matrice-streaming 0.1.60__py3-none-any.whl → 0.1.62__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- matrice_streaming/__init__.py +5 -2
- matrice_streaming/streaming_gateway/camera_streamer/__init__.py +26 -2
- matrice_streaming/streaming_gateway/camera_streamer/nvdec.py +961 -0
- matrice_streaming/streaming_gateway/camera_streamer/nvdec_worker_manager.py +380 -0
- matrice_streaming/streaming_gateway/streaming_gateway.py +182 -11
- {matrice_streaming-0.1.60.dist-info → matrice_streaming-0.1.62.dist-info}/METADATA +1 -1
- {matrice_streaming-0.1.60.dist-info → matrice_streaming-0.1.62.dist-info}/RECORD +10 -8
- {matrice_streaming-0.1.60.dist-info → matrice_streaming-0.1.62.dist-info}/WHEEL +0 -0
- {matrice_streaming-0.1.60.dist-info → matrice_streaming-0.1.62.dist-info}/licenses/LICENSE.txt +0 -0
- {matrice_streaming-0.1.60.dist-info → matrice_streaming-0.1.62.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,961 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
"""Streaming Gateway - CUDA IPC Video Producer (NVDEC Hardware Decode).
|
|
3
|
+
|
|
4
|
+
This module implements the producer side of the zero-copy video pipeline
|
|
5
|
+
using NVDEC hardware video decoding for maximum throughput.
|
|
6
|
+
|
|
7
|
+
Architecture:
|
|
8
|
+
=============
|
|
9
|
+
|
|
10
|
+
┌─────────────────────────────────────────────────────────────────────────┐
|
|
11
|
+
│ STREAMING GATEWAY (Producer) │
|
|
12
|
+
├─────────────────────────────────────────────────────────────────────────┤
|
|
13
|
+
│ │
|
|
14
|
+
│ ┌─────────────────────────────────────────────────────────────────┐ │
|
|
15
|
+
│ │ NVDEC Decoder Pool │ │
|
|
16
|
+
│ │ │ │
|
|
17
|
+
│ │ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ │ │
|
|
18
|
+
│ │ │ Decoder 0 │ │ Decoder 1 │ │ Decoder N │ │ │
|
|
19
|
+
│ │ │ │ │ │ │ │ │ │
|
|
20
|
+
│ │ │ NVDEC HW │ │ NVDEC HW │ │ NVDEC HW │ │ │
|
|
21
|
+
│ │ │ decode │ │ decode │ │ decode │ │ │
|
|
22
|
+
│ │ │ ↓ │ │ ↓ │ │ ↓ │ │ │
|
|
23
|
+
│ │ │ NV12 Resize │ │ NV12 Resize │ │ NV12 Resize │ │ │
|
|
24
|
+
│ │ │ ↓ │ │ ↓ │ │ ↓ │ │ │
|
|
25
|
+
│ │ │ CUDA IPC │ │ CUDA IPC │ │ CUDA IPC │ │ │
|
|
26
|
+
│ │ │ Ring Buf │ │ Ring Buf │ │ Ring Buf │ │ │
|
|
27
|
+
│ │ │ (NV12 0.6MB) │ │ (NV12 0.6MB) │ (NV12 0.6MB) │ │ │
|
|
28
|
+
│ │ └────────────────┘ └────────────────┘ └────────────────┘ │ │
|
|
29
|
+
│ │ │ │
|
|
30
|
+
│ └─────────────────────────────────────────────────────────────────┘ │
|
|
31
|
+
│ │ │
|
|
32
|
+
│ Output: NV12 (H*1.5, W) uint8 = 0.6 MB │
|
|
33
|
+
│ 50% less IPC bandwidth than RGB │
|
|
34
|
+
│ ↓ │
|
|
35
|
+
└───────────────────────────────┼─────────────────────────────────────────┘
|
|
36
|
+
│
|
|
37
|
+
Consumer reads via CUDA IPC
|
|
38
|
+
→ NV12→RGB→CHW→FP16 in one kernel
|
|
39
|
+
→ TensorRT inference
|
|
40
|
+
|
|
41
|
+
Usage:
|
|
42
|
+
======
|
|
43
|
+
python streaming_gateway.py --video videoplayback.mp4 --num-streams 100
|
|
44
|
+
|
|
45
|
+
Requirements:
|
|
46
|
+
=============
|
|
47
|
+
- PyNvVideoCodec for NVDEC hardware decode
|
|
48
|
+
- CuPy with CUDA support
|
|
49
|
+
- cuda_shm_ring_buffer module
|
|
50
|
+
"""
|
|
51
|
+
|
|
52
|
+
import argparse
|
|
53
|
+
import logging
|
|
54
|
+
import multiprocessing as mp
|
|
55
|
+
import os
|
|
56
|
+
import time
|
|
57
|
+
import threading
|
|
58
|
+
import queue as thread_queue
|
|
59
|
+
from dataclasses import dataclass
|
|
60
|
+
from typing import Dict, List, Optional, Tuple, Any
|
|
61
|
+
|
|
62
|
+
import numpy as np
|
|
63
|
+
|
|
64
|
+
try:
|
|
65
|
+
import cupy as cp
|
|
66
|
+
CUPY_AVAILABLE = True
|
|
67
|
+
except ImportError:
|
|
68
|
+
CUPY_AVAILABLE = False
|
|
69
|
+
cp = None
|
|
70
|
+
|
|
71
|
+
try:
|
|
72
|
+
import PyNvVideoCodec as nvc
|
|
73
|
+
PYNVCODEC_AVAILABLE = True
|
|
74
|
+
except ImportError:
|
|
75
|
+
PYNVCODEC_AVAILABLE = False
|
|
76
|
+
nvc = None
|
|
77
|
+
|
|
78
|
+
try:
|
|
79
|
+
from matrice_common.stream.cuda_shm_ring_buffer import CudaIpcRingBuffer, GlobalFrameCounter
|
|
80
|
+
RING_BUFFER_AVAILABLE = True
|
|
81
|
+
except ImportError:
|
|
82
|
+
RING_BUFFER_AVAILABLE = False
|
|
83
|
+
|
|
84
|
+
logger = logging.getLogger(__name__)
|
|
85
|
+
|
|
86
|
+
def setup_logging(quiet: bool = True):
|
|
87
|
+
"""Configure logging level based on quiet mode."""
|
|
88
|
+
level = logging.WARNING if quiet else logging.INFO
|
|
89
|
+
logging.basicConfig(
|
|
90
|
+
level=level,
|
|
91
|
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
92
|
+
)
|
|
93
|
+
logging.getLogger('cuda_shm_ring_buffer').setLevel(logging.WARNING if quiet else logging.INFO)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
@dataclass
|
|
97
|
+
class StreamConfig:
|
|
98
|
+
"""Configuration for a single video stream."""
|
|
99
|
+
camera_id: str
|
|
100
|
+
video_path: str
|
|
101
|
+
width: int = 640
|
|
102
|
+
height: int = 640
|
|
103
|
+
target_fps: int = 10
|
|
104
|
+
gpu_id: int = 0
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
@dataclass
|
|
108
|
+
class GatewayConfig:
|
|
109
|
+
"""Configuration for the streaming gateway."""
|
|
110
|
+
video_path: str
|
|
111
|
+
num_streams: int = 100
|
|
112
|
+
target_fps: int = 0 # 0 = unlimited, >0 = FPS limit per stream
|
|
113
|
+
frame_width: int = 640
|
|
114
|
+
frame_height: int = 640
|
|
115
|
+
gpu_id: int = 0
|
|
116
|
+
num_gpus: int = 1
|
|
117
|
+
duration_sec: float = 30.0
|
|
118
|
+
nvdec_pool_size: int = 8
|
|
119
|
+
nvdec_burst_size: int = 4
|
|
120
|
+
num_slots: int = 32
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
@dataclass
|
|
124
|
+
class StreamState:
|
|
125
|
+
"""Track state for each logical stream in NVDEC pool."""
|
|
126
|
+
stream_id: int
|
|
127
|
+
camera_id: str
|
|
128
|
+
video_path: str
|
|
129
|
+
demuxer: Any
|
|
130
|
+
frames_decoded: int = 0
|
|
131
|
+
width: int = 640
|
|
132
|
+
height: int = 640
|
|
133
|
+
empty_packets: int = 0
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
# =============================================================================
|
|
137
|
+
# CUDA Kernel: NV12 Resize (no color conversion - 50% less bandwidth)
|
|
138
|
+
# =============================================================================
|
|
139
|
+
|
|
140
|
+
_nv12_resize_kernel = None
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
def _get_nv12_resize_kernel():
|
|
144
|
+
"""Get or compile the NV12 resize kernel.
|
|
145
|
+
|
|
146
|
+
This kernel resizes NV12 directly (no color conversion).
|
|
147
|
+
Output: concatenated Y (H×W) + UV ((H/2)×W) = H×W×1.5 bytes
|
|
148
|
+
This is 50% smaller than RGB (H×W×3 bytes).
|
|
149
|
+
|
|
150
|
+
Consumer will do: NV12→RGB→CHW→FP16 in one fused kernel.
|
|
151
|
+
"""
|
|
152
|
+
global _nv12_resize_kernel
|
|
153
|
+
if _nv12_resize_kernel is None and CUPY_AVAILABLE:
|
|
154
|
+
_nv12_resize_kernel = cp.RawKernel(r'''
|
|
155
|
+
extern "C" __global__ void nv12_resize(
|
|
156
|
+
const unsigned char* src_y, // Source Y plane
|
|
157
|
+
const unsigned char* src_uv, // Source UV plane (interleaved)
|
|
158
|
+
unsigned char* dst, // Output: Y (H×W) followed by UV ((H/2)×W)
|
|
159
|
+
int src_h, int src_w,
|
|
160
|
+
int dst_h, int dst_w,
|
|
161
|
+
int y_stride, int uv_stride
|
|
162
|
+
) {
|
|
163
|
+
int dst_x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
164
|
+
int dst_y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
165
|
+
|
|
166
|
+
// Total height in output: dst_h (Y) + dst_h/2 (UV) = dst_h * 1.5
|
|
167
|
+
int total_h = dst_h + dst_h / 2;
|
|
168
|
+
if (dst_x >= dst_w || dst_y >= total_h) return;
|
|
169
|
+
|
|
170
|
+
float scale_x = (float)src_w / dst_w;
|
|
171
|
+
float scale_y = (float)src_h / dst_h;
|
|
172
|
+
|
|
173
|
+
if (dst_y < dst_h) {
|
|
174
|
+
// Y plane region: resize Y
|
|
175
|
+
int src_x = min((int)(dst_x * scale_x), src_w - 1);
|
|
176
|
+
int src_y_coord = min((int)(dst_y * scale_y), src_h - 1);
|
|
177
|
+
int src_idx = src_y_coord * y_stride + src_x;
|
|
178
|
+
int dst_idx = dst_y * dst_w + dst_x;
|
|
179
|
+
dst[dst_idx] = src_y[src_idx];
|
|
180
|
+
} else {
|
|
181
|
+
// UV plane region: resize UV (UV is at half vertical resolution)
|
|
182
|
+
int uv_dst_y = dst_y - dst_h; // 0 to dst_h/2-1
|
|
183
|
+
int uv_src_y = min((int)(uv_dst_y * scale_y), src_h / 2 - 1);
|
|
184
|
+
|
|
185
|
+
// UV is interleaved, so we copy pairs (U, V) together
|
|
186
|
+
int src_uv_x = min((int)((dst_x / 2) * 2 * scale_x), src_w - 2);
|
|
187
|
+
src_uv_x = (src_uv_x / 2) * 2; // Ensure even
|
|
188
|
+
|
|
189
|
+
int src_idx = uv_src_y * uv_stride + src_uv_x + (dst_x % 2);
|
|
190
|
+
int dst_idx = dst_h * dst_w + uv_dst_y * dst_w + dst_x;
|
|
191
|
+
dst[dst_idx] = src_uv[src_idx];
|
|
192
|
+
}
|
|
193
|
+
}
|
|
194
|
+
''', 'nv12_resize')
|
|
195
|
+
return _nv12_resize_kernel
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
def nv12_resize(y_plane: cp.ndarray, uv_plane: cp.ndarray,
|
|
199
|
+
y_stride: int, uv_stride: int,
|
|
200
|
+
src_h: int, src_w: int,
|
|
201
|
+
dst_h: int = 640, dst_w: int = 640) -> cp.ndarray:
|
|
202
|
+
"""Resize NV12 without color conversion.
|
|
203
|
+
|
|
204
|
+
Output: concatenated Y (H×W) + UV ((H/2)×W) as single buffer.
|
|
205
|
+
Total size: H×W + (H/2)×W = H×W×1.5 bytes (50% of RGB).
|
|
206
|
+
"""
|
|
207
|
+
kernel = _get_nv12_resize_kernel()
|
|
208
|
+
if kernel is None:
|
|
209
|
+
return None
|
|
210
|
+
|
|
211
|
+
total_h = dst_h + dst_h // 2
|
|
212
|
+
output = cp.empty((total_h, dst_w), dtype=cp.uint8)
|
|
213
|
+
|
|
214
|
+
block = (16, 16)
|
|
215
|
+
grid = ((dst_w + 15) // 16, (total_h + 15) // 16)
|
|
216
|
+
|
|
217
|
+
kernel(grid, block, (
|
|
218
|
+
y_plane, uv_plane, output,
|
|
219
|
+
cp.int32(src_h), cp.int32(src_w),
|
|
220
|
+
cp.int32(dst_h), cp.int32(dst_w),
|
|
221
|
+
cp.int32(y_stride), cp.int32(uv_stride)
|
|
222
|
+
))
|
|
223
|
+
|
|
224
|
+
return output
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
def surface_to_nv12(frame, target_h: int = 640, target_w: int = 640) -> Optional[cp.ndarray]:
|
|
228
|
+
"""Convert NVDEC surface to resized NV12 (50% smaller than RGB).
|
|
229
|
+
|
|
230
|
+
Output: (H + H/2, W) uint8 - concatenated Y + UV planes.
|
|
231
|
+
Total size: H×W×1.5 bytes (vs H×W×3 for RGB).
|
|
232
|
+
"""
|
|
233
|
+
if not CUPY_AVAILABLE or frame is None:
|
|
234
|
+
return None
|
|
235
|
+
|
|
236
|
+
try:
|
|
237
|
+
cuda_views = frame.cuda()
|
|
238
|
+
if not cuda_views or len(cuda_views) < 2:
|
|
239
|
+
return None
|
|
240
|
+
|
|
241
|
+
# Extract Y plane
|
|
242
|
+
y_view = cuda_views[0]
|
|
243
|
+
y_cai = y_view.__cuda_array_interface__
|
|
244
|
+
y_shape = tuple(y_cai['shape'])
|
|
245
|
+
y_strides = tuple(y_cai['strides'])
|
|
246
|
+
y_ptr = y_cai['data'][0]
|
|
247
|
+
src_h, src_w = y_shape[:2]
|
|
248
|
+
y_stride = y_strides[0]
|
|
249
|
+
|
|
250
|
+
y_size = src_h * y_stride
|
|
251
|
+
y_mem = cp.cuda.UnownedMemory(y_ptr, y_size, owner=frame)
|
|
252
|
+
y_memptr = cp.cuda.MemoryPointer(y_mem, 0)
|
|
253
|
+
y_plane = cp.ndarray((src_h, src_w), dtype=cp.uint8, memptr=y_memptr,
|
|
254
|
+
strides=(y_stride, 1))
|
|
255
|
+
|
|
256
|
+
# Extract UV plane
|
|
257
|
+
uv_view = cuda_views[1]
|
|
258
|
+
uv_cai = uv_view.__cuda_array_interface__
|
|
259
|
+
uv_shape = tuple(uv_cai['shape'])
|
|
260
|
+
uv_strides = tuple(uv_cai['strides'])
|
|
261
|
+
uv_ptr = uv_cai['data'][0]
|
|
262
|
+
uv_stride = uv_strides[0]
|
|
263
|
+
|
|
264
|
+
uv_h = uv_shape[0]
|
|
265
|
+
uv_w = uv_shape[1] if len(uv_shape) > 1 else src_w
|
|
266
|
+
uv_size = uv_h * uv_stride
|
|
267
|
+
uv_mem = cp.cuda.UnownedMemory(uv_ptr, uv_size, owner=frame)
|
|
268
|
+
uv_memptr = cp.cuda.MemoryPointer(uv_mem, 0)
|
|
269
|
+
uv_plane = cp.ndarray((uv_h, uv_w), dtype=cp.uint8, memptr=uv_memptr,
|
|
270
|
+
strides=(uv_stride, 1))
|
|
271
|
+
|
|
272
|
+
# NV12 resize (no color conversion - 50% smaller output!)
|
|
273
|
+
nv12_frame = nv12_resize(y_plane, uv_plane, y_stride, uv_stride,
|
|
274
|
+
src_h, src_w, target_h, target_w)
|
|
275
|
+
# Add channel dimension for ring buffer compatibility: (H*1.5, W) -> (H*1.5, W, 1)
|
|
276
|
+
return nv12_frame[:, :, cp.newaxis] if nv12_frame is not None else None
|
|
277
|
+
|
|
278
|
+
except Exception as e:
|
|
279
|
+
logger.warning(f"surface_to_nv12 failed: {e}")
|
|
280
|
+
return None
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
# =============================================================================
|
|
284
|
+
# NVDEC Decoder Pool
|
|
285
|
+
# =============================================================================
|
|
286
|
+
|
|
287
|
+
class NVDECDecoderPool:
|
|
288
|
+
"""Pool of NVDEC decoders that time-multiplex streams.
|
|
289
|
+
|
|
290
|
+
Each decoder is exclusively owned by one worker thread.
|
|
291
|
+
Outputs NV12: 1.5×H×W bytes (50% smaller than RGB).
|
|
292
|
+
"""
|
|
293
|
+
|
|
294
|
+
def __init__(self, pool_size: int, gpu_id: int = 0):
|
|
295
|
+
self.pool_size = pool_size
|
|
296
|
+
self.gpu_id = gpu_id
|
|
297
|
+
self.decoders = []
|
|
298
|
+
self.streams_per_decoder: List[List[StreamState]] = [[] for _ in range(pool_size)]
|
|
299
|
+
|
|
300
|
+
if not PYNVCODEC_AVAILABLE:
|
|
301
|
+
raise RuntimeError("PyNvVideoCodec not available")
|
|
302
|
+
|
|
303
|
+
if CUPY_AVAILABLE:
|
|
304
|
+
cp.cuda.Device(gpu_id).use()
|
|
305
|
+
|
|
306
|
+
for i in range(pool_size):
|
|
307
|
+
try:
|
|
308
|
+
decoder = nvc.CreateDecoder(
|
|
309
|
+
gpuid=gpu_id,
|
|
310
|
+
codec=nvc.cudaVideoCodec.H264,
|
|
311
|
+
usedevicememory=True
|
|
312
|
+
)
|
|
313
|
+
self.decoders.append(decoder)
|
|
314
|
+
except Exception as e:
|
|
315
|
+
logger.warning(f"Failed to create decoder {i}: {e}")
|
|
316
|
+
break
|
|
317
|
+
|
|
318
|
+
self.actual_pool_size = len(self.decoders)
|
|
319
|
+
logger.info(f"Created NVDEC pool: {self.actual_pool_size}/{pool_size} decoders on GPU {gpu_id}")
|
|
320
|
+
|
|
321
|
+
def assign_stream(self, stream_id: int, camera_id: str, video_path: str,
|
|
322
|
+
width: int = 640, height: int = 640) -> bool:
|
|
323
|
+
"""Assign a stream to a decoder (round-robin)."""
|
|
324
|
+
if self.actual_pool_size == 0:
|
|
325
|
+
return False
|
|
326
|
+
|
|
327
|
+
decoder_idx = stream_id % self.actual_pool_size
|
|
328
|
+
try:
|
|
329
|
+
demuxer = nvc.CreateDemuxer(video_path)
|
|
330
|
+
except Exception as e:
|
|
331
|
+
logger.error(f"Failed to create demuxer for {camera_id}: {e}")
|
|
332
|
+
return False
|
|
333
|
+
|
|
334
|
+
stream_state = StreamState(
|
|
335
|
+
stream_id=stream_id,
|
|
336
|
+
camera_id=camera_id,
|
|
337
|
+
video_path=video_path,
|
|
338
|
+
demuxer=demuxer,
|
|
339
|
+
width=width,
|
|
340
|
+
height=height
|
|
341
|
+
)
|
|
342
|
+
self.streams_per_decoder[decoder_idx].append(stream_state)
|
|
343
|
+
return True
|
|
344
|
+
|
|
345
|
+
def decode_round(self, decoder_idx: int, frames_per_stream: int = 4,
|
|
346
|
+
target_h: int = 640, target_w: int = 640) -> Tuple[int, List[Tuple[str, cp.ndarray]]]:
|
|
347
|
+
"""Decode frames and convert to NV12.
|
|
348
|
+
|
|
349
|
+
Returns:
|
|
350
|
+
(total_frames, [(camera_id, nv12_tensor), ...])
|
|
351
|
+
"""
|
|
352
|
+
if decoder_idx >= self.actual_pool_size:
|
|
353
|
+
return 0, []
|
|
354
|
+
|
|
355
|
+
decoder = self.decoders[decoder_idx]
|
|
356
|
+
streams = self.streams_per_decoder[decoder_idx]
|
|
357
|
+
total_frames = 0
|
|
358
|
+
decoded_frames = []
|
|
359
|
+
|
|
360
|
+
for stream in streams:
|
|
361
|
+
frames_this_stream = 0
|
|
362
|
+
|
|
363
|
+
while frames_this_stream < frames_per_stream:
|
|
364
|
+
try:
|
|
365
|
+
packet = stream.demuxer.Demux()
|
|
366
|
+
if packet is None:
|
|
367
|
+
stream.demuxer = nvc.CreateDemuxer(stream.video_path)
|
|
368
|
+
stream.empty_packets = 0
|
|
369
|
+
packet = stream.demuxer.Demux()
|
|
370
|
+
if packet is None:
|
|
371
|
+
break
|
|
372
|
+
|
|
373
|
+
frames_before = frames_this_stream
|
|
374
|
+
for surface in decoder.Decode(packet):
|
|
375
|
+
tensor = surface_to_nv12(surface, target_h, target_w)
|
|
376
|
+
|
|
377
|
+
if tensor is not None:
|
|
378
|
+
decoded_frames.append((stream.camera_id, tensor))
|
|
379
|
+
frames_this_stream += 1
|
|
380
|
+
stream.frames_decoded += 1
|
|
381
|
+
total_frames += 1
|
|
382
|
+
stream.empty_packets = 0
|
|
383
|
+
|
|
384
|
+
if frames_this_stream >= frames_per_stream:
|
|
385
|
+
break
|
|
386
|
+
|
|
387
|
+
if frames_this_stream == frames_before:
|
|
388
|
+
stream.empty_packets += 1
|
|
389
|
+
if stream.empty_packets >= 3:
|
|
390
|
+
stream.demuxer = nvc.CreateDemuxer(stream.video_path)
|
|
391
|
+
stream.empty_packets = 0
|
|
392
|
+
|
|
393
|
+
except Exception:
|
|
394
|
+
break
|
|
395
|
+
|
|
396
|
+
if frames_this_stream >= frames_per_stream:
|
|
397
|
+
break
|
|
398
|
+
|
|
399
|
+
return total_frames, decoded_frames
|
|
400
|
+
|
|
401
|
+
def get_camera_ids_for_decoder(self, decoder_idx: int) -> List[str]:
|
|
402
|
+
"""Get camera IDs for a decoder."""
|
|
403
|
+
if decoder_idx >= self.actual_pool_size:
|
|
404
|
+
return []
|
|
405
|
+
return [s.camera_id for s in self.streams_per_decoder[decoder_idx]]
|
|
406
|
+
|
|
407
|
+
def close(self):
|
|
408
|
+
"""Close all decoders."""
|
|
409
|
+
self.decoders.clear()
|
|
410
|
+
for streams in self.streams_per_decoder:
|
|
411
|
+
streams.clear()
|
|
412
|
+
|
|
413
|
+
|
|
414
|
+
# =============================================================================
|
|
415
|
+
# Worker Thread
|
|
416
|
+
# =============================================================================
|
|
417
|
+
|
|
418
|
+
def nvdec_pool_worker(
|
|
419
|
+
worker_id: int,
|
|
420
|
+
decoder_idx: int,
|
|
421
|
+
pool: NVDECDecoderPool,
|
|
422
|
+
ring_buffers: Dict[str, CudaIpcRingBuffer],
|
|
423
|
+
frame_counter: GlobalFrameCounter,
|
|
424
|
+
duration_sec: float,
|
|
425
|
+
result_queue: thread_queue.Queue,
|
|
426
|
+
stop_event: threading.Event,
|
|
427
|
+
burst_size: int = 4,
|
|
428
|
+
target_h: int = 640,
|
|
429
|
+
target_w: int = 640,
|
|
430
|
+
target_fps: int = 0,
|
|
431
|
+
shared_frame_count: Optional[mp.Value] = None,
|
|
432
|
+
):
|
|
433
|
+
"""NVDEC worker thread.
|
|
434
|
+
|
|
435
|
+
Decodes frames and writes NV12 tensors to ring buffers.
|
|
436
|
+
Uses dedicated CUDA stream per worker for kernel overlap.
|
|
437
|
+
Supports FPS limiting when target_fps > 0.
|
|
438
|
+
"""
|
|
439
|
+
if CUPY_AVAILABLE:
|
|
440
|
+
cp.cuda.Device(pool.gpu_id).use()
|
|
441
|
+
cuda_stream = cp.cuda.Stream(non_blocking=True)
|
|
442
|
+
else:
|
|
443
|
+
cuda_stream = None
|
|
444
|
+
|
|
445
|
+
local_frames = 0
|
|
446
|
+
local_errors = 0
|
|
447
|
+
frames_since_counter_update = 0
|
|
448
|
+
counter_batch_size = 100
|
|
449
|
+
start_time = time.perf_counter()
|
|
450
|
+
last_log_time = start_time
|
|
451
|
+
camera_ids = pool.get_camera_ids_for_decoder(decoder_idx)
|
|
452
|
+
num_streams = len(camera_ids)
|
|
453
|
+
|
|
454
|
+
# FPS limiting: calculate frames per second target for this worker
|
|
455
|
+
# Each worker handles num_streams cameras at target_fps each
|
|
456
|
+
fps_limit_enabled = target_fps > 0 and num_streams > 0
|
|
457
|
+
if fps_limit_enabled:
|
|
458
|
+
# Total target frames per second for all streams handled by this worker
|
|
459
|
+
worker_target_fps = target_fps * num_streams
|
|
460
|
+
frame_interval = 1.0 / worker_target_fps
|
|
461
|
+
next_frame_time = start_time
|
|
462
|
+
fps_mode = f", FPS limit={target_fps}/stream"
|
|
463
|
+
else:
|
|
464
|
+
frame_interval = 0
|
|
465
|
+
next_frame_time = 0
|
|
466
|
+
fps_mode = ", unlimited FPS"
|
|
467
|
+
|
|
468
|
+
logger.info(f"Worker {worker_id}: decoder={decoder_idx}, cams={num_streams}{fps_mode}")
|
|
469
|
+
|
|
470
|
+
while not stop_event.is_set():
|
|
471
|
+
if time.perf_counter() - start_time >= duration_sec:
|
|
472
|
+
break
|
|
473
|
+
|
|
474
|
+
now = time.perf_counter()
|
|
475
|
+
if now - last_log_time >= 5.0:
|
|
476
|
+
elapsed = now - start_time
|
|
477
|
+
fps = local_frames / elapsed if elapsed > 0 else 0
|
|
478
|
+
logger.info(f"Worker {worker_id}: {local_frames} frames, {fps:.0f} FPS")
|
|
479
|
+
last_log_time = now
|
|
480
|
+
|
|
481
|
+
# FPS limiting: wait until next scheduled frame time
|
|
482
|
+
if fps_limit_enabled:
|
|
483
|
+
current_time = time.perf_counter()
|
|
484
|
+
if current_time < next_frame_time:
|
|
485
|
+
sleep_time = next_frame_time - current_time
|
|
486
|
+
if sleep_time > 0.0001: # Only sleep if > 100us
|
|
487
|
+
time.sleep(sleep_time)
|
|
488
|
+
|
|
489
|
+
try:
|
|
490
|
+
with cuda_stream:
|
|
491
|
+
num_frames, decoded_frames = pool.decode_round(
|
|
492
|
+
decoder_idx,
|
|
493
|
+
frames_per_stream=burst_size,
|
|
494
|
+
target_h=target_h,
|
|
495
|
+
target_w=target_w
|
|
496
|
+
)
|
|
497
|
+
|
|
498
|
+
for cam_id, tensor in decoded_frames:
|
|
499
|
+
if cam_id in ring_buffers:
|
|
500
|
+
try:
|
|
501
|
+
ring_buffers[cam_id].write_frame_fast(tensor, sync=False)
|
|
502
|
+
local_frames += 1
|
|
503
|
+
frames_since_counter_update += 1
|
|
504
|
+
|
|
505
|
+
# Update shared counter for real-time progress
|
|
506
|
+
if shared_frame_count is not None:
|
|
507
|
+
with shared_frame_count.get_lock():
|
|
508
|
+
shared_frame_count.value += 1
|
|
509
|
+
|
|
510
|
+
# Update next frame time for FPS limiting
|
|
511
|
+
if fps_limit_enabled:
|
|
512
|
+
next_frame_time += frame_interval
|
|
513
|
+
|
|
514
|
+
except Exception as e:
|
|
515
|
+
local_errors += 1
|
|
516
|
+
if local_errors <= 3:
|
|
517
|
+
logger.error(f"Worker {worker_id} write error: {e}")
|
|
518
|
+
|
|
519
|
+
if decoded_frames and len(ring_buffers) > 0:
|
|
520
|
+
next(iter(ring_buffers.values())).sync_writes()
|
|
521
|
+
|
|
522
|
+
if num_frames == 0:
|
|
523
|
+
time.sleep(0.0001)
|
|
524
|
+
continue
|
|
525
|
+
|
|
526
|
+
if frames_since_counter_update >= counter_batch_size:
|
|
527
|
+
frame_counter.increment()
|
|
528
|
+
frames_since_counter_update = 0
|
|
529
|
+
|
|
530
|
+
except Exception as e:
|
|
531
|
+
local_errors += 1
|
|
532
|
+
if local_errors <= 3:
|
|
533
|
+
logger.error(f"Worker {worker_id} error: {e}")
|
|
534
|
+
|
|
535
|
+
if frames_since_counter_update > 0:
|
|
536
|
+
frame_counter.increment()
|
|
537
|
+
|
|
538
|
+
elapsed = time.perf_counter() - start_time
|
|
539
|
+
result_queue.put({
|
|
540
|
+
"worker_id": worker_id,
|
|
541
|
+
"decoder_idx": decoder_idx,
|
|
542
|
+
"elapsed_sec": elapsed,
|
|
543
|
+
"total_frames": local_frames,
|
|
544
|
+
"total_errors": local_errors,
|
|
545
|
+
"num_streams": len(camera_ids),
|
|
546
|
+
"fps": local_frames / elapsed if elapsed > 0 else 0,
|
|
547
|
+
})
|
|
548
|
+
|
|
549
|
+
|
|
550
|
+
# =============================================================================
|
|
551
|
+
# GPU Process
|
|
552
|
+
# =============================================================================
|
|
553
|
+
|
|
554
|
+
def nvdec_pool_process(
|
|
555
|
+
process_id: int,
|
|
556
|
+
camera_configs: List[StreamConfig],
|
|
557
|
+
pool_size: int,
|
|
558
|
+
duration_sec: float,
|
|
559
|
+
result_queue: mp.Queue,
|
|
560
|
+
stop_event: mp.Event,
|
|
561
|
+
burst_size: int = 4,
|
|
562
|
+
num_slots: int = 32,
|
|
563
|
+
target_fps: int = 0,
|
|
564
|
+
shared_frame_count: Optional[mp.Value] = None,
|
|
565
|
+
):
|
|
566
|
+
"""NVDEC process for one GPU.
|
|
567
|
+
|
|
568
|
+
Creates NV12 ring buffers: (H*1.5, W) = 0.6 MB/frame.
|
|
569
|
+
"""
|
|
570
|
+
if not camera_configs:
|
|
571
|
+
return
|
|
572
|
+
|
|
573
|
+
gpu_id = camera_configs[0].gpu_id
|
|
574
|
+
target_h = camera_configs[0].height
|
|
575
|
+
target_w = camera_configs[0].width
|
|
576
|
+
|
|
577
|
+
if CUPY_AVAILABLE:
|
|
578
|
+
cp.cuda.Device(gpu_id).use()
|
|
579
|
+
|
|
580
|
+
# Initialize global frame counter
|
|
581
|
+
frame_counter = GlobalFrameCounter(is_producer=True)
|
|
582
|
+
if process_id == 0:
|
|
583
|
+
frame_counter.initialize()
|
|
584
|
+
logger.info(f"Process {process_id}: GlobalFrameCounter initialized")
|
|
585
|
+
else:
|
|
586
|
+
max_retries = 50
|
|
587
|
+
for retry in range(max_retries):
|
|
588
|
+
try:
|
|
589
|
+
if os.path.exists("/dev/shm/global_frame_counter"):
|
|
590
|
+
frame_counter.connect()
|
|
591
|
+
logger.info(f"Process {process_id}: Connected to GlobalFrameCounter")
|
|
592
|
+
break
|
|
593
|
+
except Exception:
|
|
594
|
+
if retry == max_retries - 1:
|
|
595
|
+
raise
|
|
596
|
+
time.sleep(0.1)
|
|
597
|
+
else:
|
|
598
|
+
raise RuntimeError(f"Process {process_id}: GlobalFrameCounter not found")
|
|
599
|
+
|
|
600
|
+
# Create decoder pool
|
|
601
|
+
try:
|
|
602
|
+
pool = NVDECDecoderPool(pool_size, gpu_id)
|
|
603
|
+
except Exception as e:
|
|
604
|
+
logger.error(f"Process {process_id}: Failed to create decoder pool: {e}")
|
|
605
|
+
result_queue.put({
|
|
606
|
+
"process_id": process_id,
|
|
607
|
+
"error": str(e),
|
|
608
|
+
"total_frames": 0,
|
|
609
|
+
"total_errors": 1,
|
|
610
|
+
})
|
|
611
|
+
return
|
|
612
|
+
|
|
613
|
+
if pool.actual_pool_size == 0:
|
|
614
|
+
result_queue.put({
|
|
615
|
+
"process_id": process_id,
|
|
616
|
+
"error": "No decoders created",
|
|
617
|
+
"total_frames": 0,
|
|
618
|
+
"total_errors": 1,
|
|
619
|
+
})
|
|
620
|
+
return
|
|
621
|
+
|
|
622
|
+
# Create NV12 ring buffers: (H + H/2, W, 1) = 0.6 MB/frame
|
|
623
|
+
ring_buffers: Dict[str, CudaIpcRingBuffer] = {}
|
|
624
|
+
frame_size_mb = target_h * target_w * 1.5 / 1e6
|
|
625
|
+
|
|
626
|
+
try:
|
|
627
|
+
for i, config in enumerate(camera_configs):
|
|
628
|
+
rb = CudaIpcRingBuffer.create_producer(
|
|
629
|
+
config.camera_id,
|
|
630
|
+
gpu_id=config.gpu_id,
|
|
631
|
+
num_slots=num_slots,
|
|
632
|
+
width=config.width,
|
|
633
|
+
height=config.height + config.height // 2, # H * 1.5 for NV12
|
|
634
|
+
channels=1,
|
|
635
|
+
)
|
|
636
|
+
ring_buffers[config.camera_id] = rb
|
|
637
|
+
|
|
638
|
+
pool.assign_stream(
|
|
639
|
+
stream_id=i,
|
|
640
|
+
camera_id=config.camera_id,
|
|
641
|
+
video_path=config.video_path,
|
|
642
|
+
width=config.width,
|
|
643
|
+
height=config.height
|
|
644
|
+
)
|
|
645
|
+
|
|
646
|
+
logger.info(f"Process {process_id}: {pool.actual_pool_size} decoders, "
|
|
647
|
+
f"{len(camera_configs)} streams, NV12 ({frame_size_mb:.1f} MB/frame)")
|
|
648
|
+
|
|
649
|
+
thread_stop_event = threading.Event()
|
|
650
|
+
thread_result_queue = thread_queue.Queue()
|
|
651
|
+
|
|
652
|
+
threads = []
|
|
653
|
+
for decoder_idx in range(pool.actual_pool_size):
|
|
654
|
+
t = threading.Thread(
|
|
655
|
+
target=nvdec_pool_worker,
|
|
656
|
+
args=(
|
|
657
|
+
process_id * 100 + decoder_idx,
|
|
658
|
+
decoder_idx,
|
|
659
|
+
pool,
|
|
660
|
+
ring_buffers,
|
|
661
|
+
frame_counter,
|
|
662
|
+
duration_sec,
|
|
663
|
+
thread_result_queue,
|
|
664
|
+
thread_stop_event,
|
|
665
|
+
burst_size,
|
|
666
|
+
target_h,
|
|
667
|
+
target_w,
|
|
668
|
+
target_fps,
|
|
669
|
+
shared_frame_count,
|
|
670
|
+
)
|
|
671
|
+
)
|
|
672
|
+
t.start()
|
|
673
|
+
threads.append(t)
|
|
674
|
+
|
|
675
|
+
start_time = time.perf_counter()
|
|
676
|
+
while not stop_event.is_set():
|
|
677
|
+
if time.perf_counter() - start_time >= duration_sec:
|
|
678
|
+
break
|
|
679
|
+
time.sleep(0.1)
|
|
680
|
+
|
|
681
|
+
thread_stop_event.set()
|
|
682
|
+
|
|
683
|
+
for t in threads:
|
|
684
|
+
t.join(timeout=30.0)
|
|
685
|
+
|
|
686
|
+
total_frames = 0
|
|
687
|
+
total_errors = 0
|
|
688
|
+
elapsed = time.perf_counter() - start_time
|
|
689
|
+
|
|
690
|
+
while not thread_result_queue.empty():
|
|
691
|
+
try:
|
|
692
|
+
r = thread_result_queue.get_nowait()
|
|
693
|
+
total_frames += r.get("total_frames", 0)
|
|
694
|
+
total_errors += r.get("total_errors", 0)
|
|
695
|
+
except:
|
|
696
|
+
break
|
|
697
|
+
|
|
698
|
+
pool.close()
|
|
699
|
+
for rb in ring_buffers.values():
|
|
700
|
+
rb.close()
|
|
701
|
+
|
|
702
|
+
result_queue.put({
|
|
703
|
+
"process_id": process_id,
|
|
704
|
+
"elapsed_sec": elapsed,
|
|
705
|
+
"total_frames": total_frames,
|
|
706
|
+
"total_errors": total_errors,
|
|
707
|
+
"num_streams": len(camera_configs),
|
|
708
|
+
"pool_size": pool.actual_pool_size,
|
|
709
|
+
"fps": total_frames / elapsed if elapsed > 0 else 0,
|
|
710
|
+
"per_stream_fps": total_frames / elapsed / len(camera_configs) if elapsed > 0 and camera_configs else 0,
|
|
711
|
+
})
|
|
712
|
+
|
|
713
|
+
except Exception as e:
|
|
714
|
+
logger.error(f"Process {process_id} error: {e}")
|
|
715
|
+
import traceback
|
|
716
|
+
traceback.print_exc()
|
|
717
|
+
|
|
718
|
+
pool.close()
|
|
719
|
+
for rb in ring_buffers.values():
|
|
720
|
+
rb.close()
|
|
721
|
+
|
|
722
|
+
result_queue.put({
|
|
723
|
+
"process_id": process_id,
|
|
724
|
+
"error": str(e),
|
|
725
|
+
"total_frames": 0,
|
|
726
|
+
"total_errors": 1,
|
|
727
|
+
})
|
|
728
|
+
|
|
729
|
+
|
|
730
|
+
# =============================================================================
|
|
731
|
+
# Streaming Gateway
|
|
732
|
+
# =============================================================================
|
|
733
|
+
|
|
734
|
+
class StreamingGateway:
|
|
735
|
+
"""Multi-stream video producer outputting NV12 tensors (minimal IPC payload)."""
|
|
736
|
+
|
|
737
|
+
def __init__(self, config: GatewayConfig):
|
|
738
|
+
self.config = config
|
|
739
|
+
self._workers: List[mp.Process] = []
|
|
740
|
+
self._stop_event = mp.Event()
|
|
741
|
+
self._result_queue = mp.Queue()
|
|
742
|
+
|
|
743
|
+
def start(self) -> Dict:
|
|
744
|
+
"""Start the gateway."""
|
|
745
|
+
if not CUPY_AVAILABLE:
|
|
746
|
+
raise RuntimeError("CuPy is required")
|
|
747
|
+
if not RING_BUFFER_AVAILABLE:
|
|
748
|
+
raise RuntimeError("CUDA IPC ring buffer not available")
|
|
749
|
+
if not PYNVCODEC_AVAILABLE:
|
|
750
|
+
raise RuntimeError("PyNvVideoCodec required")
|
|
751
|
+
return self._start_nvdec_pool()
|
|
752
|
+
|
|
753
|
+
def _start_nvdec_pool(self) -> Dict:
|
|
754
|
+
"""Start NVDEC pool across GPUs."""
|
|
755
|
+
num_gpus = min(self.config.num_gpus, 8)
|
|
756
|
+
streams_per_gpu = self.config.num_streams // num_gpus
|
|
757
|
+
extra_streams = self.config.num_streams % num_gpus
|
|
758
|
+
|
|
759
|
+
logger.info(f"Starting NVDEC on {num_gpus} GPU(s): {self.config.num_streams} streams, "
|
|
760
|
+
f"pool_size={self.config.nvdec_pool_size}/GPU, output=NV12 (0.6 MB)")
|
|
761
|
+
|
|
762
|
+
ctx = mp.get_context("spawn")
|
|
763
|
+
self._stop_event = ctx.Event()
|
|
764
|
+
self._result_queue = ctx.Queue()
|
|
765
|
+
|
|
766
|
+
# Shared counter for real-time FPS tracking (use 'L' for large counts)
|
|
767
|
+
shared_frame_count = ctx.Value('L', 0)
|
|
768
|
+
|
|
769
|
+
stream_idx = 0
|
|
770
|
+
for gpu_id in range(num_gpus):
|
|
771
|
+
n_streams = streams_per_gpu + (1 if gpu_id < extra_streams else 0)
|
|
772
|
+
|
|
773
|
+
gpu_configs = []
|
|
774
|
+
for i in range(n_streams):
|
|
775
|
+
config = StreamConfig(
|
|
776
|
+
camera_id=f"cam_{stream_idx:04d}",
|
|
777
|
+
video_path=self.config.video_path,
|
|
778
|
+
width=self.config.frame_width,
|
|
779
|
+
height=self.config.frame_height,
|
|
780
|
+
target_fps=self.config.target_fps,
|
|
781
|
+
gpu_id=gpu_id,
|
|
782
|
+
)
|
|
783
|
+
gpu_configs.append(config)
|
|
784
|
+
stream_idx += 1
|
|
785
|
+
|
|
786
|
+
p = ctx.Process(
|
|
787
|
+
target=nvdec_pool_process,
|
|
788
|
+
args=(gpu_id, gpu_configs, self.config.nvdec_pool_size,
|
|
789
|
+
self.config.duration_sec, self._result_queue, self._stop_event,
|
|
790
|
+
self.config.nvdec_burst_size, self.config.num_slots,
|
|
791
|
+
self.config.target_fps, shared_frame_count)
|
|
792
|
+
)
|
|
793
|
+
p.start()
|
|
794
|
+
self._workers.append(p)
|
|
795
|
+
logger.info(f"GPU {gpu_id}: {n_streams} streams")
|
|
796
|
+
time.sleep(0.1)
|
|
797
|
+
|
|
798
|
+
# Progress monitoring loop - print progress every 5 seconds
|
|
799
|
+
start_time = time.perf_counter()
|
|
800
|
+
last_report_time = start_time
|
|
801
|
+
last_frame_count = 0
|
|
802
|
+
report_interval = 5.0 # seconds
|
|
803
|
+
processing_start_time = None # Track when actual processing starts
|
|
804
|
+
frames_at_processing_start = 0
|
|
805
|
+
|
|
806
|
+
print(f" [ 0.0s] Started {num_gpus} GPU workers...")
|
|
807
|
+
|
|
808
|
+
while any(p.is_alive() for p in self._workers):
|
|
809
|
+
time.sleep(0.5)
|
|
810
|
+
current_time = time.perf_counter()
|
|
811
|
+
|
|
812
|
+
# Periodic progress report with real-time FPS
|
|
813
|
+
if current_time - last_report_time >= report_interval:
|
|
814
|
+
elapsed = current_time - start_time
|
|
815
|
+
remaining = max(0, self.config.duration_sec - elapsed)
|
|
816
|
+
|
|
817
|
+
# Read current frame count
|
|
818
|
+
current_frames = shared_frame_count.value
|
|
819
|
+
interval_frames = current_frames - last_frame_count
|
|
820
|
+
interval_fps = interval_frames / report_interval # Current throughput
|
|
821
|
+
per_stream_fps = interval_fps / self.config.num_streams if self.config.num_streams > 0 else 0
|
|
822
|
+
|
|
823
|
+
# Track when processing actually starts (exclude warmup from avg)
|
|
824
|
+
if processing_start_time is None and current_frames > 0:
|
|
825
|
+
processing_start_time = last_report_time # Use previous report time
|
|
826
|
+
frames_at_processing_start = last_frame_count
|
|
827
|
+
|
|
828
|
+
# Calculate average FPS excluding warmup time
|
|
829
|
+
if processing_start_time is not None:
|
|
830
|
+
processing_elapsed = current_time - processing_start_time
|
|
831
|
+
processing_frames = current_frames - frames_at_processing_start
|
|
832
|
+
avg_fps = processing_frames / processing_elapsed if processing_elapsed > 0 else 0
|
|
833
|
+
print(f" [{elapsed:5.1f}s] {current_frames:,} frames | cur: {interval_fps:,.0f} FPS ({per_stream_fps:.1f}/stream) | avg: {avg_fps:,.0f} FPS | {remaining:.0f}s left")
|
|
834
|
+
else:
|
|
835
|
+
print(f" [{elapsed:5.1f}s] Warming up... | {remaining:.0f}s left")
|
|
836
|
+
|
|
837
|
+
last_report_time = current_time
|
|
838
|
+
last_frame_count = current_frames
|
|
839
|
+
|
|
840
|
+
# Wait for all workers to fully complete
|
|
841
|
+
for p in self._workers:
|
|
842
|
+
p.join(timeout=5)
|
|
843
|
+
|
|
844
|
+
results = []
|
|
845
|
+
while not self._result_queue.empty():
|
|
846
|
+
results.append(self._result_queue.get())
|
|
847
|
+
|
|
848
|
+
for r in results:
|
|
849
|
+
if "error" in r:
|
|
850
|
+
logger.error(f"NVDEC error: {r['error']}")
|
|
851
|
+
|
|
852
|
+
total_frames = sum(r.get("total_frames", 0) for r in results)
|
|
853
|
+
total_errors = sum(r.get("total_errors", 0) for r in results)
|
|
854
|
+
total_elapsed = max((r.get("elapsed_sec", 0) for r in results), default=0)
|
|
855
|
+
|
|
856
|
+
aggregate_fps = total_frames / total_elapsed if total_elapsed > 0 else 0
|
|
857
|
+
per_stream_fps = aggregate_fps / self.config.num_streams if self.config.num_streams > 0 else 0
|
|
858
|
+
|
|
859
|
+
return {
|
|
860
|
+
"num_streams": self.config.num_streams,
|
|
861
|
+
"num_gpus": num_gpus,
|
|
862
|
+
"pool_size": self.config.nvdec_pool_size,
|
|
863
|
+
"duration_sec": total_elapsed,
|
|
864
|
+
"total_frames": total_frames,
|
|
865
|
+
"total_errors": total_errors,
|
|
866
|
+
"aggregate_fps": aggregate_fps,
|
|
867
|
+
"per_stream_fps": per_stream_fps,
|
|
868
|
+
"gpu_results": results,
|
|
869
|
+
}
|
|
870
|
+
|
|
871
|
+
def stop(self):
|
|
872
|
+
"""Stop all workers."""
|
|
873
|
+
self._stop_event.set()
|
|
874
|
+
for p in self._workers:
|
|
875
|
+
p.join(timeout=5)
|
|
876
|
+
if p.is_alive():
|
|
877
|
+
p.terminate()
|
|
878
|
+
|
|
879
|
+
|
|
880
|
+
# =============================================================================
|
|
881
|
+
# CLI
|
|
882
|
+
# =============================================================================
|
|
883
|
+
|
|
884
|
+
def main():
|
|
885
|
+
parser = argparse.ArgumentParser(description="Streaming Gateway - CUDA IPC Producer (NV12)")
|
|
886
|
+
parser.add_argument("--video", "-v", required=True, help="Video file path")
|
|
887
|
+
parser.add_argument("--num-streams", "-n", type=int, default=100, help="Number of streams")
|
|
888
|
+
parser.add_argument("--fps", type=int, default=0, help="Target FPS limit per stream (0=unlimited)")
|
|
889
|
+
parser.add_argument("--width", type=int, default=640, help="Frame width")
|
|
890
|
+
parser.add_argument("--height", type=int, default=640, help="Frame height")
|
|
891
|
+
parser.add_argument("--duration", "-d", type=float, default=30.0, help="Duration in seconds")
|
|
892
|
+
parser.add_argument("--gpu", type=int, default=0, help="Primary GPU ID")
|
|
893
|
+
parser.add_argument("--num-gpus", "-g", type=int, default=1, help="Number of GPUs (1-8)")
|
|
894
|
+
parser.add_argument("--pool-size", type=int, default=8, help="NVDEC pool size per GPU")
|
|
895
|
+
parser.add_argument("--burst-size", type=int, default=4, help="Frames per stream before rotating")
|
|
896
|
+
parser.add_argument("--slots", type=int, default=32, help="Ring buffer slots per camera")
|
|
897
|
+
parser.add_argument("--quiet", "-q", action="store_true", help="Quiet mode - only show final results")
|
|
898
|
+
args = parser.parse_args()
|
|
899
|
+
|
|
900
|
+
# Setup logging based on quiet mode
|
|
901
|
+
setup_logging(quiet=args.quiet)
|
|
902
|
+
|
|
903
|
+
config = GatewayConfig(
|
|
904
|
+
video_path=args.video,
|
|
905
|
+
num_streams=args.num_streams,
|
|
906
|
+
target_fps=args.fps,
|
|
907
|
+
frame_width=args.width,
|
|
908
|
+
frame_height=args.height,
|
|
909
|
+
gpu_id=args.gpu,
|
|
910
|
+
num_gpus=args.num_gpus,
|
|
911
|
+
duration_sec=args.duration,
|
|
912
|
+
nvdec_pool_size=args.pool_size,
|
|
913
|
+
nvdec_burst_size=args.burst_size,
|
|
914
|
+
num_slots=args.slots,
|
|
915
|
+
)
|
|
916
|
+
|
|
917
|
+
frame_size = args.width * args.height * 1.5
|
|
918
|
+
output_fmt = f"NV12 ({args.width}x{args.height}x1.5 = {frame_size/1e6:.1f} MB/frame)"
|
|
919
|
+
fps_limit_str = f"{args.fps} FPS/stream" if args.fps > 0 else "unlimited"
|
|
920
|
+
|
|
921
|
+
if not args.quiet:
|
|
922
|
+
print("\n" + "=" * 60)
|
|
923
|
+
print(" STREAMING GATEWAY - CUDA IPC Producer (NV12)")
|
|
924
|
+
print("=" * 60)
|
|
925
|
+
print(f" Video: {args.video}")
|
|
926
|
+
print(f" Streams: {args.num_streams}")
|
|
927
|
+
print(f" GPUs: {args.num_gpus}")
|
|
928
|
+
print(f" Pool size: {args.pool_size} NVDEC decoders/GPU")
|
|
929
|
+
print(f" FPS limit: {fps_limit_str}")
|
|
930
|
+
print(f" Output: {output_fmt}")
|
|
931
|
+
print(f" Duration: {args.duration}s")
|
|
932
|
+
print("=" * 60)
|
|
933
|
+
|
|
934
|
+
gateway = StreamingGateway(config)
|
|
935
|
+
|
|
936
|
+
try:
|
|
937
|
+
results = gateway.start()
|
|
938
|
+
# Clean summary output
|
|
939
|
+
print("\n")
|
|
940
|
+
print("=" * 60)
|
|
941
|
+
print(" STREAMING GATEWAY BENCHMARK RESULTS")
|
|
942
|
+
print("=" * 60)
|
|
943
|
+
print(f" Video: {args.video}")
|
|
944
|
+
print(f" Streams: {args.num_streams}")
|
|
945
|
+
print(f" GPUs: {args.num_gpus}")
|
|
946
|
+
print(f" FPS limit: {fps_limit_str}")
|
|
947
|
+
print(f" Duration: {args.duration}s")
|
|
948
|
+
print("-" * 60)
|
|
949
|
+
print(f" Total Frames: {results['total_frames']:,}")
|
|
950
|
+
print("-" * 60)
|
|
951
|
+
print(f" >>> AGGREGATE FPS: {results['aggregate_fps']:,.0f} <<<")
|
|
952
|
+
print(f" >>> PER-STREAM FPS: {results['per_stream_fps']:.1f} <<<")
|
|
953
|
+
print("=" * 60)
|
|
954
|
+
print()
|
|
955
|
+
except KeyboardInterrupt:
|
|
956
|
+
gateway.stop()
|
|
957
|
+
print("\nStopped")
|
|
958
|
+
|
|
959
|
+
|
|
960
|
+
if __name__ == "__main__":
|
|
961
|
+
main()
|