matrice-inference 0.1.0__py3-none-manylinux_2_17_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of matrice-inference might be problematic. Click here for more details.

Files changed (80) hide show
  1. matrice_inference/deploy/aggregator/aggregator.cpython-312-x86_64-linux-gnu.so +0 -0
  2. matrice_inference/deploy/aggregator/aggregator.pyi +55 -0
  3. matrice_inference/deploy/aggregator/analytics.cpython-312-x86_64-linux-gnu.so +0 -0
  4. matrice_inference/deploy/aggregator/analytics.pyi +63 -0
  5. matrice_inference/deploy/aggregator/ingestor.cpython-312-x86_64-linux-gnu.so +0 -0
  6. matrice_inference/deploy/aggregator/ingestor.pyi +79 -0
  7. matrice_inference/deploy/aggregator/pipeline.cpython-312-x86_64-linux-gnu.so +0 -0
  8. matrice_inference/deploy/aggregator/pipeline.pyi +139 -0
  9. matrice_inference/deploy/aggregator/publisher.cpython-312-x86_64-linux-gnu.so +0 -0
  10. matrice_inference/deploy/aggregator/publisher.pyi +59 -0
  11. matrice_inference/deploy/aggregator/synchronizer.cpython-312-x86_64-linux-gnu.so +0 -0
  12. matrice_inference/deploy/aggregator/synchronizer.pyi +58 -0
  13. matrice_inference/deploy/client/auto_streaming/auto_streaming.cpython-312-x86_64-linux-gnu.so +0 -0
  14. matrice_inference/deploy/client/auto_streaming/auto_streaming.pyi +145 -0
  15. matrice_inference/deploy/client/auto_streaming/auto_streaming_utils.cpython-312-x86_64-linux-gnu.so +0 -0
  16. matrice_inference/deploy/client/auto_streaming/auto_streaming_utils.pyi +126 -0
  17. matrice_inference/deploy/client/client.cpython-312-x86_64-linux-gnu.so +0 -0
  18. matrice_inference/deploy/client/client.pyi +337 -0
  19. matrice_inference/deploy/client/client_stream_utils.cpython-312-x86_64-linux-gnu.so +0 -0
  20. matrice_inference/deploy/client/client_stream_utils.pyi +83 -0
  21. matrice_inference/deploy/client/client_utils.cpython-312-x86_64-linux-gnu.so +0 -0
  22. matrice_inference/deploy/client/client_utils.pyi +77 -0
  23. matrice_inference/deploy/client/streaming_gateway/streaming_gateway.cpython-312-x86_64-linux-gnu.so +0 -0
  24. matrice_inference/deploy/client/streaming_gateway/streaming_gateway.pyi +120 -0
  25. matrice_inference/deploy/client/streaming_gateway/streaming_gateway_utils.cpython-312-x86_64-linux-gnu.so +0 -0
  26. matrice_inference/deploy/client/streaming_gateway/streaming_gateway_utils.pyi +442 -0
  27. matrice_inference/deploy/client/streaming_gateway/streaming_results_handler.cpython-312-x86_64-linux-gnu.so +0 -0
  28. matrice_inference/deploy/client/streaming_gateway/streaming_results_handler.pyi +19 -0
  29. matrice_inference/deploy/optimize/cache_manager.cpython-312-x86_64-linux-gnu.so +0 -0
  30. matrice_inference/deploy/optimize/cache_manager.pyi +15 -0
  31. matrice_inference/deploy/optimize/frame_comparators.cpython-312-x86_64-linux-gnu.so +0 -0
  32. matrice_inference/deploy/optimize/frame_comparators.pyi +203 -0
  33. matrice_inference/deploy/optimize/frame_difference.cpython-312-x86_64-linux-gnu.so +0 -0
  34. matrice_inference/deploy/optimize/frame_difference.pyi +165 -0
  35. matrice_inference/deploy/optimize/transmission.cpython-312-x86_64-linux-gnu.so +0 -0
  36. matrice_inference/deploy/optimize/transmission.pyi +97 -0
  37. matrice_inference/deploy/server/inference/batch_manager.cpython-312-x86_64-linux-gnu.so +0 -0
  38. matrice_inference/deploy/server/inference/batch_manager.pyi +50 -0
  39. matrice_inference/deploy/server/inference/inference_interface.cpython-312-x86_64-linux-gnu.so +0 -0
  40. matrice_inference/deploy/server/inference/inference_interface.pyi +114 -0
  41. matrice_inference/deploy/server/inference/model_manager.cpython-312-x86_64-linux-gnu.so +0 -0
  42. matrice_inference/deploy/server/inference/model_manager.pyi +80 -0
  43. matrice_inference/deploy/server/inference/triton_utils.cpython-312-x86_64-linux-gnu.so +0 -0
  44. matrice_inference/deploy/server/inference/triton_utils.pyi +115 -0
  45. matrice_inference/deploy/server/proxy/proxy_interface.cpython-312-x86_64-linux-gnu.so +0 -0
  46. matrice_inference/deploy/server/proxy/proxy_interface.pyi +90 -0
  47. matrice_inference/deploy/server/proxy/proxy_utils.cpython-312-x86_64-linux-gnu.so +0 -0
  48. matrice_inference/deploy/server/proxy/proxy_utils.pyi +113 -0
  49. matrice_inference/deploy/server/server.cpython-312-x86_64-linux-gnu.so +0 -0
  50. matrice_inference/deploy/server/server.pyi +155 -0
  51. matrice_inference/deploy/server/stream/inference_worker.cpython-312-x86_64-linux-gnu.so +0 -0
  52. matrice_inference/deploy/server/stream/inference_worker.pyi +56 -0
  53. matrice_inference/deploy/server/stream/kafka_consumer_worker.cpython-312-x86_64-linux-gnu.so +0 -0
  54. matrice_inference/deploy/server/stream/kafka_consumer_worker.pyi +51 -0
  55. matrice_inference/deploy/server/stream/kafka_producer_worker.cpython-312-x86_64-linux-gnu.so +0 -0
  56. matrice_inference/deploy/server/stream/kafka_producer_worker.pyi +50 -0
  57. matrice_inference/deploy/server/stream/stream_debug_logger.cpython-312-x86_64-linux-gnu.so +0 -0
  58. matrice_inference/deploy/server/stream/stream_debug_logger.pyi +47 -0
  59. matrice_inference/deploy/server/stream/stream_manager.cpython-312-x86_64-linux-gnu.so +0 -0
  60. matrice_inference/deploy/server/stream/stream_manager.pyi +69 -0
  61. matrice_inference/deploy/server/stream/video_buffer.cpython-312-x86_64-linux-gnu.so +0 -0
  62. matrice_inference/deploy/server/stream/video_buffer.pyi +120 -0
  63. matrice_inference/deploy/stream/kafka_stream.cpython-312-x86_64-linux-gnu.so +0 -0
  64. matrice_inference/deploy/stream/kafka_stream.pyi +444 -0
  65. matrice_inference/deploy/stream/redis_stream.cpython-312-x86_64-linux-gnu.so +0 -0
  66. matrice_inference/deploy/stream/redis_stream.pyi +447 -0
  67. matrice_inference/deployment/camera_manager.cpython-312-x86_64-linux-gnu.so +0 -0
  68. matrice_inference/deployment/camera_manager.pyi +669 -0
  69. matrice_inference/deployment/deployment.cpython-312-x86_64-linux-gnu.so +0 -0
  70. matrice_inference/deployment/deployment.pyi +736 -0
  71. matrice_inference/deployment/inference_pipeline.cpython-312-x86_64-linux-gnu.so +0 -0
  72. matrice_inference/deployment/inference_pipeline.pyi +527 -0
  73. matrice_inference/deployment/streaming_gateway_manager.cpython-312-x86_64-linux-gnu.so +0 -0
  74. matrice_inference/deployment/streaming_gateway_manager.pyi +275 -0
  75. matrice_inference/py.typed +0 -0
  76. matrice_inference-0.1.0.dist-info/METADATA +26 -0
  77. matrice_inference-0.1.0.dist-info/RECORD +80 -0
  78. matrice_inference-0.1.0.dist-info/WHEEL +5 -0
  79. matrice_inference-0.1.0.dist-info/licenses/LICENSE.txt +21 -0
  80. matrice_inference-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,50 @@
1
+ """Auto-generated stub for module: kafka_producer_worker."""
2
+ from typing import Any, Dict, List, Optional
3
+
4
+ from datetime import datetime, timezone
5
+ from matrice_inference.deploy.stream.kafka_stream import MatriceKafkaDeployment
6
+ import asyncio
7
+ import logging
8
+
9
+ # Classes
10
+ class KafkaProducerWorker:
11
+ """
12
+ Kafka producer worker that consumes from output queue and produces to topics.
13
+ """
14
+
15
+ def __init__(self: Any, worker_id: str, session: Any, deployment_id: str, deployment_instance_id: str, output_queue: Any, app_name: str = '', app_version: str = '', produce_timeout: float = 10.0, inference_pipeline_id: str = '') -> None: ...
16
+ """
17
+ Initialize Kafka producer worker.
18
+
19
+ Args:
20
+ worker_id: Unique identifier for this worker
21
+ session: Session object for authentication and RPC
22
+ deployment_id: ID of the deployment
23
+ deployment_instance_id: ID of the deployment instance
24
+ output_queue: Queue to get result messages from
25
+ app_name: Application name for result formatting
26
+ app_version: Application version for result formatting
27
+ produce_timeout: Timeout for producing to Kafka
28
+ inference_pipeline_id: ID of the inference pipeline
29
+ """
30
+
31
+ def get_metrics(self: Any) -> Dict[str, Any]: ...
32
+ """
33
+ Get worker metrics.
34
+ """
35
+
36
+ def reset_metrics(self: Any) -> None: ...
37
+ """
38
+ Reset worker metrics.
39
+ """
40
+
41
+ async def start(self: Any) -> None: ...
42
+ """
43
+ Start the producer worker.
44
+ """
45
+
46
+ async def stop(self: Any) -> None: ...
47
+ """
48
+ Stop the producer worker.
49
+ """
50
+
@@ -0,0 +1,47 @@
1
+ """Auto-generated stub for module: stream_debug_logger."""
2
+ from typing import Any, Dict, List
3
+
4
+ from datetime import datetime, timezone
5
+ import logging
6
+ import time
7
+
8
+ # Classes
9
+ class StreamDebugLogger:
10
+ """
11
+ Debug logging component for stream processing pipeline.
12
+ """
13
+
14
+ def __init__(self: Any, enabled: bool = False, log_interval: float = 30.0) -> None: ...
15
+ """
16
+ Initialize debug logger.
17
+
18
+ Args:
19
+ enabled: Whether debug logging is enabled
20
+ log_interval: Interval between debug log messages in seconds
21
+ """
22
+
23
+ def disable(self: Any) -> Any: ...
24
+ """
25
+ Disable debug logging.
26
+ """
27
+
28
+ def enable(self: Any) -> Any: ...
29
+ """
30
+ Enable debug logging.
31
+ """
32
+
33
+ def get_debug_summary(self: Any) -> Dict[str, Any]: ...
34
+ """
35
+ Get debug logging summary.
36
+ """
37
+
38
+ def log_pipeline_status(self: Any, stream_manager: Any) -> Any: ...
39
+ """
40
+ Log pipeline status if enabled and interval passed.
41
+ """
42
+
43
+ def should_log(self: Any) -> bool: ...
44
+ """
45
+ Check if we should log based on interval.
46
+ """
47
+
@@ -0,0 +1,69 @@
1
+ """Auto-generated stub for module: stream_manager."""
2
+ from typing import Any, Dict, Optional
3
+
4
+ from matrice_inference.deploy.server.inference.inference_interface import InferenceInterface
5
+ from matrice_inference.deploy.server.stream.inference_worker import InferenceWorker
6
+ from matrice_inference.deploy.server.stream.kafka_consumer_worker import KafkaConsumerWorker
7
+ from matrice_inference.deploy.server.stream.kafka_producer_worker import KafkaProducerWorker
8
+ from matrice_inference.deploy.server.stream.stream_debug_logger import StreamDebugLogger
9
+ import asyncio
10
+ import logging
11
+ import uuid
12
+
13
+ # Classes
14
+ class StreamManager:
15
+ """
16
+ Stream manager with asyncio queues and integrated debug logging.
17
+ """
18
+
19
+ def __init__(self: Any, session: Any, deployment_id: str, deployment_instance_id: str, inference_interface: Any, num_consumers: int = 1, num_inference_workers: int = 1, num_producers: int = 1, app_name: str = '', app_version: str = '', inference_pipeline_id: str = '', debug_logging_enabled: bool = False, debug_log_interval: float = 30.0, input_queue_maxsize: int = 0, output_queue_maxsize: int = 0) -> None: ...
20
+ """
21
+ Initialize stream manager.
22
+
23
+ Args:
24
+ session: Session object for authentication and RPC
25
+ deployment_id: ID of the deployment
26
+ deployment_instance_id: ID of the deployment instance
27
+ inference_interface: Inference interface to use for inference
28
+ num_consumers: Number of consumer workers
29
+ num_inference_workers: Number of inference workers
30
+ num_producers: Number of producer workers
31
+ app_name: Application name for result formatting
32
+ app_version: Application version for result formatting
33
+ inference_pipeline_id: ID of the inference pipeline
34
+ debug_logging_enabled: Whether to enable debug logging
35
+ debug_log_interval: Interval for debug logging in seconds
36
+ input_queue_maxsize: Maximum size for input queue (0 = unlimited)
37
+ output_queue_maxsize: Maximum size for output queue (0 = unlimited)
38
+ """
39
+
40
+ def disable_debug_logging(self: Any) -> Any: ...
41
+ """
42
+ Disable debug logging.
43
+ """
44
+
45
+ def enable_debug_logging(self: Any, log_interval: Optional[float] = None) -> Any: ...
46
+ """
47
+ Enable debug logging.
48
+ """
49
+
50
+ def get_debug_summary(self: Any) -> Dict[str, Any]: ...
51
+ """
52
+ Get debug logging summary.
53
+ """
54
+
55
+ def get_metrics(self: Any) -> Dict[str, Any]: ...
56
+ """
57
+ Get comprehensive metrics.
58
+ """
59
+
60
+ async def start(self: Any) -> None: ...
61
+ """
62
+ Start the stream manager and all workers.
63
+ """
64
+
65
+ async def stop(self: Any) -> None: ...
66
+ """
67
+ Stop the stream manager and all workers.
68
+ """
69
+
@@ -0,0 +1,120 @@
1
+ """Auto-generated stub for module: video_buffer."""
2
+ from typing import Any, Dict, List, Optional
3
+
4
+ from collections import defaultdict, deque
5
+ from datetime import datetime, timezone
6
+ import asyncio
7
+ import base64
8
+ import cv2
9
+ import logging
10
+ import numpy as np
11
+ import os
12
+ import tempfile
13
+
14
+ # Functions
15
+ def base64_frames_to_video_bytes_cv2(base64_frames: Any, fps: Any = 10, output_format: Any = 'mp4') -> Any: ...
16
+ """
17
+ Convert base64-encoded JPEG frames to a video using OpenCV,
18
+ and return the video bytes by writing to a temp file.
19
+ """
20
+
21
+ # Classes
22
+ class FrameBuffer:
23
+ """
24
+ Buffer for collecting frames into video chunks.
25
+ """
26
+
27
+ def __init__(self: Any, stream_key: str, buffer_config: Dict[str, Any]) -> None: ...
28
+ """
29
+ Initialize frame buffer for a specific stream.
30
+
31
+ Args:
32
+ stream_key: Unique identifier for the stream
33
+ buffer_config: Configuration for buffering (fps, duration, etc.)
34
+ """
35
+
36
+ def add_frame(self: Any, base64_frame: str, metadata: Dict[str, Any]) -> bool: ...
37
+ """
38
+ Add a frame to the buffer.
39
+
40
+ Args:
41
+ base64_frame: Base64 encoded frame data
42
+ metadata: Frame metadata
43
+
44
+ Returns:
45
+ True if buffer is ready for processing, False otherwise
46
+ """
47
+
48
+ def clear(self: Any) -> Any: ...
49
+ """
50
+ Clear the buffer.
51
+ """
52
+
53
+ def create_video_chunk(self: Any) -> Optional[Dict[str, Any]]: ...
54
+ """
55
+ Create a video chunk from buffered frames.
56
+
57
+ Returns:
58
+ Dictionary containing video data and metadata, or None if failed
59
+ """
60
+
61
+ def is_expired(self: Any, max_idle_time: float = 30.0) -> bool: ...
62
+ """
63
+ Check if buffer has been idle too long.
64
+ """
65
+
66
+ def is_ready(self: Any) -> bool: ...
67
+ """
68
+ Check if buffer is ready for processing.
69
+ """
70
+
71
+ class VideoBufferManager:
72
+ """
73
+ Manages multiple frame buffers for different streams.
74
+ """
75
+
76
+ def __init__(self: Any, default_fps: int = 10, default_chunk_duration: float = 5.0, default_timeout: float = 10.0, max_idle_time: float = 30.0, cleanup_interval: float = 60.0) -> None: ...
77
+ """
78
+ Initialize video buffer manager.
79
+
80
+ Args:
81
+ default_fps: Default FPS for video chunks
82
+ default_chunk_duration: Default chunk duration in seconds
83
+ default_timeout: Default timeout for buffering in seconds
84
+ max_idle_time: Maximum idle time before buffer cleanup
85
+ cleanup_interval: Interval for cleanup tasks
86
+ """
87
+
88
+ async def add_frame(self: Any, stream_key: str, base64_frame: str, metadata: Dict[str, Any]) -> Optional[Dict[str, Any]]: ...
89
+ """
90
+ Add a frame to the appropriate buffer.
91
+
92
+ Args:
93
+ stream_key: Stream identifier
94
+ base64_frame: Base64 encoded frame data
95
+ metadata: Frame metadata
96
+
97
+ Returns:
98
+ Video chunk data if buffer is ready, None otherwise
99
+ """
100
+
101
+ def get_metrics(self: Any) -> Dict[str, Any]: ...
102
+ """
103
+ Get buffer manager metrics.
104
+ """
105
+
106
+ def reset_metrics(self: Any) -> Any: ...
107
+ """
108
+ Reset metrics.
109
+ """
110
+
111
+ async def start(self: Any) -> Any: ...
112
+ """
113
+ Start the buffer manager.
114
+ """
115
+
116
+ async def stop(self: Any) -> Any: ...
117
+ """
118
+ Stop the buffer manager.
119
+ """
120
+