maxframe 0.1.0b3__cp38-cp38-win_amd64.whl → 0.1.0b5__cp38-cp38-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of maxframe might be problematic. Click here for more details.
- maxframe/__init__.py +1 -0
- maxframe/_utils.cp38-win_amd64.pyd +0 -0
- maxframe/codegen.py +46 -1
- maxframe/config/config.py +14 -1
- maxframe/core/graph/core.cp38-win_amd64.pyd +0 -0
- maxframe/dataframe/__init__.py +6 -0
- maxframe/dataframe/core.py +34 -10
- maxframe/dataframe/datasource/read_odps_query.py +6 -2
- maxframe/dataframe/datasource/read_odps_table.py +5 -1
- maxframe/dataframe/datastore/core.py +19 -0
- maxframe/dataframe/datastore/to_csv.py +2 -2
- maxframe/dataframe/datastore/to_odps.py +2 -2
- maxframe/dataframe/indexing/reset_index.py +1 -17
- maxframe/dataframe/misc/__init__.py +4 -0
- maxframe/dataframe/misc/apply.py +1 -1
- maxframe/dataframe/misc/case_when.py +141 -0
- maxframe/dataframe/misc/pivot_table.py +262 -0
- maxframe/dataframe/misc/tests/test_misc.py +61 -0
- maxframe/dataframe/plotting/core.py +2 -2
- maxframe/dataframe/reduction/core.py +2 -1
- maxframe/dataframe/utils.py +7 -0
- maxframe/learn/contrib/utils.py +52 -0
- maxframe/learn/contrib/xgboost/__init__.py +26 -0
- maxframe/learn/contrib/xgboost/classifier.py +86 -0
- maxframe/learn/contrib/xgboost/core.py +156 -0
- maxframe/learn/contrib/xgboost/dmatrix.py +150 -0
- maxframe/learn/contrib/xgboost/predict.py +138 -0
- maxframe/learn/contrib/xgboost/regressor.py +78 -0
- maxframe/learn/contrib/xgboost/tests/__init__.py +13 -0
- maxframe/learn/contrib/xgboost/tests/test_core.py +43 -0
- maxframe/learn/contrib/xgboost/train.py +121 -0
- maxframe/learn/utils/__init__.py +15 -0
- maxframe/learn/utils/core.py +29 -0
- maxframe/lib/mmh3.cp38-win_amd64.pyd +0 -0
- maxframe/odpsio/arrow.py +10 -6
- maxframe/odpsio/schema.py +18 -5
- maxframe/odpsio/tableio.py +22 -0
- maxframe/odpsio/tests/test_schema.py +41 -11
- maxframe/opcodes.py +8 -0
- maxframe/serialization/core.cp38-win_amd64.pyd +0 -0
- maxframe/serialization/core.pyi +61 -0
- maxframe/session.py +32 -2
- maxframe/tensor/__init__.py +1 -1
- maxframe/tensor/base/__init__.py +2 -0
- maxframe/tensor/base/atleast_1d.py +74 -0
- maxframe/tensor/base/unique.py +205 -0
- maxframe/tensor/datasource/array.py +4 -2
- maxframe/tensor/datasource/scalar.py +1 -1
- maxframe/udf.py +63 -3
- maxframe/utils.py +11 -0
- {maxframe-0.1.0b3.dist-info → maxframe-0.1.0b5.dist-info}/METADATA +2 -2
- {maxframe-0.1.0b3.dist-info → maxframe-0.1.0b5.dist-info}/RECORD +58 -40
- maxframe_client/fetcher.py +65 -3
- maxframe_client/session/odps.py +41 -11
- maxframe_client/session/task.py +26 -53
- maxframe_client/tests/test_session.py +49 -1
- {maxframe-0.1.0b3.dist-info → maxframe-0.1.0b5.dist-info}/WHEEL +0 -0
- {maxframe-0.1.0b3.dist-info → maxframe-0.1.0b5.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,205 @@
|
|
|
1
|
+
# Copyright 1999-2024 Alibaba Group Holding Ltd.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
import numpy as np
|
|
17
|
+
|
|
18
|
+
from ... import opcodes as OperandDef
|
|
19
|
+
from ...serialization.serializables import BoolField, Int32Field
|
|
20
|
+
from ..core import TensorOrder
|
|
21
|
+
from ..operators import TensorHasInput, TensorOperatorMixin
|
|
22
|
+
from ..utils import validate_axis
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class TensorUnique(TensorHasInput, TensorOperatorMixin):
|
|
26
|
+
_op_type_ = OperandDef.UNIQUE
|
|
27
|
+
|
|
28
|
+
return_index = BoolField("return_index", default=False)
|
|
29
|
+
return_inverse = BoolField("return_inverse", default=False)
|
|
30
|
+
return_counts = BoolField("return_counts", default=False)
|
|
31
|
+
axis = Int32Field("axis", default=None)
|
|
32
|
+
|
|
33
|
+
@property
|
|
34
|
+
def output_limit(self):
|
|
35
|
+
return 1
|
|
36
|
+
|
|
37
|
+
def _gen_kws(self, input_obj, chunk=False, chunk_index=None):
|
|
38
|
+
kws = []
|
|
39
|
+
|
|
40
|
+
# unique tensor
|
|
41
|
+
shape = list(input_obj.shape)
|
|
42
|
+
shape[self.axis] = np.nan
|
|
43
|
+
kw = {"shape": tuple(shape), "dtype": input_obj.dtype, "gpu": input_obj.op.gpu}
|
|
44
|
+
if chunk:
|
|
45
|
+
idx = [0] * len(shape)
|
|
46
|
+
idx[self.axis] = chunk_index or 0
|
|
47
|
+
kw["index"] = tuple(idx)
|
|
48
|
+
kws.append(kw)
|
|
49
|
+
|
|
50
|
+
# unique indices tensor
|
|
51
|
+
if self.return_index:
|
|
52
|
+
kw = {
|
|
53
|
+
"shape": (np.nan,),
|
|
54
|
+
"dtype": np.dtype(np.intp),
|
|
55
|
+
"gpu": input_obj.op.gpu,
|
|
56
|
+
"type": "indices",
|
|
57
|
+
}
|
|
58
|
+
if chunk:
|
|
59
|
+
kw["index"] = (chunk_index or 0,)
|
|
60
|
+
kws.append(kw)
|
|
61
|
+
|
|
62
|
+
# unique inverse tensor
|
|
63
|
+
if self.return_inverse:
|
|
64
|
+
kw = {
|
|
65
|
+
"shape": (input_obj.shape[self.axis],),
|
|
66
|
+
"dtype": np.dtype(np.intp),
|
|
67
|
+
"gpu": input_obj.op.gpu,
|
|
68
|
+
"type": "inverse",
|
|
69
|
+
}
|
|
70
|
+
if chunk:
|
|
71
|
+
kw["index"] = (chunk_index or 0,)
|
|
72
|
+
kws.append(kw)
|
|
73
|
+
|
|
74
|
+
# unique counts tensor
|
|
75
|
+
if self.return_counts:
|
|
76
|
+
kw = {
|
|
77
|
+
"shape": (np.nan,),
|
|
78
|
+
"dtype": np.dtype(np.int_),
|
|
79
|
+
"gpu": input_obj.op.gpu,
|
|
80
|
+
"type": "counts",
|
|
81
|
+
}
|
|
82
|
+
if chunk:
|
|
83
|
+
kw["index"] = (chunk_index or 0,)
|
|
84
|
+
kws.append(kw)
|
|
85
|
+
|
|
86
|
+
return kws
|
|
87
|
+
|
|
88
|
+
def __call__(self, ar):
|
|
89
|
+
from .atleast_1d import atleast_1d
|
|
90
|
+
|
|
91
|
+
ar = atleast_1d(ar)
|
|
92
|
+
if self.axis is None:
|
|
93
|
+
if ar.ndim > 1:
|
|
94
|
+
ar = ar.flatten()
|
|
95
|
+
self._axis = 0
|
|
96
|
+
else:
|
|
97
|
+
self._axis = validate_axis(ar.ndim, self._axis)
|
|
98
|
+
|
|
99
|
+
kws = self._gen_kws(self, ar)
|
|
100
|
+
tensors = self.new_tensors([ar], kws=kws, order=TensorOrder.C_ORDER)
|
|
101
|
+
if len(tensors) == 1:
|
|
102
|
+
return tensors[0]
|
|
103
|
+
return tensors
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def unique(
|
|
107
|
+
ar,
|
|
108
|
+
return_index=False,
|
|
109
|
+
return_inverse=False,
|
|
110
|
+
return_counts=False,
|
|
111
|
+
axis=None,
|
|
112
|
+
):
|
|
113
|
+
"""
|
|
114
|
+
Find the unique elements of a tensor.
|
|
115
|
+
|
|
116
|
+
Returns the sorted unique elements of a tensor. There are three optional
|
|
117
|
+
outputs in addition to the unique elements:
|
|
118
|
+
|
|
119
|
+
* the indices of the input tensor that give the unique values
|
|
120
|
+
* the indices of the unique tensor that reconstruct the input tensor
|
|
121
|
+
* the number of times each unique value comes up in the input tensor
|
|
122
|
+
|
|
123
|
+
Parameters
|
|
124
|
+
----------
|
|
125
|
+
ar : array_like
|
|
126
|
+
Input tensor. Unless `axis` is specified, this will be flattened if it
|
|
127
|
+
is not already 1-D.
|
|
128
|
+
return_index : bool, optional
|
|
129
|
+
If True, also return the indices of `ar` (along the specified axis,
|
|
130
|
+
if provided, or in the flattened tensor) that result in the unique tensor.
|
|
131
|
+
return_inverse : bool, optional
|
|
132
|
+
If True, also return the indices of the unique tensor (for the specified
|
|
133
|
+
axis, if provided) that can be used to reconstruct `ar`.
|
|
134
|
+
return_counts : bool, optional
|
|
135
|
+
If True, also return the number of times each unique item appears
|
|
136
|
+
in `ar`.
|
|
137
|
+
axis : int or None, optional
|
|
138
|
+
The axis to operate on. If None, `ar` will be flattened. If an integer,
|
|
139
|
+
the subarrays indexed by the given axis will be flattened and treated
|
|
140
|
+
as the elements of a 1-D tensor with the dimension of the given axis,
|
|
141
|
+
see the notes for more details. Object tensors or structured tensors
|
|
142
|
+
that contain objects are not supported if the `axis` kwarg is used. The
|
|
143
|
+
default is None.
|
|
144
|
+
|
|
145
|
+
Returns
|
|
146
|
+
-------
|
|
147
|
+
unique : Tensor
|
|
148
|
+
The sorted unique values.
|
|
149
|
+
unique_indices : Tensor, optional
|
|
150
|
+
The indices of the first occurrences of the unique values in the
|
|
151
|
+
original tensor. Only provided if `return_index` is True.
|
|
152
|
+
unique_inverse : Tensor, optional
|
|
153
|
+
The indices to reconstruct the original tensor from the
|
|
154
|
+
unique tensor. Only provided if `return_inverse` is True.
|
|
155
|
+
unique_counts : Tensor, optional
|
|
156
|
+
The number of times each of the unique values comes up in the
|
|
157
|
+
original tensor. Only provided if `return_counts` is True.
|
|
158
|
+
|
|
159
|
+
Examples
|
|
160
|
+
--------
|
|
161
|
+
>>> import maxframe.tensor as mt
|
|
162
|
+
|
|
163
|
+
>>> mt.unique([1, 1, 2, 2, 3, 3]).execute()
|
|
164
|
+
array([1, 2, 3])
|
|
165
|
+
>>> a = mt.array([[1, 1], [2, 3]])
|
|
166
|
+
>>> mt.unique(a).execute()
|
|
167
|
+
array([1, 2, 3])
|
|
168
|
+
|
|
169
|
+
Return the unique rows of a 2D tensor
|
|
170
|
+
|
|
171
|
+
>>> a = mt.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
|
|
172
|
+
>>> mt.unique(a, axis=0).execute()
|
|
173
|
+
array([[1, 0, 0], [2, 3, 4]])
|
|
174
|
+
|
|
175
|
+
Return the indices of the original tensor that give the unique values:
|
|
176
|
+
|
|
177
|
+
>>> a = mt.array(['a', 'b', 'b', 'c', 'a'])
|
|
178
|
+
>>> u, indices = mt.unique(a, return_index=True)
|
|
179
|
+
>>> u.execute()
|
|
180
|
+
array(['a', 'b', 'c'],
|
|
181
|
+
dtype='|S1')
|
|
182
|
+
>>> indices.execute()
|
|
183
|
+
array([0, 1, 3])
|
|
184
|
+
>>> a[indices].execute()
|
|
185
|
+
array(['a', 'b', 'c'],
|
|
186
|
+
dtype='|S1')
|
|
187
|
+
|
|
188
|
+
Reconstruct the input array from the unique values:
|
|
189
|
+
|
|
190
|
+
>>> a = mt.array([1, 2, 6, 4, 2, 3, 2])
|
|
191
|
+
>>> u, indices = mt.unique(a, return_inverse=True)
|
|
192
|
+
>>> u.execute()
|
|
193
|
+
array([1, 2, 3, 4, 6])
|
|
194
|
+
>>> indices.execute()
|
|
195
|
+
array([0, 1, 4, 3, 1, 2, 1])
|
|
196
|
+
>>> u[indices].execute()
|
|
197
|
+
array([1, 2, 6, 4, 2, 3, 2])
|
|
198
|
+
"""
|
|
199
|
+
op = TensorUnique(
|
|
200
|
+
return_index=return_index,
|
|
201
|
+
return_inverse=return_inverse,
|
|
202
|
+
return_counts=return_counts,
|
|
203
|
+
axis=axis,
|
|
204
|
+
)
|
|
205
|
+
return op(ar)
|
|
@@ -20,6 +20,7 @@ from ...serialization.serializables import (
|
|
|
20
20
|
AnyField,
|
|
21
21
|
FieldTypes,
|
|
22
22
|
NDArrayField,
|
|
23
|
+
StringField,
|
|
23
24
|
TupleField,
|
|
24
25
|
)
|
|
25
26
|
from ...utils import on_deserialize_shape, on_serialize_shape
|
|
@@ -37,8 +38,9 @@ class ArrayDataSource(TensorNoInput):
|
|
|
37
38
|
|
|
38
39
|
_op_type_ = opcodes.TENSOR_DATA_SOURCE
|
|
39
40
|
|
|
40
|
-
data = NDArrayField("data")
|
|
41
|
-
chunk_size = AnyField("chunk_size")
|
|
41
|
+
data = NDArrayField("data", default=None)
|
|
42
|
+
chunk_size = AnyField("chunk_size", default=None)
|
|
43
|
+
order = StringField("order", default=None)
|
|
42
44
|
|
|
43
45
|
def __init__(self, data=None, dtype=None, gpu=None, **kw):
|
|
44
46
|
if dtype is not None:
|
|
@@ -33,7 +33,7 @@ class Scalar(TensorNoInput):
|
|
|
33
33
|
def scalar(data, dtype=None, gpu=None):
|
|
34
34
|
try:
|
|
35
35
|
arr = np.array(data, dtype=dtype)
|
|
36
|
-
op = Scalar(arr, dtype=arr.dtype, gpu=gpu)
|
|
36
|
+
op = Scalar(data=arr, dtype=arr.dtype, gpu=gpu)
|
|
37
37
|
shape = ()
|
|
38
38
|
return op(shape)
|
|
39
39
|
except ValueError:
|
maxframe/udf.py
CHANGED
|
@@ -12,21 +12,51 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
+
import shlex
|
|
15
16
|
from typing import Callable, List, Optional, Union
|
|
16
17
|
|
|
17
18
|
from odps.models import Resource
|
|
18
19
|
|
|
19
20
|
from .serialization.serializables import (
|
|
21
|
+
BoolField,
|
|
20
22
|
FieldTypes,
|
|
21
23
|
FunctionField,
|
|
22
24
|
ListField,
|
|
23
25
|
Serializable,
|
|
26
|
+
StringField,
|
|
24
27
|
)
|
|
28
|
+
from .utils import tokenize
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class PythonPackOptions(Serializable):
|
|
32
|
+
key = StringField("key")
|
|
33
|
+
requirements = ListField("requirements", FieldTypes.string, default_factory=list)
|
|
34
|
+
force_rebuild = BoolField("force_rebuild", default=False)
|
|
35
|
+
prefer_binary = BoolField("prefer_binary", default=False)
|
|
36
|
+
pre_release = BoolField("pre_release", default=False)
|
|
37
|
+
pack_instance_id = StringField("pack_instance_id", default=None)
|
|
38
|
+
|
|
39
|
+
def __init__(self, key: str = None, **kw):
|
|
40
|
+
super().__init__(key=key, **kw)
|
|
41
|
+
if self.key is None:
|
|
42
|
+
args = {
|
|
43
|
+
"force_rebuild": self.force_rebuild,
|
|
44
|
+
"prefer_binary": self.prefer_binary,
|
|
45
|
+
"pre_release": self.pre_release,
|
|
46
|
+
}
|
|
47
|
+
self.key = tokenize(set(self.requirements), args)
|
|
48
|
+
|
|
49
|
+
def __repr__(self):
|
|
50
|
+
return (
|
|
51
|
+
f"<PythonPackOptions {self.requirements} force_rebuild={self.force_rebuild} "
|
|
52
|
+
f"prefer_binary={self.prefer_binary} pre_release={self.pre_release}>"
|
|
53
|
+
)
|
|
25
54
|
|
|
26
55
|
|
|
27
56
|
class MarkedFunction(Serializable):
|
|
28
57
|
func = FunctionField("func")
|
|
29
58
|
resources = ListField("resources", FieldTypes.string, default_factory=list)
|
|
59
|
+
pythonpacks = ListField("pythonpacks", FieldTypes.reference, default_factory=list)
|
|
30
60
|
|
|
31
61
|
def __init__(self, func: Optional[Callable] = None, **kw):
|
|
32
62
|
super().__init__(func=func, **kw)
|
|
@@ -54,13 +84,39 @@ def with_resources(*resources: Union[str, Resource], use_wrapper_class: bool = T
|
|
|
54
84
|
def func_wrapper(func):
|
|
55
85
|
str_resources = [res_to_str(r) for r in resources]
|
|
56
86
|
if not use_wrapper_class:
|
|
57
|
-
func
|
|
87
|
+
existing = getattr(func, "resources") or []
|
|
88
|
+
func.resources = existing + str_resources
|
|
89
|
+
return func
|
|
90
|
+
|
|
91
|
+
if isinstance(func, MarkedFunction):
|
|
92
|
+
func.resources = func.resources + str_resources
|
|
58
93
|
return func
|
|
94
|
+
return MarkedFunction(func, resources=str_resources)
|
|
95
|
+
|
|
96
|
+
return func_wrapper
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
def with_python_requirements(
|
|
100
|
+
*requirements: str,
|
|
101
|
+
force_rebuild: bool = False,
|
|
102
|
+
prefer_binary: bool = False,
|
|
103
|
+
pre_release: bool = False,
|
|
104
|
+
):
|
|
105
|
+
result_req = []
|
|
106
|
+
for req in requirements:
|
|
107
|
+
result_req.extend(shlex.split(req))
|
|
59
108
|
|
|
109
|
+
def func_wrapper(func):
|
|
110
|
+
pack_item = PythonPackOptions(
|
|
111
|
+
requirements=requirements,
|
|
112
|
+
force_rebuild=force_rebuild,
|
|
113
|
+
prefer_binary=prefer_binary,
|
|
114
|
+
pre_release=pre_release,
|
|
115
|
+
)
|
|
60
116
|
if isinstance(func, MarkedFunction):
|
|
61
|
-
func.
|
|
117
|
+
func.pythonpacks.append(pack_item)
|
|
62
118
|
return func
|
|
63
|
-
return MarkedFunction(func,
|
|
119
|
+
return MarkedFunction(func, pythonpacks=[pack_item])
|
|
64
120
|
|
|
65
121
|
return func_wrapper
|
|
66
122
|
|
|
@@ -72,3 +128,7 @@ def get_udf_resources(
|
|
|
72
128
|
func: Callable,
|
|
73
129
|
) -> List[Union[Resource, str]]:
|
|
74
130
|
return getattr(func, "resources", None) or []
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
def get_udf_pythonpacks(func: Callable) -> List[PythonPackOptions]:
|
|
134
|
+
return getattr(func, "pythonpacks", None) or []
|
maxframe/utils.py
CHANGED
|
@@ -381,6 +381,11 @@ def build_temp_table_name(session_id: str, tileable_key: str) -> str:
|
|
|
381
381
|
return f"tmp_mf_{session_id}_{tileable_key}"
|
|
382
382
|
|
|
383
383
|
|
|
384
|
+
def build_temp_intermediate_table_name(session_id: str, tileable_key: str) -> str:
|
|
385
|
+
temp_table = build_temp_table_name(session_id, tileable_key)
|
|
386
|
+
return f"{temp_table}_intermediate"
|
|
387
|
+
|
|
388
|
+
|
|
384
389
|
def build_session_volume_name(session_id: str) -> str:
|
|
385
390
|
return f"mf_vol_{session_id}"
|
|
386
391
|
|
|
@@ -1101,3 +1106,9 @@ def get_python_tag():
|
|
|
1101
1106
|
# todo add implementation suffix for non-GIL tags when PEP703 is ready
|
|
1102
1107
|
version_info = sys.version_info
|
|
1103
1108
|
return f"cp{version_info[0]}{version_info[1]}"
|
|
1109
|
+
|
|
1110
|
+
|
|
1111
|
+
def get_item_if_scalar(val: Any) -> Any:
|
|
1112
|
+
if isinstance(val, np.ndarray) and val.shape == ():
|
|
1113
|
+
return val.item()
|
|
1114
|
+
return val
|
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: maxframe
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.0b5
|
|
4
4
|
Summary: MaxFrame operator-based data analyze framework
|
|
5
5
|
Requires-Dist: numpy >=1.19.0
|
|
6
6
|
Requires-Dist: pandas >=1.0.0
|
|
7
|
-
Requires-Dist: pyodps >=0.11.
|
|
7
|
+
Requires-Dist: pyodps >=0.11.6.1
|
|
8
8
|
Requires-Dist: scipy >=1.0
|
|
9
9
|
Requires-Dist: pyarrow >=1.0.0
|
|
10
10
|
Requires-Dist: msgpack >=1.0.0
|
|
@@ -1,21 +1,21 @@
|
|
|
1
|
-
maxframe/__init__.py,sha256=
|
|
2
|
-
maxframe/_utils.cp38-win_amd64.pyd,sha256=
|
|
1
|
+
maxframe/__init__.py,sha256=RujkARDvD6mhFpR330UQ0UfogvIdae5EjR1euFpTiYA,1036
|
|
2
|
+
maxframe/_utils.cp38-win_amd64.pyd,sha256=YAYj2lmyJ07uTXwKcKraQwYpmeufMzpHv6gOs3b9xdE,308736
|
|
3
3
|
maxframe/_utils.pxd,sha256=_qHN-lCY1FQgDFIrrqA79Ys0SBdonp9kXRMS93xKSYk,1187
|
|
4
4
|
maxframe/_utils.pyx,sha256=_3p6aJEJ6WZYLcNZ6o4DxoxsxqadTlJXFlgDeFPxqUQ,17564
|
|
5
|
-
maxframe/codegen.py,sha256=
|
|
5
|
+
maxframe/codegen.py,sha256=bkOqyLYo_8sJ_zPZK-T9JMvBeKkntqb1Oona9l2aNio,18044
|
|
6
6
|
maxframe/conftest.py,sha256=JE9I-5mP4u-vgUqYL22mNY3tqpGofM8VMe8c8VUYkzk,4403
|
|
7
7
|
maxframe/env.py,sha256=xY4wjMWIJ4qLsFAQ5F-X5CrVR7dDSWiryPXni0YSK5c,1435
|
|
8
8
|
maxframe/errors.py,sha256=xBnvoJjjNcHVLhwj77Dux9ut8isGVmmJXFqefmmx8Ak,711
|
|
9
9
|
maxframe/extension.py,sha256=o7yiS99LWTtLF7ZX6F78UUJAqUyd-LllOXA2l69np50,2455
|
|
10
10
|
maxframe/mixin.py,sha256=QfX0KqVIWDlVDSFs0lwdzLexw7lS7W_IUuK7aY1Ib8c,3624
|
|
11
|
-
maxframe/opcodes.py,sha256=
|
|
11
|
+
maxframe/opcodes.py,sha256=4Gj2svgrNNxylfUbQYs8WbDqTpoCoLtlNCtAYdHr-BU,10781
|
|
12
12
|
maxframe/protocol.py,sha256=N4i0ggLY131gwnxOrCgKeZwzhLKSRB171cx1lWRvUcw,14605
|
|
13
|
-
maxframe/session.py,sha256=
|
|
13
|
+
maxframe/session.py,sha256=CfDT2iwjl5NAisPrZ6LF0xG_hr75Wr0cfHd6rvtHajw,37515
|
|
14
14
|
maxframe/typing_.py,sha256=pAgOhHHSM376N7PJLtNXvS5LHNYywz5dIjnA_hHRWSM,1133
|
|
15
|
-
maxframe/udf.py,sha256=
|
|
16
|
-
maxframe/utils.py,sha256=
|
|
15
|
+
maxframe/udf.py,sha256=GJre7snHQxkoyUWX0rpDkrGGU8-qA-SmSe2H9nSMEfo,4422
|
|
16
|
+
maxframe/utils.py,sha256=T_2JIUKG4sWNbrZ_2hf4RWBSRlTQMxW1XnbdudEQPrI,35358
|
|
17
17
|
maxframe/config/__init__.py,sha256=AHo3deaCm1JnbbRX_udboJEDYrYytdvivp9RFxJcumI,671
|
|
18
|
-
maxframe/config/config.py,sha256=
|
|
18
|
+
maxframe/config/config.py,sha256=ChDD61-POFvc_wTmfrQaK-8leKV2huiGgnQvi9IsUAk,14019
|
|
19
19
|
maxframe/config/validators.py,sha256=pKnloh2kEOBRSsT8ks-zL8XVSaMMVIEvHvwNJlideeo,1672
|
|
20
20
|
maxframe/config/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
21
21
|
maxframe/config/tests/test_config.py,sha256=FWQZ6KBUG_jY1-KaR-GKXl7khhlTbuLlk3uaEV8koM8,2839
|
|
@@ -33,7 +33,7 @@ maxframe/core/entity/output_types.py,sha256=NnNeDBVAEhD8dtPBWzpM7n6s8neVFrahjd0z
|
|
|
33
33
|
maxframe/core/entity/tileables.py,sha256=6jJyFscvb8sH5K_k2VaNGeUm8YrpevCtou3WSUl4Dw8,13973
|
|
34
34
|
maxframe/core/entity/utils.py,sha256=454RYVbTMVW_8KnfDqUPec4kz1p98izVTC2OrzhOkao,966
|
|
35
35
|
maxframe/core/graph/__init__.py,sha256=n1WiszgVu0VdXsk12oiAyggduNwu-1-9YKnfZqvmmXk,838
|
|
36
|
-
maxframe/core/graph/core.cp38-win_amd64.pyd,sha256=
|
|
36
|
+
maxframe/core/graph/core.cp38-win_amd64.pyd,sha256=1D1hVZ0-74U8j7kl6B0zYeWL-XiTV_4zbw2tLr0oZcY,250368
|
|
37
37
|
maxframe/core/graph/core.pyx,sha256=WYlYtXXSs72vfhf2ttJO-4u85exYzy2J9mlALHOMqoA,16354
|
|
38
38
|
maxframe/core/graph/entity.py,sha256=RT_xbP5niUN5D6gqZ5Pg1vUegHn8bqPk8G8A30quOVA,5730
|
|
39
39
|
maxframe/core/graph/builder/__init__.py,sha256=vTRY5xRPOMHUsK0jAtNIb1BjSPGqi_6lv86AroiiiL4,718
|
|
@@ -54,12 +54,12 @@ maxframe/core/operator/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH
|
|
|
54
54
|
maxframe/core/operator/tests/test_core.py,sha256=iqZk4AWubFLO24V_VeV6SEy5xrzBFLP9qKK6tKO0SGs,1755
|
|
55
55
|
maxframe/core/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
56
56
|
maxframe/core/tests/test_mode.py,sha256=fyRH-ksa6MogEs6kNhtXhCZyvhYqflgaXJYI3nSo-ps,2507
|
|
57
|
-
maxframe/dataframe/__init__.py,sha256=
|
|
57
|
+
maxframe/dataframe/__init__.py,sha256=6wzq6JcohLtvR9kkE2Pc476ExNGslCFRijKFE_R6PB8,2318
|
|
58
58
|
maxframe/dataframe/arrays.py,sha256=rOvhxMQars9E3SOYSu0ygBuuRVY0QV6xzengnMqKs4s,29616
|
|
59
|
-
maxframe/dataframe/core.py,sha256=
|
|
59
|
+
maxframe/dataframe/core.py,sha256=fOrn9ehPmZnymO-r586jpWW9DTMGt7HWvFMwv-JOrjM,76830
|
|
60
60
|
maxframe/dataframe/initializer.py,sha256=WW96yQjquofNFt6RPZvgWW4SBmH0OEDj8-BxpuyKThY,10552
|
|
61
61
|
maxframe/dataframe/operators.py,sha256=jl611oPN5TGpf6UDuIwcLUsjmTcbVBNLLd6cvq8TvKo,8144
|
|
62
|
-
maxframe/dataframe/utils.py,sha256=
|
|
62
|
+
maxframe/dataframe/utils.py,sha256=nYpTY5TmpJGs2_1VQBNxR_6miPTcdpIbqgw0aqh1Axo,45539
|
|
63
63
|
maxframe/dataframe/arithmetic/__init__.py,sha256=MPnITPuO7DDjAMTBawpennv6D0V9AnT6oF0nz2KUIqc,12837
|
|
64
64
|
maxframe/dataframe/arithmetic/abs.py,sha256=EgyzciSwjE_I3ZBuzeVJFVzBHsxn9MWzCtvHgyEl6ek,1016
|
|
65
65
|
maxframe/dataframe/arithmetic/add.py,sha256=wbmfAZgxjuP02ZUV4-VEsNhJlyo9tytXwkEx65ahuxI,1766
|
|
@@ -119,15 +119,16 @@ maxframe/dataframe/datasource/from_records.py,sha256=ygpKOMXZnDdWzGxMxQ4KdGv-tJF
|
|
|
119
119
|
maxframe/dataframe/datasource/from_tensor.py,sha256=mShHYi0fZcG7ZShFVgIezaphh8tSFqR9-nQMm5YKIhw,15146
|
|
120
120
|
maxframe/dataframe/datasource/index.py,sha256=X_NShW67nYJGxaWp3qOrvyInNkz9L-XHjbApU4fHoes,4518
|
|
121
121
|
maxframe/dataframe/datasource/read_csv.py,sha256=IvQihmpcZIdzSD7ziX92aTAHNyP5WnTgd2cZz_h43sQ,24668
|
|
122
|
-
maxframe/dataframe/datasource/read_odps_query.py,sha256=
|
|
123
|
-
maxframe/dataframe/datasource/read_odps_table.py,sha256=
|
|
122
|
+
maxframe/dataframe/datasource/read_odps_query.py,sha256=6Z8yCSIG96PJFq8B3wk2D29xGedj7y3vV24vGbpoSUA,10269
|
|
123
|
+
maxframe/dataframe/datasource/read_odps_table.py,sha256=d_8jeOMuxyo69l2BYR_kSMI6Ixv25BtqF95YtY9r1Pk,9425
|
|
124
124
|
maxframe/dataframe/datasource/read_parquet.py,sha256=SZPrWoax2mwMBNvRk_3lkS72pZLe-_X_GwQ1JROBMs4,14952
|
|
125
125
|
maxframe/dataframe/datasource/series.py,sha256=elQVupKETh-hUHI2fTu8TRxBE729Vyrmpjx17XlRV-8,1964
|
|
126
126
|
maxframe/dataframe/datasource/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
127
127
|
maxframe/dataframe/datasource/tests/test_datasource.py,sha256=UumRBjE-bIuCi7Z4_3t8qb58ZcF8ePRZf3xF7DTvqIA,15041
|
|
128
128
|
maxframe/dataframe/datastore/__init__.py,sha256=MmlHYvFacMReOHDQMXF-z2bCsLyrSHYBVwIlCsZGOK4,810
|
|
129
|
-
maxframe/dataframe/datastore/
|
|
130
|
-
maxframe/dataframe/datastore/
|
|
129
|
+
maxframe/dataframe/datastore/core.py,sha256=HCqrZN47RP-IC6zDqLX_RErDUAWkcTB58FHNU70V2b4,762
|
|
130
|
+
maxframe/dataframe/datastore/to_csv.py,sha256=sns4bBgNpq7Ihb-goNqaBRdiEtrG-V6jqhNkWGZ1YaE,7974
|
|
131
|
+
maxframe/dataframe/datastore/to_odps.py,sha256=NVHLccpNYbF6YPk3PKziStonkKlR0JaOFF0AxWlMhBw,5724
|
|
131
132
|
maxframe/dataframe/extensions/__init__.py,sha256=x6QCVQIfpa8JP2Vu-nZwHJ1CzATnyPoKCBMqxjXwpO0,1439
|
|
132
133
|
maxframe/dataframe/extensions/accessor.py,sha256=0OA8YPL3rofSvdU0z_1kMLImahrvow_vhxdQDYODki0,1497
|
|
133
134
|
maxframe/dataframe/extensions/reshuffle.py,sha256=yOlJ-3R4v9CoiEKFA1zgCOvbocy00MxpFBbQuTn-uDw,2720
|
|
@@ -159,7 +160,7 @@ maxframe/dataframe/indexing/loc.py,sha256=senwgO_ijLJtbzaeqS_CMefV8nlf3guEQXKdSQ
|
|
|
159
160
|
maxframe/dataframe/indexing/reindex.py,sha256=v4Rd85aNfh3onzcFqOhdUjiLrDv9QuNtGh-OaWpnG-4,19699
|
|
160
161
|
maxframe/dataframe/indexing/rename.py,sha256=E7gI6lHGoBbMnldtErxv5StmS7jrGDdXGtpDusavihA,14009
|
|
161
162
|
maxframe/dataframe/indexing/rename_axis.py,sha256=ugKcve4Kp8EuSmokQFUL-mVhGQ1cd6IDZ3UauHPiFeQ,6511
|
|
162
|
-
maxframe/dataframe/indexing/reset_index.py,sha256=
|
|
163
|
+
maxframe/dataframe/indexing/reset_index.py,sha256=_NFQZTjHzc_IgiqC-aqFJUfjneyJUN42-ujxGPfBVnQ,13524
|
|
163
164
|
maxframe/dataframe/indexing/sample.py,sha256=cVpmTV4q0Lo5dK3RdIpP3G5Yo6A6rwCRcqQ-rBEKnPs,8393
|
|
164
165
|
maxframe/dataframe/indexing/set_axis.py,sha256=ECRV5rRfbsKAQ90nEZVWCtGyu_0hN8ZPTmWNRGIJ0zo,5724
|
|
165
166
|
maxframe/dataframe/indexing/set_index.py,sha256=XHX9CA0nvPd0War2GTKgr_FKuir_Tiu1bfQ5qz3vBKo,2180
|
|
@@ -173,11 +174,12 @@ maxframe/dataframe/merge/concat.py,sha256=cIlwVguZTWFx6GX5fTZ3YctKNkn9wP72TpbxKR
|
|
|
173
174
|
maxframe/dataframe/merge/merge.py,sha256=2bqjWlpW_EAbeyYhzQo1nKJ3l7DZJoSuxFmTfHej1X4,22231
|
|
174
175
|
maxframe/dataframe/merge/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
175
176
|
maxframe/dataframe/merge/tests/test_merge.py,sha256=Mkk2f_NnxPqtG_2AyeG_Bt-CdY-JOcNuJ9ADCDA30H4,7480
|
|
176
|
-
maxframe/dataframe/misc/__init__.py,sha256=
|
|
177
|
+
maxframe/dataframe/misc/__init__.py,sha256=Lq82VMR4qWhYD1lYTbj8Wr7ndOh0CNATdOtlOikuZRQ,5401
|
|
177
178
|
maxframe/dataframe/misc/_duplicate.py,sha256=EYNv1_sKm14d91Gm4_Buxo7b5Tuy93MOvaq1TTAUkis,1516
|
|
178
179
|
maxframe/dataframe/misc/accessor.py,sha256=XtbMV6QrYb2m9oAd8swkFoKAq5mxj_QO0LVLVw5uJB4,10303
|
|
179
|
-
maxframe/dataframe/misc/apply.py,sha256=
|
|
180
|
+
maxframe/dataframe/misc/apply.py,sha256=HnKJP8EtN8LxALiMaLUp7qrI9dcdj6b7TwXmGe_jV8Y,24058
|
|
180
181
|
maxframe/dataframe/misc/astype.py,sha256=9CO4BEW98Flqk7HHWScjxRK8EdeTRgQDYcyRwEnyIB0,8033
|
|
182
|
+
maxframe/dataframe/misc/case_when.py,sha256=txasRkyfwn2QCEVZ7W0lrI3_ia0PKwBRFBy6TLrQh1I,4992
|
|
181
183
|
maxframe/dataframe/misc/check_monotonic.py,sha256=LDltdmPq90fZn8A0ucqpNy0uswKo2hJx59Y4EHSN9l4,2506
|
|
182
184
|
maxframe/dataframe/misc/cut.py,sha256=dOKWwd1D2CYU9LVQvfonMrD8E2eGeBONZvWN1ArCfMM,14288
|
|
183
185
|
maxframe/dataframe/misc/datetimes.py,sha256=zR99O-8EKKWt4UtNdPI22K8N9mP9XSs9lDQLBPEmFlo,2582
|
|
@@ -194,6 +196,7 @@ maxframe/dataframe/misc/map.py,sha256=NSsQvOFrRvULVHPOfJk3B_tIh2IRU4IE0oOF2qkL4m
|
|
|
194
196
|
maxframe/dataframe/misc/melt.py,sha256=LoqZ45-J8WvXixtFEbEF1UCtZy4-E6loFtVdFghgt0A,5282
|
|
195
197
|
maxframe/dataframe/misc/memory_usage.py,sha256=B_UnQKJW62KQMv2VHlZSjlREFdD6t6qT24x4XTcTTMU,8145
|
|
196
198
|
maxframe/dataframe/misc/pct_change.py,sha256=V4D2MH7b2EmtCHVKwYxX4wcGsuj1EBruwIXlJ5mAZ_c,4736
|
|
199
|
+
maxframe/dataframe/misc/pivot_table.py,sha256=5HmAdczDMJbznFq2omuBKjjib0WvTrohXGwCtHAMwOY,9782
|
|
197
200
|
maxframe/dataframe/misc/qcut.py,sha256=kcYhSf6m47u5zIEPgG98nE3hv57e6uuCuJs_dxpcszE,3841
|
|
198
201
|
maxframe/dataframe/misc/select_dtypes.py,sha256=qsrWW8BNBd-hAT1yIlrnbvBjfbzZyttzch7bxKgRkCg,3248
|
|
199
202
|
maxframe/dataframe/misc/shift.py,sha256=HCGKBuToksgu5LZR_k5eaQrdyrXCeqRZYbZs0J5-N6s,9191
|
|
@@ -204,7 +207,7 @@ maxframe/dataframe/misc/transform.py,sha256=JotPUQzKGhCLRi53sk7USU9HscNjUKCzzus9
|
|
|
204
207
|
maxframe/dataframe/misc/transpose.py,sha256=SsKRuN9Pj36D6kntnsLfzBsFHjSCiV1cZuPJuKHgbGU,3772
|
|
205
208
|
maxframe/dataframe/misc/value_counts.py,sha256=7Yd3ZSrCRDMRX093IlzdsrTJ5UUx0n_lbD5AmXLUr_U,5674
|
|
206
209
|
maxframe/dataframe/misc/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
207
|
-
maxframe/dataframe/misc/tests/test_misc.py,sha256=
|
|
210
|
+
maxframe/dataframe/misc/tests/test_misc.py,sha256=ur4XDSGnwDcS4Kjf8KIiml5MMpBa12jvgjA0f8-bpdY,15610
|
|
208
211
|
maxframe/dataframe/missing/__init__.py,sha256=DQDpYqjvXN6o6TF76wJIpf1fZICOEJskljzwDNjN80k,1866
|
|
209
212
|
maxframe/dataframe/missing/checkna.py,sha256=_Rd-HRX7lTzMV3myu745tzoTB8WIqDIJu2TcT1SfdB0,7113
|
|
210
213
|
maxframe/dataframe/missing/dropna.py,sha256=fJ7xUmhWnViyPnW6nKTF3u2dktqsuwGimSyO71mh0kk,8518
|
|
@@ -213,14 +216,14 @@ maxframe/dataframe/missing/replace.py,sha256=g9KqENIuuaFW33KIFXTClngWcVu2ttrGa28
|
|
|
213
216
|
maxframe/dataframe/missing/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
214
217
|
maxframe/dataframe/missing/tests/test_missing.py,sha256=zhsgn-yonyXYhlFZtH2OpXtvN0NLxFOZpU_vCumTCqA,3223
|
|
215
218
|
maxframe/dataframe/plotting/__init__.py,sha256=FlSQds0Rdv7CXo_PJFWErMO5KccKrxdLJO58h1IL6uk,1433
|
|
216
|
-
maxframe/dataframe/plotting/core.py,sha256=
|
|
219
|
+
maxframe/dataframe/plotting/core.py,sha256=fgMSAJldKXGjRzj_qfN9QK1kaThqnv8wybJHSu8Y4qg,2311
|
|
217
220
|
maxframe/dataframe/plotting/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
218
221
|
maxframe/dataframe/plotting/tests/test_plotting.py,sha256=AZ4-C_ASyt3mD29ytsYa0Ut6gA2028ugCKfP9aLK448,4254
|
|
219
222
|
maxframe/dataframe/reduction/__init__.py,sha256=ejIK5G6ylU0q37XVs_2DkmsnHTtYbE44ffhExNl5Usk,4297
|
|
220
223
|
maxframe/dataframe/reduction/aggregation.py,sha256=-v_jzKAiLGHOmv3MTDgqovfEYLgeJobU3CqaMWKqkRo,12948
|
|
221
224
|
maxframe/dataframe/reduction/all.py,sha256=enpOWffBNXAEgFSaiZm0KPwU3izMvWd7M8smLwZjaeE,2044
|
|
222
225
|
maxframe/dataframe/reduction/any.py,sha256=PensVOfgCcxu7u7-1OuMcD6gov2c2kN01B57O3eoHw8,2048
|
|
223
|
-
maxframe/dataframe/reduction/core.py,sha256=
|
|
226
|
+
maxframe/dataframe/reduction/core.py,sha256=QrZ4R9Q96wk7oaIzRZ2-KrFZcFbsbamZ8uUuQKAWdio,31232
|
|
224
227
|
maxframe/dataframe/reduction/count.py,sha256=YLx9bFb2IdnBIkTyApRad0x1yub6TmqncP6TzGcOL_Q,1800
|
|
225
228
|
maxframe/dataframe/reduction/cummax.py,sha256=S2iUhfBL2lKwFKhFIYMQxlE26pYroEYKG3cqmG0gIAs,1043
|
|
226
229
|
maxframe/dataframe/reduction/cummin.py,sha256=EWz1CUCQoTwxluvvQPtcNxWdIISr3bBaZPttB104Pdc,1043
|
|
@@ -275,15 +278,27 @@ maxframe/dataframe/window/tests/test_expanding.py,sha256=PsFYI6YXxNHYlsyaesy9yIA
|
|
|
275
278
|
maxframe/dataframe/window/tests/test_rolling.py,sha256=eJYHh4MhKm_e9h4bCnK_d_aAYlKGQtFAbZTTEILe6gU,1771
|
|
276
279
|
maxframe/learn/__init__.py,sha256=1QzrFCJmdZFy0Nh1Ng3V6yY_NVvoSUdTIqcU-HIa1wk,649
|
|
277
280
|
maxframe/learn/contrib/__init__.py,sha256=2_AumQELt_0MMsSDS7nwk4Fy0TE807lasVuFvGEv1Lc,649
|
|
281
|
+
maxframe/learn/contrib/utils.py,sha256=e4E-QLr7SAhCBTUX246SBpi9DtRNQAE-xOUxvNnFzZY,1714
|
|
278
282
|
maxframe/learn/contrib/pytorch/__init__.py,sha256=a60NZy-COXEFgyC0uXJRBZGi-Vd9HZcqX62bKAMPKaM,703
|
|
279
283
|
maxframe/learn/contrib/pytorch/run_function.py,sha256=aQQhy2Bc6EEe-NVZb17hK4I9_TqIM1uI3fIMihY3TSQ,3354
|
|
280
284
|
maxframe/learn/contrib/pytorch/run_script.py,sha256=FOBXdJ9Q5QOirGGXq8_XwpwrTpDEmWt45-9n4VR_ixI,3213
|
|
281
285
|
maxframe/learn/contrib/pytorch/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
282
286
|
maxframe/learn/contrib/pytorch/tests/test_pytorch.py,sha256=GHP-oD5uMU8LD90Jt2cHbYRDdM5efjzsjpeBkc3t_qE,1444
|
|
287
|
+
maxframe/learn/contrib/xgboost/__init__.py,sha256=vk9xZO_FUwyVCrcLP1dbEz6JCZQBEHsmhGr1uQ45FAI,925
|
|
288
|
+
maxframe/learn/contrib/xgboost/classifier.py,sha256=DWvQ9_GLg-ZeSFQp6NN5-7_BA9NxkpxEv5WtuodU31o,3022
|
|
289
|
+
maxframe/learn/contrib/xgboost/core.py,sha256=RzGTONv1WgDb0ZXUxzDDkbqepvznAPRyjSgD2N4MdPc,5350
|
|
290
|
+
maxframe/learn/contrib/xgboost/dmatrix.py,sha256=8bCcfJGG84s7sKBNcw4urvwPWqX6mMvEN_KyaL52JxM,5006
|
|
291
|
+
maxframe/learn/contrib/xgboost/predict.py,sha256=FOrLkzjoYjxJZdrisy_bXoRBA8itdGuaP3QDV1hzDl0,4802
|
|
292
|
+
maxframe/learn/contrib/xgboost/regressor.py,sha256=osuNG4N1SILgjL-CodYnM9ODwewaVi4-8tHdfWZWJpg,2610
|
|
293
|
+
maxframe/learn/contrib/xgboost/train.py,sha256=yn2_45hDvuAi4VKkFPR11i38o0mrFaNJ668qBnj2wDI,4079
|
|
294
|
+
maxframe/learn/contrib/xgboost/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
295
|
+
maxframe/learn/contrib/xgboost/tests/test_core.py,sha256=qNSXaB1t1vpoCD6RfpnFjJZHS8ShW9O_uz0ucXXlfpE,1449
|
|
296
|
+
maxframe/learn/utils/__init__.py,sha256=w2_QpDZ9J5BcSgbqu8P2RlkVRWC2gLowfgsaDPtz_Pg,661
|
|
297
|
+
maxframe/learn/utils/core.py,sha256=WNDISxPFsWmjkwHwEvjVGCkAOkIftqzEQFPA_KWr7FY,1058
|
|
283
298
|
maxframe/lib/__init__.py,sha256=_PB28W40qku6YiT8fJYqdmEdRMQfelOwGeksCOZJfCc,657
|
|
284
299
|
maxframe/lib/compression.py,sha256=QQpNK79iUC9zck74I0HKMhapSRnLBXtTRyS91taEVIc,1497
|
|
285
300
|
maxframe/lib/functools_compat.py,sha256=2LTrkSw5i-z5E9XCtZzfg9-0vPrYxicKvDjnnNrAL1Q,2697
|
|
286
|
-
maxframe/lib/mmh3.cp38-win_amd64.pyd,sha256=
|
|
301
|
+
maxframe/lib/mmh3.cp38-win_amd64.pyd,sha256=u5pPoC6TolUkDbkej0ociNhQxP8HV4Kf_x8RFkHGydU,17408
|
|
287
302
|
maxframe/lib/version.py,sha256=VOVZu3KHS53YUsb_vQsT7AyHwcCWAgc-3bBqV5ANcbQ,18941
|
|
288
303
|
maxframe/lib/wrapped_pickle.py,sha256=bzEaokhAZlkjXqw1xfeKO1KX2awhKIz_1RT81yPPoag,3949
|
|
289
304
|
maxframe/lib/aio/__init__.py,sha256=xzIYnV42_7CYuDTTv8svscIXQeJMF0nn8AXMbpv173M,963
|
|
@@ -332,13 +347,13 @@ maxframe/lib/tblib/pickling_support.py,sha256=D9A0eX7gJeyqhXWxJJZ1GRwwcc5lj86wBR
|
|
|
332
347
|
maxframe/lib/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
333
348
|
maxframe/lib/tests/test_wrapped_pickle.py,sha256=WV0EJQ1hTSp8xjuosWWtEO7PeiBqdDUYgStxp72_c94,1575
|
|
334
349
|
maxframe/odpsio/__init__.py,sha256=0SesD04XxFli4Gp23ipMkefFQ2ZTB0PItwZoSHpDC-k,820
|
|
335
|
-
maxframe/odpsio/arrow.py,sha256=
|
|
336
|
-
maxframe/odpsio/schema.py,sha256=
|
|
337
|
-
maxframe/odpsio/tableio.py,sha256=
|
|
350
|
+
maxframe/odpsio/arrow.py,sha256=pFw7aP7u8maEnXXF63VpMbI2qrOvWl78dYWGqHkXuJA,3884
|
|
351
|
+
maxframe/odpsio/schema.py,sha256=Hba-eCXnBUS6NxHRsshaohzO1eThm4HeVzzvAF7E3Vg,12479
|
|
352
|
+
maxframe/odpsio/tableio.py,sha256=ugLy15g2JoCD3GHhCRrH9PT9g9hyKfwrC71qXEVqvB0,10470
|
|
338
353
|
maxframe/odpsio/volumeio.py,sha256=IT_OO-RG2rJZOEx8C8xRr0oNR358RSAJQAp6WGxeXzI,3838
|
|
339
354
|
maxframe/odpsio/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
340
355
|
maxframe/odpsio/tests/test_arrow.py,sha256=yeDWFzsm2IMS-k6jimlQ7uim5T6WW1Anuy8didaf4cs,3194
|
|
341
|
-
maxframe/odpsio/tests/test_schema.py,sha256=
|
|
356
|
+
maxframe/odpsio/tests/test_schema.py,sha256=QekMLBWu98IUN6mCloOxEQU0-7RL5OKzV8EE3A17wfU,12255
|
|
342
357
|
maxframe/odpsio/tests/test_tableio.py,sha256=ZyQxBAVA5GG3j_NOPTTFs5vCQqQywhRKC9OAJx9LJxM,4789
|
|
343
358
|
maxframe/odpsio/tests/test_volumeio.py,sha256=xvnrPZueZ76OAWK2zW_tHHI_cDxo7gJXTHiEe0lkmjk,3112
|
|
344
359
|
maxframe/remote/__init__.py,sha256=Yu1ZDLICbehNfd1ur7_2bnIn2VFIsTxH_cILCbHAeZY,747
|
|
@@ -346,8 +361,9 @@ maxframe/remote/core.py,sha256=w_eTDEs0O7iIzLn1YrMGh2gcNAzzbqV0mx2bRT7su_U,7001
|
|
|
346
361
|
maxframe/remote/run_script.py,sha256=k93-vaFLUanWoBRai4-78DX_SLeZ8_rbbxcCtOIXZO8,3677
|
|
347
362
|
maxframe/serialization/__init__.py,sha256=nxxU7CI6MRcL3sjA1KmLkpTGKA3KG30FKl-MJJ0MCdI,947
|
|
348
363
|
maxframe/serialization/arrow.py,sha256=OMeDjLcPgagqzokG7g3Vhwm6Xw1j-Kph1V2QsIwi6dw,3513
|
|
349
|
-
maxframe/serialization/core.cp38-win_amd64.pyd,sha256=
|
|
364
|
+
maxframe/serialization/core.cp38-win_amd64.pyd,sha256=BVG2UV-67SZuV-KIiKK-xpr5K4L-laPRShAARK9bLTI,397824
|
|
350
365
|
maxframe/serialization/core.pxd,sha256=Fymih3Wo-CrOY27_o_DRINdbRGR7mgiT-XCaXCXafxM,1347
|
|
366
|
+
maxframe/serialization/core.pyi,sha256=uaz1R6oGDZhwqmuUotsySL3T8NlUnnNcGQ6hweAtC20,1983
|
|
351
367
|
maxframe/serialization/core.pyx,sha256=Qmipu3LiJGIBVy_7d4tSJqcYWnG5xj2I7IaPv2PSq5E,35078
|
|
352
368
|
maxframe/serialization/exception.py,sha256=e7bZyPlZ8XhSCdeOwlYreq0HazPXKOgOA6r9Q4Ecn2Y,3113
|
|
353
369
|
maxframe/serialization/maxframe_objects.py,sha256=ZHyvxIALoPuB_y3CRc70hZXyfdj4IhaKMXUEYLXHQag,1404
|
|
@@ -363,7 +379,7 @@ maxframe/serialization/serializables/tests/test_field_type.py,sha256=uG87-bdG8xG
|
|
|
363
379
|
maxframe/serialization/serializables/tests/test_serializable.py,sha256=jnXDfBSNomsEKUKPGd9rCQe8dbOJo7bcFZWvSbEpVsk,8493
|
|
364
380
|
maxframe/serialization/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
365
381
|
maxframe/serialization/tests/test_serial.py,sha256=9G2CbPBHINwcZ038pRwZON_OtH-JVXZ8w66BLYWP578,12923
|
|
366
|
-
maxframe/tensor/__init__.py,sha256=
|
|
382
|
+
maxframe/tensor/__init__.py,sha256=lY_GZBClz2MIGwaMerP2DvbsUbC5crCel_kwkeuiyX4,3702
|
|
367
383
|
maxframe/tensor/array_utils.py,sha256=xr_Ng-4dETJFjsMfWi5gbTPM9mRmPvRWj8QY2WKjmCg,5129
|
|
368
384
|
maxframe/tensor/core.py,sha256=-G-UzY81GTKj2SD9FQLqBg-UDod5LjjrEA-uF16ofms,22638
|
|
369
385
|
maxframe/tensor/operators.py,sha256=8VsSZ8OcImGkSRQvrYlV05KMHGsroAYmW1o9RM2yV1U,3584
|
|
@@ -469,17 +485,19 @@ maxframe/tensor/arithmetic/trunc.py,sha256=3z8jme9ZpPU8TqNo2ioViqJa7ThNK9KOVX1wl
|
|
|
469
485
|
maxframe/tensor/arithmetic/utils.py,sha256=Kc3xqbIK9uRhHhDKFwAj-mW7SRljajfK9UOMyXyCHCY,2304
|
|
470
486
|
maxframe/tensor/arithmetic/tests/__init__.py,sha256=_PB28W40qku6YiT8fJYqdmEdRMQfelOwGeksCOZJfCc,657
|
|
471
487
|
maxframe/tensor/arithmetic/tests/test_arithmetic.py,sha256=e8sc6uYI09to_vzci5Vl8BuTM_oDBi4rQ5sQnQkjer4,11403
|
|
472
|
-
maxframe/tensor/base/__init__.py,sha256=
|
|
488
|
+
maxframe/tensor/base/__init__.py,sha256=qVf97u2J74RSjCmkF-7N-ylxWUc6mbiPPWpDe45vRmQ,1113
|
|
473
489
|
maxframe/tensor/base/astype.py,sha256=fzj0o3pJMVaSEEKMR-JBsd2FktlSa9ABtpt-fcWKio0,4513
|
|
490
|
+
maxframe/tensor/base/atleast_1d.py,sha256=AgFdj7P3nBy6WibI54IPIwfowLHsk2BHfH3bXKVn5rg,1992
|
|
474
491
|
maxframe/tensor/base/broadcast_to.py,sha256=V-OB8YSbMfkMP2JpbiIQ0A9PrC-OHfaWzrntf5AOEwo,2775
|
|
475
492
|
maxframe/tensor/base/ravel.py,sha256=P9SCDU-UUHzd1HqZbodBSgKjtjiOFkyfLV_G9LFnz_U,3265
|
|
476
493
|
maxframe/tensor/base/transpose.py,sha256=yMK1KzxguKZOWxT3oMo5GchjB-1Yakilp2rEX3QlxFM,3539
|
|
494
|
+
maxframe/tensor/base/unique.py,sha256=zzE3w6VAZslTgYx4FDUPQ3bMsBsj-61z0BPY5hPaM6Q,6947
|
|
477
495
|
maxframe/tensor/base/where.py,sha256=cSg1mDhiOBB4F0Soh_uVw3yeSve9pfEhPSIDadc-wto,4127
|
|
478
496
|
maxframe/tensor/base/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
479
497
|
maxframe/tensor/base/tests/test_base.py,sha256=i9TneozyHCHDhO438U285KS6tdh0Zks8mgkRm3fsHxk,2957
|
|
480
498
|
maxframe/tensor/datasource/__init__.py,sha256=xtrdcuP6yTc_T19ITPsJTknoqTT-XudlhSlffrScjsY,1178
|
|
481
499
|
maxframe/tensor/datasource/arange.py,sha256=tjNF_huiWTtqtN6YBBtn0tvP9Pnebf6LNXRmAsYqRQk,5632
|
|
482
|
-
maxframe/tensor/datasource/array.py,sha256=
|
|
500
|
+
maxframe/tensor/datasource/array.py,sha256=pC1eeo4C1EkdHklStr6aOCBfRx1SqyeHHwRglKI2W1A,13419
|
|
483
501
|
maxframe/tensor/datasource/core.py,sha256=LzuHtRWCNny1y-IzGylelWZ6rejS31LdT4E7qs_uIQs,3520
|
|
484
502
|
maxframe/tensor/datasource/empty.py,sha256=GpK-DHUfJp9M46wUrGt5lf-YbDDveubwntDjTVYnmMw,6019
|
|
485
503
|
maxframe/tensor/datasource/from_dataframe.py,sha256=iJY2cw2yA6YKnqRLyB0XdvpdemHHzpU7q2SA1sYo6mo,2573
|
|
@@ -487,7 +505,7 @@ maxframe/tensor/datasource/from_dense.py,sha256=txyxNBD0oXr3Ama9me2ay1_ASuDu1QK3
|
|
|
487
505
|
maxframe/tensor/datasource/from_sparse.py,sha256=le-Wfno7Z8XY71TLwEOhO80fkvKXwKXbDgsrOfmDM8s,1593
|
|
488
506
|
maxframe/tensor/datasource/full.py,sha256=-54C2YwqIEP3rPGsY0rnbgMBp15_NqgDJ7lxOJJuXGU,6462
|
|
489
507
|
maxframe/tensor/datasource/ones.py,sha256=0UuYAwMLGfjF-O_90vkwsMqQlAAfJ98TdxbfgC1y6Fk,5182
|
|
490
|
-
maxframe/tensor/datasource/scalar.py,sha256=
|
|
508
|
+
maxframe/tensor/datasource/scalar.py,sha256=g2dsnmOEzV30I0UK3ytMtkiosdfH3NJ6wacZuxBpmbk,1196
|
|
491
509
|
maxframe/tensor/datasource/zeros.py,sha256=DJZK_kraSn820O17GSHLFHV43x1JL3Gt_HdlN0p5o7k,5860
|
|
492
510
|
maxframe/tensor/datasource/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
493
511
|
maxframe/tensor/datasource/tests/test_datasource.py,sha256=C9sOu8rpDNpu3yMhgln4UzkqW5SklL63IJXRwrwOCYc,7931
|
|
@@ -609,21 +627,21 @@ maxframe/tests/test_utils.py,sha256=0Iey3O6zrGI1yQU2OSpWavJNvhUjrmdkct4-27tkGUM,
|
|
|
609
627
|
maxframe/tests/utils.py,sha256=gCre-8BApU4-AEun9WShm4Ff5a9a_oKxvLNneESXBjU,4732
|
|
610
628
|
maxframe_client/__init__.py,sha256=xqlN69LjvAp2bNCaT9d82U9AF5WKi_c4UOheEW1wV9E,741
|
|
611
629
|
maxframe_client/conftest.py,sha256=UWWMYjmohHL13hLl4adb0gZPLRdBVOYVvsFo6VZruI0,658
|
|
612
|
-
maxframe_client/fetcher.py,sha256=
|
|
630
|
+
maxframe_client/fetcher.py,sha256=yFP6Hgz01-qPqBwmTX5-5ECU-G6q-TX5SUktplcJgcU,9213
|
|
613
631
|
maxframe_client/clients/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
614
632
|
maxframe_client/clients/framedriver.py,sha256=upN6C1eZrCpLTsS6fihWOMy392psWfo0bw2XgSLI_Yg,4581
|
|
615
633
|
maxframe_client/clients/spe.py,sha256=uizNBejhU_FrMhsgsFgDnq7gL7Cxk803LeLYmr3nmxs,3697
|
|
616
634
|
maxframe_client/session/__init__.py,sha256=9zFCd3zkSADESAFc4SPoQ2nkvRwsIhhpNNO2TtSaWbU,854
|
|
617
635
|
maxframe_client/session/consts.py,sha256=nD-D0zHXumbQI8w3aUyltJS59K5ftipf3xCtHNLmtc8,1380
|
|
618
636
|
maxframe_client/session/graph.py,sha256=GSZaJ-PV4DK8bTcNtoSoY5kDTyyIRAKleh4tOCSUbsI,4470
|
|
619
|
-
maxframe_client/session/odps.py,sha256=
|
|
620
|
-
maxframe_client/session/task.py,sha256=
|
|
637
|
+
maxframe_client/session/odps.py,sha256=6OySk4Fo5N5OG_HiuuTxSU5n-UUVYZ0AjTrMzcE-jGY,18008
|
|
638
|
+
maxframe_client/session/task.py,sha256=rY7pXNd_5ixaE3-wSwKTUr2bMPIYwuVAEeia3qY24fk,10445
|
|
621
639
|
maxframe_client/session/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
622
640
|
maxframe_client/session/tests/test_task.py,sha256=861usEURVXeTUzfJYZmBfwsHfZFexG23mMtT5IJOOm4,3364
|
|
623
641
|
maxframe_client/tests/__init__.py,sha256=29eM5D4knhYwe3TF42naTuC5b4Ym3VeH4rK8KpdLWNY,609
|
|
624
642
|
maxframe_client/tests/test_fetcher.py,sha256=7iYXLMIoCJLfgUkjB2HBkV-sqQ-xGlhtzfp9hRJz_kM,3605
|
|
625
|
-
maxframe_client/tests/test_session.py,sha256=
|
|
626
|
-
maxframe-0.1.
|
|
627
|
-
maxframe-0.1.
|
|
628
|
-
maxframe-0.1.
|
|
629
|
-
maxframe-0.1.
|
|
643
|
+
maxframe_client/tests/test_session.py,sha256=M41_lHLjgCSCWTxnDci4UnLeGty-Mi8Vi2SfB32EPcI,8139
|
|
644
|
+
maxframe-0.1.0b5.dist-info/METADATA,sha256=SaNZ5DLD6aoMtuSJ_f-mN1Lfj9zFsB6U9RfZ_1b03uY,3149
|
|
645
|
+
maxframe-0.1.0b5.dist-info/WHEEL,sha256=Wb4yjwIXVKEpht4JWFUZNCzpG7JLBNZnqtK2YNdqLkI,100
|
|
646
|
+
maxframe-0.1.0b5.dist-info/top_level.txt,sha256=64x-fc2q59c_vXwNUkehyjF1vb8JWqFSdYmUqIFqoTM,31
|
|
647
|
+
maxframe-0.1.0b5.dist-info/RECORD,,
|