120
|
-
_op_type_ =
|
|
120
|
+
_op_type_ = opcodes.DATE_RANGE
|
|
121
121
|
|
|
122
122
|
start = AnyField("start")
|
|
123
123
|
end = AnyField("end")
|
|
@@ -24,7 +24,7 @@ from odps.types import Column, OdpsSchema, validate_data_type
|
|
|
24
24
|
from ... import opcodes
|
|
25
25
|
from ...core import OutputType
|
|
26
26
|
from ...core.graph import DAG
|
|
27
|
-
from ...odpsio import odps_schema_to_pandas_dtypes
|
|
27
|
+
from ...io.odpsio import odps_schema_to_pandas_dtypes
|
|
28
28
|
from ...serialization.serializables import (
|
|
29
29
|
AnyField,
|
|
30
30
|
BoolField,
|
|
@@ -47,6 +47,7 @@ _EXPLAIN_TASK_SCHEMA_REGEX = re.compile(
|
|
|
47
47
|
re.MULTILINE,
|
|
48
48
|
)
|
|
49
49
|
_EXPLAIN_COLUMN_REGEX = re.compile(r"([^\(]+) \(([^)]+)\)(?:| AS ([^ ]+))(?:\n|$)")
|
|
50
|
+
_ANONYMOUS_COL_REGEX = re.compile(r"^_c\d+$")
|
|
50
51
|
|
|
51
52
|
|
|
52
53
|
@dataclasses.dataclass
|
|
@@ -272,6 +273,11 @@ def read_odps_query(
|
|
|
272
273
|
explain_str = list(inst.get_task_results().values())[0]
|
|
273
274
|
|
|
274
275
|
odps_schema = _parse_explained_schema(explain_str)
|
|
276
|
+
|
|
277
|
+
for col in odps_schema.columns:
|
|
278
|
+
if _ANONYMOUS_COL_REGEX.match(col.name) and col.name not in query:
|
|
279
|
+
raise ValueError("Need to specify names for all columns in SELECT clause.")
|
|
280
|
+
|
|
275
281
|
dtypes = odps_schema_to_pandas_dtypes(odps_schema)
|
|
276
282
|
|
|
277
283
|
if not index_col:
|
|
@@ -23,7 +23,7 @@ from odps.utils import to_timestamp
|
|
|
23
23
|
|
|
24
24
|
from ... import opcodes
|
|
25
25
|
from ...core import OutputType
|
|
26
|
-
from ...odpsio import odps_schema_to_pandas_dtypes
|
|
26
|
+
from ...io.odpsio import odps_schema_to_pandas_dtypes
|
|
27
27
|
from ...serialization.serializables import (
|
|
28
28
|
AnyField,
|
|
29
29
|
BoolField,
|
|
@@ -119,9 +119,10 @@ class DataFrameReadODPSTable(
|
|
|
119
119
|
return self.new_tileable(
|
|
120
120
|
[],
|
|
121
121
|
None,
|
|
122
|
-
shape=shape,
|
|
122
|
+
shape=shape[:1],
|
|
123
123
|
name=getattr(index_value, "name", None),
|
|
124
124
|
names=getattr(index_value, "names", None),
|
|
125
|
+
dtype=self.index_dtypes.iloc[0],
|
|
125
126
|
index_value=index_value,
|
|
126
127
|
chunk_bytes=chunk_bytes,
|
|
127
128
|
chunk_size=chunk_size,
|
|
@@ -21,6 +21,7 @@ import pytest
|
|
|
21
21
|
from odps import ODPS
|
|
22
22
|
|
|
23
23
|
from .... import tensor as mt
|
|
24
|
+
from ....core import OutputType
|
|
24
25
|
from ....tests.utils import tn
|
|
25
26
|
from ....utils import lazy_import
|
|
26
27
|
from ... import read_odps_query, read_odps_table
|
|
@@ -295,6 +296,15 @@ def test_from_odps_table():
|
|
|
295
296
|
),
|
|
296
297
|
)
|
|
297
298
|
|
|
299
|
+
out_idx = read_odps_table(
|
|
300
|
+
test_table,
|
|
301
|
+
columns=[],
|
|
302
|
+
index_col=["col1", "col2"],
|
|
303
|
+
output_type=OutputType.index,
|
|
304
|
+
)
|
|
305
|
+
assert out_idx.names == ["col1", "col2"]
|
|
306
|
+
assert out_idx.shape == (np.nan,)
|
|
307
|
+
|
|
298
308
|
test_table.drop()
|
|
299
309
|
test_parted_table.drop()
|
|
300
310
|
|
|
@@ -319,6 +329,10 @@ def test_from_odps_query():
|
|
|
319
329
|
read_odps_query(f"CREATE TABLE dummy_table AS SELECT * FROM {table1_name}")
|
|
320
330
|
assert "instant query" in err_info.value.args[0]
|
|
321
331
|
|
|
332
|
+
with pytest.raises(ValueError) as err_info:
|
|
333
|
+
read_odps_query(f"SELECT col1, col2 + col3 FROM {table1_name}")
|
|
334
|
+
assert "names" in err_info.value.args[0]
|
|
335
|
+
|
|
322
336
|
query1 = f"SELECT * FROM {table1_name} WHERE col1 > 10"
|
|
323
337
|
df = read_odps_query(query1)
|
|
324
338
|
assert df.op.query == query1
|