matrice-analytics 0.1.97__py3-none-any.whl → 0.1.124__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. matrice_analytics/post_processing/__init__.py +22 -0
  2. matrice_analytics/post_processing/advanced_tracker/config.py +8 -4
  3. matrice_analytics/post_processing/advanced_tracker/track_class_aggregator.py +128 -0
  4. matrice_analytics/post_processing/advanced_tracker/tracker.py +22 -1
  5. matrice_analytics/post_processing/config.py +17 -2
  6. matrice_analytics/post_processing/core/config.py +107 -1
  7. matrice_analytics/post_processing/face_reg/face_recognition.py +706 -73
  8. matrice_analytics/post_processing/face_reg/people_activity_logging.py +25 -14
  9. matrice_analytics/post_processing/post_processor.py +16 -0
  10. matrice_analytics/post_processing/usecases/__init__.py +9 -0
  11. matrice_analytics/post_processing/usecases/crowdflow.py +1088 -0
  12. matrice_analytics/post_processing/usecases/footfall.py +170 -22
  13. matrice_analytics/post_processing/usecases/license_plate_monitoring.py +57 -38
  14. matrice_analytics/post_processing/usecases/parking_lot_analytics.py +1137 -0
  15. matrice_analytics/post_processing/usecases/vehicle_monitoring.py +30 -4
  16. matrice_analytics/post_processing/usecases/vehicle_monitoring_drone_view.py +246 -3
  17. matrice_analytics/post_processing/usecases/vehicle_monitoring_parking_lot.py +36 -3
  18. matrice_analytics/post_processing/usecases/vehicle_monitoring_wrong_way.py +1021 -0
  19. matrice_analytics/post_processing/utils/__init__.py +5 -0
  20. matrice_analytics/post_processing/utils/agnostic_nms.py +759 -0
  21. matrice_analytics/post_processing/utils/alert_instance_utils.py +55 -7
  22. matrice_analytics/post_processing/utils/business_metrics_manager_utils.py +25 -2
  23. matrice_analytics/post_processing/utils/incident_manager_utils.py +12 -1
  24. matrice_analytics/post_processing/utils/parking_analytics_tracker.py +359 -0
  25. matrice_analytics/post_processing/utils/wrong_way_tracker.py +670 -0
  26. {matrice_analytics-0.1.97.dist-info → matrice_analytics-0.1.124.dist-info}/METADATA +1 -1
  27. {matrice_analytics-0.1.97.dist-info → matrice_analytics-0.1.124.dist-info}/RECORD +30 -23
  28. {matrice_analytics-0.1.97.dist-info → matrice_analytics-0.1.124.dist-info}/WHEEL +0 -0
  29. {matrice_analytics-0.1.97.dist-info → matrice_analytics-0.1.124.dist-info}/licenses/LICENSE.txt +0 -0
  30. {matrice_analytics-0.1.97.dist-info → matrice_analytics-0.1.124.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1021 @@
1
+ from typing import Any, Dict, List, Optional, Tuple
2
+ from dataclasses import dataclass, field
3
+ import time
4
+ from datetime import datetime, timezone
5
+
6
+ from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
7
+ from ..utils import (
8
+ filter_by_confidence,
9
+ filter_by_categories,
10
+ apply_category_mapping,
11
+ count_objects_by_category,
12
+ count_objects_in_zones,
13
+ calculate_counting_summary,
14
+ match_results_structure,
15
+ bbox_smoothing,
16
+ BBoxSmoothingConfig,
17
+ BBoxSmoothingTracker
18
+ )
19
+ from ..core.config import BaseConfig, AlertConfig, ZoneConfig
20
+ from ..utils.geometry_utils import get_bbox_center, point_in_polygon, get_bbox_bottom25_center
21
+ from ..utils.wrong_way_tracker import WrongWayDetectionTracker
22
+
23
+ @dataclass
24
+ class VehicleMonitoringWrongWayConfig(BaseConfig):
25
+ """Configuration for wrong-way vehicle detection use case."""
26
+ enable_smoothing: bool = True
27
+ smoothing_algorithm: str = "observability"
28
+ smoothing_window_size: int = 20
29
+ smoothing_cooldown_frames: int = 5
30
+ smoothing_confidence_range_factor: float = 0.5
31
+ confidence_threshold: float = 0.6
32
+
33
+ # Class Aggregation: Configuration parameters
34
+ enable_class_aggregation: bool = True
35
+ class_aggregation_window_size: int = 30 # 30 frames ≈ 1 second at 30 FPS
36
+
37
+ # Wrong-Way Detection Settings (Trajectory-Based)
38
+ enable_wrong_way_detection: bool = True
39
+
40
+ wrong_way_confidence_suspect: float = 0.3 # Threshold to enter SUSPECT state
41
+ wrong_way_confidence_confirm: float = 0.7 # Threshold to confirm WRONG_WAY
42
+ wrong_way_min_velocity: float = 2.0 # Min velocity (pixels/frame) to consider motion
43
+ auto_ref_min_tracks: int = 5 # Min tracks needed for auto-estimation
44
+ stale_track_frames: int = 30
45
+
46
+
47
+ #JBK_720_GATE POLYGON = [[86, 328], [844, 317], [1277, 520], [1273, 707], [125, 713]]
48
+ # zone_config: Optional[Dict[str, List[List[float]]]] = None #field(
49
+ # default_factory=lambda: {
50
+ # "zones": {
51
+ # "Interest_Region": [[86, 328], [844, 317], [1277, 520], [1273, 707], [125, 713]],
52
+ # }
53
+ # }
54
+ # )
55
+ # NOTE : Remove this hard-coded zone after Testing (TODO)
56
+ # Motorcyclists wrong way sample test video polygon
57
+ # USER_REFERENCE_POLYLINE = [[296,401], [293,338], [292,263]]
58
+ zone_config: Optional[Dict[str, Any]] = field(
59
+ default_factory=lambda: {
60
+ "zones": {
61
+ "Interest_Region": [[296,401], [293,338], [292,263]],
62
+ }
63
+ }
64
+ )
65
+
66
+ usecase_categories: List[str] = field(
67
+ default_factory=lambda: [
68
+ 'bicycle', 'motorcycle', 'car', 'van', 'bus', 'truck'
69
+ ]
70
+ )
71
+
72
+ target_categories: List[str] = field(
73
+ default_factory=lambda: [
74
+ 'bicycle', 'motorcycle', 'car', 'van', 'bus', 'truck'
75
+ ]
76
+ )
77
+ alert_config: Optional[AlertConfig] = None
78
+ index_to_category: Optional[Dict[int, str]] = field(
79
+ default_factory=lambda: {
80
+ 0: "bicycle",
81
+ 1: "motorcycle",
82
+ 2: "car",
83
+ 3: "van",
84
+ 4: "bus",
85
+ 5: "truck"
86
+ }
87
+ )
88
+
89
+
90
+ class VehicleMonitoringWrongWayUseCase(BaseProcessor):
91
+ CATEGORY_DISPLAY = {
92
+ "bicycle": "Bicycle",
93
+ "motorcycle": "Motorcycle",
94
+ "car": "Car",
95
+ "van": "Van",
96
+ "bus": "Bus",
97
+ "truck": "Truck",
98
+ }
99
+
100
+ def __init__(self):
101
+ super().__init__("vehicle_monitoring_wrong_way")
102
+ self.category = "traffic"
103
+ self.CASE_TYPE: Optional[str] = 'vehicle_monitoring_wrong_way'
104
+ self.CASE_VERSION: Optional[str] = '1.0'
105
+ self.target_categories = ['bicycle', 'motorcycle', 'car', 'van', 'bus', 'truck']
106
+ self.smoothing_tracker = None
107
+ self.tracker = None
108
+ self._total_frame_counter = 0
109
+ self._global_frame_offset = 0
110
+ self._tracking_start_time = None
111
+ self._track_aliases: Dict[Any, Any] = {}
112
+ self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
113
+ self._track_merge_iou_threshold: float = 0.05
114
+ self._track_merge_time_window: float = 7.0
115
+ self._ascending_alert_list: List[int] = []
116
+ self.current_incident_end_timestamp: str = "N/A"
117
+ self.start_timer = None
118
+
119
+ # Wrong-way detection tracker (NEW)
120
+ self.wrong_way_tracker = None
121
+ # Reference direction tracking (for zone-based reference)
122
+ self._reference_zone_name: Optional[str] = None
123
+ self._reference_zone_polygon: Optional[List[List[float]]] = None
124
+
125
+
126
+ # Track ID storage for total count calculation
127
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
128
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
129
+ self._tracked_in_zones = set() # New: Unique track IDs that have entered any zone
130
+ self._total_count = 0 # Cached total count
131
+ self._last_update_time = time.time() # Track when last updated
132
+ self._total_count_list = []
133
+
134
+ # Zone-based tracking storage
135
+ self._zone_current_track_ids = {} # zone_name -> set of current track IDs in zone
136
+ self._zone_total_track_ids = {} # zone_name -> set of all track IDs that have been in zone
137
+ self._zone_current_counts = {} # zone_name -> current count in zone
138
+ self._zone_total_counts = {} # zone_name -> total count that have been in zone
139
+
140
+ def process(
141
+ self,
142
+ data: Any,
143
+ config: ConfigProtocol,
144
+ context: Optional[ProcessingContext] = None,
145
+ stream_info: Optional[Dict[str, Any]] = None
146
+ ) -> ProcessingResult:
147
+ processing_start = time.time()
148
+
149
+ # Config validation
150
+ is_valid_config = (
151
+ isinstance(config, VehicleMonitoringWrongWayConfig) or
152
+ (hasattr(config, 'usecase') and hasattr(config, 'category'))
153
+ )
154
+ if not is_valid_config:
155
+ self.logger.error(
156
+ f"Config validation failed in vehicle_monitoring_wrong_way. "
157
+ f"Got type={type(config).__name__}, module={type(config).__module__}, "
158
+ f"usecase={getattr(config, 'usecase', 'N/A')}, category={getattr(config, 'category', 'N/A')}"
159
+ )
160
+ return self.create_error_result(
161
+ f"Invalid config type: expected VehicleMonitoringWrongWayConfig or config with usecase='vehicle_monitoring_wrong_way', "
162
+ f"got {type(config).__name__} with usecase={getattr(config, 'usecase', 'N/A')}",
163
+ usecase=self.name, category=self.category, context=context
164
+ )
165
+
166
+ if context is None:
167
+ context = ProcessingContext()
168
+
169
+ # Determine if zones are configured
170
+ has_zones = bool(config.zone_config and config.zone_config.get('zones')) and not self.enable_wrong_way_detection
171
+ # Disable zones if wrong-way detection is enabled
172
+
173
+ # Normalize YOLO outputs to internal schema
174
+ data = self._normalize_yolo_results(data, getattr(config, 'index_to_category', None))
175
+
176
+ input_format = match_results_structure(data)
177
+ context.input_format = input_format
178
+ context.confidence_threshold = config.confidence_threshold
179
+ config.confidence_threshold = 0.25
180
+ # TODO: param to be updated
181
+
182
+ if config.confidence_threshold is not None:
183
+ processed_data = filter_by_confidence(data, config.confidence_threshold)
184
+ self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
185
+ else:
186
+ processed_data = data
187
+
188
+ if config.index_to_category:
189
+ processed_data = apply_category_mapping(processed_data, config.index_to_category)
190
+ self.logger.debug("Applied category mapping")
191
+
192
+ processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
193
+ self.logger.debug("Applied category filtering")
194
+
195
+
196
+ if config.enable_smoothing:
197
+ if self.smoothing_tracker is None:
198
+ smoothing_config = BBoxSmoothingConfig(
199
+ smoothing_algorithm=config.smoothing_algorithm,
200
+ window_size=config.smoothing_window_size,
201
+ cooldown_frames=config.smoothing_cooldown_frames,
202
+ confidence_threshold=config.confidence_threshold,
203
+ confidence_range_factor=config.smoothing_confidence_range_factor,
204
+ enable_smoothing=True
205
+ )
206
+ self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
207
+ processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
208
+
209
+ try:
210
+ from ..advanced_tracker import AdvancedTracker
211
+ from ..advanced_tracker.config import TrackerConfig
212
+
213
+ if self.tracker is None:
214
+ tracker_config = TrackerConfig(
215
+ enable_class_aggregation=config.enable_class_aggregation,
216
+ class_aggregation_window_size=config.class_aggregation_window_size
217
+ )
218
+ self.tracker = AdvancedTracker(tracker_config)
219
+ self.logger.info(
220
+ f"Initialized AdvancedTracker for wrong-way detection use case "
221
+ f"(class_aggregation={config.enable_class_aggregation})"
222
+ )
223
+ processed_data = self.tracker.update(processed_data)
224
+ except Exception as e:
225
+ self.logger.warning(f"AdvancedTracker failed: {e}")
226
+
227
+ # WRONG-WAY DETECTION
228
+ wrong_way_analytics = None
229
+ if config.enable_wrong_way_detection and processed_data:
230
+
231
+ if self.wrong_way_tracker is None:
232
+ self.wrong_way_tracker = WrongWayDetectionTracker(
233
+ v_min=config.wrong_way_min_velocity,
234
+ c_suspect=config.wrong_way_confidence_suspect,
235
+ c_confirm=config.wrong_way_confidence_confirm,
236
+ stale_track_frames=config.stale_track_frames,
237
+ auto_ref_min_tracks=config.auto_ref_min_tracks
238
+ )
239
+ self.logger.info(
240
+ f"Initialized WrongWayDetectionTracker v2: "
241
+ f"v_min={config.wrong_way_min_velocity}, "
242
+ f"c_suspect={config.wrong_way_confidence_suspect}, "
243
+ f"c_confirm={config.wrong_way_confidence_confirm}"
244
+ )
245
+
246
+ self._setup_reference_from_zone(config)
247
+
248
+ wrong_way_analytics = self.wrong_way_tracker.update(
249
+ detections=processed_data,
250
+ current_frame=self._total_frame_counter
251
+ )
252
+
253
+ ww_count = wrong_way_analytics.get('current_wrong_way_count', 0)
254
+ suspect_count = wrong_way_analytics.get('current_suspect_count', 0)
255
+ ref_status = wrong_way_analytics.get('reference_status', 'NONE')
256
+
257
+ if ww_count > 0 or suspect_count > 0:
258
+ self.logger.info(
259
+ f"[Frame {self._total_frame_counter}] Wrong-Way: "
260
+ f"ref={ref_status}, wrong_way={ww_count}, suspect={suspect_count}, "
261
+ f"total={wrong_way_analytics.get('total_wrong_way_count', 0)}"
262
+ )
263
+
264
+ # Update tracking state
265
+ self._update_tracking_state(processed_data, has_zones=has_zones)
266
+ self._total_frame_counter += 1
267
+
268
+ # Extract frame number
269
+ frame_number = None
270
+ if stream_info:
271
+ input_settings = stream_info.get("input_settings", {})
272
+ start_frame = input_settings.get("start_frame")
273
+ end_frame = input_settings.get("end_frame")
274
+ if start_frame is not None and end_frame is not None and start_frame == end_frame:
275
+ frame_number = start_frame
276
+
277
+ # Calculate summaries
278
+ general_counting_summary = calculate_counting_summary(data)
279
+ counting_summary = self._count_categories(processed_data, config)
280
+ total_counts = self.get_total_counts()
281
+ counting_summary['total_counts'] = total_counts
282
+ counting_summary['categories'] = {}
283
+ for detection in processed_data:
284
+ category = detection.get("category", "unknown")
285
+ counting_summary["categories"][category] = counting_summary["categories"].get(category, 0) + 1
286
+
287
+ # Zone analysis (if configured)
288
+ zone_analysis = {}
289
+ if has_zones:
290
+ frame_data = processed_data
291
+ zone_analysis = count_objects_in_zones(frame_data, config.zone_config['zones'], stream_info)
292
+ if zone_analysis:
293
+ enhanced_zone_analysis = self._update_zone_tracking(zone_analysis, processed_data, config)
294
+ for zone_name, enhanced_data in enhanced_zone_analysis.items():
295
+ zone_analysis[zone_name] = enhanced_data
296
+ per_category_count = {cat: len(self._current_frame_track_ids.get(cat, set())) for cat in self.target_categories}
297
+ counting_summary['per_category_count'] = {k: v for k, v in per_category_count.items() if v > 0}
298
+ counting_summary['total_count'] = sum(per_category_count.values())
299
+
300
+ # Generate outputs
301
+ alerts = self._check_alerts(counting_summary, zone_analysis, frame_number, config)
302
+ predictions = self._extract_predictions(processed_data)
303
+
304
+ incidents_list = [] # Not generating incidents for wrong-way (analytics only)
305
+
306
+ tracking_stats_list = self._generate_tracking_stats(
307
+ counting_summary, zone_analysis, alerts, config,
308
+ frame_number, stream_info, wrong_way_analytics
309
+ )
310
+
311
+ business_analytics_list = self._generate_business_analytics(
312
+ counting_summary, zone_analysis, alerts, config, stream_info, is_empty=True
313
+ )
314
+
315
+ summary_list = self._generate_summary(
316
+ counting_summary, zone_analysis, incidents_list,
317
+ tracking_stats_list, business_analytics_list, alerts
318
+ )
319
+
320
+ # Assemble output
321
+ incidents = incidents_list[0] if incidents_list else {}
322
+ tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
323
+ business_analytics = business_analytics_list[0] if business_analytics_list else {}
324
+ summary = summary_list[0] if summary_list else {}
325
+
326
+ agg_summary = {
327
+ str(frame_number): {
328
+ "incidents": incidents,
329
+ "tracking_stats": tracking_stats,
330
+ "business_analytics": business_analytics,
331
+ "alerts": alerts,
332
+ "zone_analysis": zone_analysis,
333
+ "human_text": summary
334
+ }
335
+ }
336
+
337
+ context.mark_completed()
338
+ result = self.create_result(
339
+ data={"agg_summary": agg_summary},
340
+ usecase=self.name,
341
+ category=self.category,
342
+ context=context
343
+ )
344
+
345
+ # Log performance
346
+ proc_time = time.time() - processing_start
347
+ processing_latency_ms = proc_time * 1000.0
348
+ processing_fps = (1.0 / proc_time) if proc_time > 0 else None
349
+ print(f"latency in ms: {processing_latency_ms} | Throughput fps: {processing_fps} | Frame_Number: {self._total_frame_counter}")
350
+
351
+ return result
352
+
353
+ def _generate_tracking_stats(
354
+ self,
355
+ counting_summary: Dict,
356
+ zone_analysis: Dict,
357
+ alerts: List,
358
+ config: VehicleMonitoringWrongWayConfig,
359
+ frame_number: Optional[int] = None,
360
+ stream_info: Optional[Dict[str, Any]] = None,
361
+ wrong_way_analytics: Optional[Dict] = None
362
+ ) -> List[Dict]:
363
+ """Generate tracking statistics including wrong-way analytics."""
364
+ camera_info = self.get_camera_info_from_stream(stream_info)
365
+ tracking_stats = []
366
+
367
+ total_detections = counting_summary.get("total_count", 0)
368
+ total_counts_dict = counting_summary.get("total_counts", {})
369
+ per_category_count = counting_summary.get("per_category_count", {})
370
+
371
+ current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
372
+ start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
373
+ high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
374
+ high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
375
+
376
+ total_counts = [{"category": cat, "count": count} for cat, count in total_counts_dict.items() if count > 0]
377
+ current_counts = [{"category": cat, "count": count} for cat, count in per_category_count.items() if count > 0]
378
+
379
+ # Build detections list
380
+ detections = []
381
+ for detection in counting_summary.get("detections", []):
382
+ bbox = detection.get("bounding_box", {})
383
+ category = detection.get("category", "vehicle")
384
+ if detection.get("masks"):
385
+ segmentation = detection.get("masks", [])
386
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
387
+ elif detection.get("segmentation"):
388
+ segmentation = detection.get("segmentation")
389
+ detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
390
+ else:
391
+ detection_obj = self.create_detection_object(category, bbox)
392
+ detections.append(detection_obj)
393
+
394
+ # Alert settings
395
+ alert_settings = []
396
+ if config.alert_config and hasattr(config.alert_config, 'alert_type'):
397
+ alert_settings.append({
398
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
399
+ "incident_category": self.CASE_TYPE,
400
+ "threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
401
+ "ascending": True,
402
+ "settings": {t: v for t, v in zip(
403
+ getattr(config.alert_config, 'alert_type', ['Default']),
404
+ getattr(config.alert_config, 'alert_value', ['JSON'])
405
+ )}
406
+ })
407
+
408
+ # === BUILD HUMAN TEXT ===
409
+ human_text_lines = []
410
+ human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}:")
411
+
412
+ # Display current counts
413
+ if zone_analysis:
414
+ human_text_lines.append("\t- Vehicles Detected by Zone:")
415
+ for zone_name, zone_data in zone_analysis.items():
416
+ current_count = 0
417
+ if isinstance(zone_data, dict):
418
+ if "current_count" in zone_data:
419
+ current_count = zone_data.get("current_count", 0)
420
+ else:
421
+ counts_dict = zone_data.get("original_counts") if isinstance(zone_data.get("original_counts"), dict) else zone_data
422
+ current_count = counts_dict.get("total", sum(v for v in counts_dict.values() if isinstance(v, (int, float))))
423
+ human_text_lines.append(f"\t\t- {zone_name}: {int(current_count)}")
424
+ else:
425
+ human_text_lines.append(f"\t- Vehicles Detected: {total_detections}")
426
+ if per_category_count:
427
+ for cat, count in per_category_count.items():
428
+ if count > 0:
429
+ human_text_lines.append(f"\t\t- {cat}: {count}")
430
+
431
+ # === WRONG-WAY ANALYTICS IN HUMAN TEXT ===
432
+ if wrong_way_analytics:
433
+ ref_source = wrong_way_analytics.get('reference_source', 'NONE')
434
+ ref_status = wrong_way_analytics.get('reference_status', 'NONE')
435
+ current_wrong_way = wrong_way_analytics.get('current_wrong_way_count', 0)
436
+ total_wrong_way = wrong_way_analytics.get('total_wrong_way_count', 0)
437
+ current_suspect = wrong_way_analytics.get('current_suspect_count', 0)
438
+
439
+ human_text_lines.append("")
440
+ human_text_lines.append("WRONG-WAY DETECTION:")
441
+ human_text_lines.append(f"\t- Reference: {ref_source} ({ref_status})")
442
+
443
+ if ref_status == "LEARNING":
444
+ human_text_lines.append("\t- Status: Learning traffic pattern...")
445
+ else:
446
+ human_text_lines.append(f"\t- Current Wrong-Way: {current_wrong_way}")
447
+ human_text_lines.append(f"\t- Total Wrong-Way Events: {total_wrong_way}")
448
+ human_text_lines.append(f"\t- Current Suspects: {current_suspect}")
449
+
450
+ # List wrong-way vehicles with confidence
451
+ for det in wrong_way_analytics.get('current_wrong_way_detections', []):
452
+ human_text_lines.append(
453
+ f"\t\t- [WRONG-WAY] {det['category']} (ID:{det['track_id']}, "
454
+ f"conf:{det.get('wrong_way_confidence', 0):.2f})"
455
+ )
456
+
457
+ # List suspect vehicles
458
+ for det in wrong_way_analytics.get('current_suspect_detections', []):
459
+ human_text_lines.append(
460
+ f"\t\t- [SUSPECT] {det['category']} (ID:{det['track_id']}, "
461
+ f"conf:{det.get('wrong_way_confidence', 0):.2f})"
462
+ )
463
+
464
+
465
+ human_text_lines.append("")
466
+ human_text = "\n".join(human_text_lines)
467
+
468
+ # Build tracking stat
469
+ reset_settings = [{"interval_type": "daily", "reset_time": {"value": 9, "time_unit": "hour"}}]
470
+ tracking_stat = self.create_tracking_stats(
471
+ total_counts=total_counts,
472
+ current_counts=current_counts,
473
+ detections=detections,
474
+ human_text=human_text,
475
+ camera_info=camera_info,
476
+ alerts=alerts,
477
+ alert_settings=alert_settings,
478
+ reset_settings=reset_settings,
479
+ start_time=high_precision_start_timestamp,
480
+ reset_time=high_precision_reset_timestamp
481
+ )
482
+ tracking_stat['target_categories'] = self.target_categories
483
+
484
+ # NOTE : Add wrong-way analytics to tracking stats
485
+ if wrong_way_analytics:
486
+ tracking_stat["wrong_way_analytics"] = {
487
+ "reference_source": wrong_way_analytics.get("reference_source", "NONE"),
488
+ "reference_status": wrong_way_analytics.get("reference_status", "NONE"),
489
+ "current_wrong_way_count": wrong_way_analytics.get("current_wrong_way_count", 0),
490
+ "total_wrong_way_count": wrong_way_analytics.get("total_wrong_way_count", 0),
491
+ "current_wrong_way_detections": wrong_way_analytics.get("current_wrong_way_detections", []),
492
+ "current_suspect_count": wrong_way_analytics.get("current_suspect_count", 0),
493
+ "current_suspect_detections": wrong_way_analytics.get("current_suspect_detections", [])
494
+ }
495
+ self.logger.debug(
496
+ f"Wrong-way analytics: ref={wrong_way_analytics.get('reference_status')}, "
497
+ f"wrong_way={wrong_way_analytics.get('current_wrong_way_count', 0)}, "
498
+ f"suspect={wrong_way_analytics.get('current_suspect_count', 0)}"
499
+ )
500
+
501
+ tracking_stats.append(tracking_stat)
502
+ return tracking_stats
503
+
504
+ def _setup_reference_from_zone(self, config: VehicleMonitoringWrongWayConfig) -> None:
505
+ """Extract reference direction from zone_config (first point → last point)."""
506
+
507
+ if not config.zone_config or not config.zone_config.get('zones'):
508
+ self.logger.info("No zone_config provided — using auto-reference estimation")
509
+ return
510
+
511
+ zones = config.zone_config['zones']
512
+
513
+ # Use the first zone as reference direction source
514
+ for zone_name, zone_polygon in zones.items():
515
+ if zone_polygon and len(zone_polygon) >= 2:
516
+ self._reference_zone_name = zone_name
517
+ self._reference_zone_polygon = zone_polygon
518
+
519
+ success = self.wrong_way_tracker.set_reference_from_zone(zone_polygon)
520
+
521
+ if success:
522
+ self.logger.info(
523
+ f"Reference direction set from zone '{zone_name}': "
524
+ f"first={zone_polygon[0]} → last={zone_polygon[-1]}"
525
+ )
526
+ else:
527
+ self.logger.warning(f"Failed to set reference from zone '{zone_name}'")
528
+
529
+ break
530
+
531
+
532
+ def _update_zone_tracking(
533
+ self,
534
+ zone_analysis: Dict[str, Dict[str, int]],
535
+ detections: List[Dict],
536
+ config: VehicleMonitoringWrongWayConfig
537
+ ) -> Dict[str, Dict[str, Any]]:
538
+ """Update zone tracking with current frame data."""
539
+ if not zone_analysis or not config.zone_config or not config.zone_config['zones']:
540
+ return {}
541
+
542
+ enhanced_zone_analysis = {}
543
+ zones = config.zone_config['zones']
544
+
545
+ track_to_cat = {det.get('track_id'): det.get('category') for det in detections if det.get('track_id') is not None}
546
+ current_frame_zone_tracks = {}
547
+
548
+ for zone_name in zones.keys():
549
+ current_frame_zone_tracks[zone_name] = set()
550
+ if zone_name not in self._zone_current_track_ids:
551
+ self._zone_current_track_ids[zone_name] = set()
552
+ if zone_name not in self._zone_total_track_ids:
553
+ self._zone_total_track_ids[zone_name] = set()
554
+
555
+ for detection in detections:
556
+ track_id = detection.get("track_id")
557
+ if track_id is None:
558
+ continue
559
+
560
+ bbox = detection.get("bounding_box", detection.get("bbox"))
561
+ if not bbox:
562
+ continue
563
+
564
+ center_point = get_bbox_bottom25_center(bbox)
565
+ in_any_zone = False
566
+
567
+ for zone_name, zone_polygon in zones.items():
568
+ polygon_points = [(point[0], point[1]) for point in zone_polygon]
569
+ if point_in_polygon(center_point, polygon_points):
570
+ current_frame_zone_tracks[zone_name].add(track_id)
571
+ in_any_zone = True
572
+ if track_id not in self._total_count_list:
573
+ self._total_count_list.append(track_id)
574
+
575
+ if in_any_zone:
576
+ cat = track_to_cat.get(track_id)
577
+ if cat:
578
+ self._current_frame_track_ids.setdefault(cat, set()).add(track_id)
579
+ if track_id not in self._tracked_in_zones:
580
+ self._tracked_in_zones.add(track_id)
581
+ self._per_category_total_track_ids.setdefault(cat, set()).add(track_id)
582
+
583
+ for zone_name, zone_counts in zone_analysis.items():
584
+ current_tracks = current_frame_zone_tracks.get(zone_name, set())
585
+ self._zone_current_track_ids[zone_name] = current_tracks
586
+ self._zone_total_track_ids[zone_name].update(current_tracks)
587
+ self._zone_current_counts[zone_name] = len(current_tracks)
588
+ self._zone_total_counts[zone_name] = len(self._zone_total_track_ids[zone_name])
589
+
590
+ enhanced_zone_analysis[zone_name] = {
591
+ "current_count": self._zone_current_counts[zone_name],
592
+ "total_count": self._zone_total_counts[zone_name],
593
+ "current_track_ids": list(current_tracks),
594
+ "total_track_ids": list(self._zone_total_track_ids[zone_name]),
595
+ "original_counts": zone_counts
596
+ }
597
+
598
+ return enhanced_zone_analysis
599
+
600
+ def _normalize_yolo_results(self, data: Any, index_to_category: Optional[Dict[int, str]] = None) -> Any:
601
+ """Normalize YOLO-style outputs to internal detection schema."""
602
+ def to_bbox_dict(d: Dict[str, Any]) -> Dict[str, Any]:
603
+ if "bounding_box" in d and isinstance(d["bounding_box"], dict):
604
+ return d["bounding_box"]
605
+ if "bbox" in d:
606
+ bbox = d["bbox"]
607
+ if isinstance(bbox, dict):
608
+ return bbox
609
+ if isinstance(bbox, (list, tuple)) and len(bbox) >= 4:
610
+ return {"x1": bbox[0], "y1": bbox[1], "x2": bbox[2], "y2": bbox[3]}
611
+ if "xyxy" in d and isinstance(d["xyxy"], (list, tuple)) and len(d["xyxy"]) >= 4:
612
+ return {"x1": d["xyxy"][0], "y1": d["xyxy"][1], "x2": d["xyxy"][2], "y2": d["xyxy"][3]}
613
+ if "xywh" in d and isinstance(d["xywh"], (list, tuple)) and len(d["xywh"]) >= 4:
614
+ cx, cy, w, h = d["xywh"][:4]
615
+ return {"x1": cx - w/2, "y1": cy - h/2, "x2": cx + w/2, "y2": cy + h/2}
616
+ return {}
617
+
618
+ def resolve_category(d: Dict[str, Any]) -> Tuple[str, Optional[int]]:
619
+ raw_cls = d.get("category", d.get("category_id", d.get("class", d.get("cls"))))
620
+ label_name = d.get("name")
621
+ if isinstance(raw_cls, int):
622
+ if index_to_category and raw_cls in index_to_category:
623
+ return index_to_category[raw_cls], raw_cls
624
+ return str(raw_cls), raw_cls
625
+ if isinstance(raw_cls, str):
626
+ return raw_cls, None
627
+ if label_name:
628
+ return str(label_name), None
629
+ return "unknown", None
630
+
631
+ def normalize_det(det: Dict[str, Any]) -> Dict[str, Any]:
632
+ category_name, category_id = resolve_category(det)
633
+ confidence = det.get("confidence", det.get("conf", det.get("score", 0.0)))
634
+ bbox = to_bbox_dict(det)
635
+ normalized = {"category": category_name, "confidence": confidence, "bounding_box": bbox}
636
+ if category_id is not None:
637
+ normalized["category_id"] = category_id
638
+ for key in ("track_id", "frame_id", "masks", "segmentation"):
639
+ if key in det:
640
+ normalized[key] = det[key]
641
+ return normalized
642
+
643
+ if isinstance(data, list):
644
+ return [normalize_det(d) if isinstance(d, dict) else d for d in data]
645
+ if isinstance(data, dict):
646
+ normalized_dict: Dict[str, Any] = {}
647
+ for k, v in data.items():
648
+ if isinstance(v, list):
649
+ normalized_dict[k] = [normalize_det(d) if isinstance(d, dict) else d for d in v]
650
+ elif isinstance(v, dict):
651
+ normalized_dict[k] = normalize_det(v)
652
+ else:
653
+ normalized_dict[k] = v
654
+ return normalized_dict
655
+ return data
656
+
657
+ def _check_alerts(self, summary: dict, zone_analysis: Dict, frame_number: Any, config: VehicleMonitoringWrongWayConfig) -> List[Dict]:
658
+ """Check for alert conditions."""
659
+ alerts = []
660
+ if not config.alert_config:
661
+ return alerts
662
+
663
+ total_detections = summary.get("total_count", 0)
664
+ per_category_count = summary.get("per_category_count", {})
665
+ frame_key = str(frame_number) if frame_number is not None else "current_frame"
666
+
667
+ if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
668
+ for category, threshold in config.alert_config.count_thresholds.items():
669
+ if category == "all" and total_detections > threshold:
670
+ alerts.append({
671
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
672
+ "alert_id": f"alert_{category}_{frame_key}",
673
+ "incident_category": self.CASE_TYPE,
674
+ "threshold_level": threshold,
675
+ "settings": {}
676
+ })
677
+ elif category in per_category_count and per_category_count[category] > threshold:
678
+ alerts.append({
679
+ "alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
680
+ "alert_id": f"alert_{category}_{frame_key}",
681
+ "incident_category": self.CASE_TYPE,
682
+ "threshold_level": threshold,
683
+ "settings": {}
684
+ })
685
+ return alerts
686
+
687
+ def _generate_business_analytics(self, counting_summary: Dict, zone_analysis: Dict, alerts: Any,
688
+ config: VehicleMonitoringWrongWayConfig, stream_info: Optional[Dict[str, Any]] = None,
689
+ is_empty=False) -> List[Dict]:
690
+ """Generate business analytics (placeholder)."""
691
+ if is_empty:
692
+ return []
693
+ return []
694
+
695
+ def _generate_summary(self, summary: dict, zone_analysis: Dict, incidents: List, tracking_stats: List,
696
+ business_analytics: List, alerts: List) -> List[str]:
697
+ """Generate human-readable summary."""
698
+ lines = []
699
+ lines.append(f"Application Name: {self.CASE_TYPE}")
700
+ lines.append(f"Application Version: {self.CASE_VERSION}")
701
+ if len(incidents) > 0:
702
+ lines.append(f"Incidents: \n\t{incidents[0].get('human_text', 'No incidents detected')}")
703
+ if len(tracking_stats) > 0:
704
+ lines.append(f"Tracking Statistics: \t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}")
705
+ if len(business_analytics) > 0:
706
+ lines.append(f"Business Analytics: \t{business_analytics[0].get('human_text', 'No business analytics detected')}")
707
+ if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
708
+ lines.append("Summary: No Summary Data")
709
+ return ["\n".join(lines)]
710
+
711
+ def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
712
+ """Get track ID information."""
713
+ frame_track_ids = set()
714
+ for det in detections:
715
+ tid = det.get('track_id')
716
+ if tid is not None:
717
+ frame_track_ids.add(tid)
718
+ total_track_ids = set()
719
+ for s in getattr(self, '_per_category_total_track_ids', {}).values():
720
+ total_track_ids.update(s)
721
+ return {
722
+ "total_count": len(total_track_ids),
723
+ "current_frame_count": len(frame_track_ids),
724
+ "total_unique_track_ids": len(total_track_ids),
725
+ "current_frame_track_ids": list(frame_track_ids),
726
+ "last_update_time": time.time(),
727
+ "total_frames_processed": getattr(self, '_total_frame_counter', 0)
728
+ }
729
+
730
+ def _update_tracking_state(self, detections: list, has_zones: bool = False):
731
+ """Update tracking state with canonical ID merging."""
732
+ if not hasattr(self, "_per_category_total_track_ids"):
733
+ self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
734
+ self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
735
+
736
+ for det in detections:
737
+ cat = det.get("category")
738
+ raw_track_id = det.get("track_id")
739
+ if cat not in self.target_categories or raw_track_id is None:
740
+ continue
741
+ bbox = det.get("bounding_box", det.get("bbox"))
742
+ canonical_id = self._merge_or_register_track(raw_track_id, bbox)
743
+ det["track_id"] = canonical_id
744
+ if not has_zones:
745
+ self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
746
+ self._current_frame_track_ids.setdefault(cat, set()).add(canonical_id)
747
+
748
+ def get_total_counts(self):
749
+ """Get total counts per category."""
750
+ return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
751
+
752
+ def _count_categories(self, detections: list, config: VehicleMonitoringWrongWayConfig) -> dict:
753
+ """Count detections per category."""
754
+ counts = {}
755
+ for det in detections:
756
+ cat = det.get('category', 'unknown')
757
+ counts[cat] = counts.get(cat, 0) + 1
758
+ return {
759
+ "total_count": sum(counts.values()),
760
+ "per_category_count": counts,
761
+ "detections": [
762
+ {
763
+ "bounding_box": det.get("bounding_box"),
764
+ "category": det.get("category"),
765
+ "confidence": det.get("confidence"),
766
+ "track_id": det.get("track_id"),
767
+ "frame_id": det.get("frame_id")
768
+ }
769
+ for det in detections
770
+ ]
771
+ }
772
+
773
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
774
+ """Extract predictions from detections."""
775
+ return [
776
+ {
777
+ "category": det.get("category", "unknown"),
778
+ "confidence": det.get("confidence", 0.0),
779
+ "bounding_box": det.get("bounding_box", {})
780
+ }
781
+ for det in detections
782
+ ]
783
+
784
+ def _format_timestamp_for_stream(self, timestamp: float) -> str:
785
+ """Format timestamp for stream output."""
786
+ dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
787
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
788
+
789
+ def _format_timestamp_for_video(self, timestamp: float) -> str:
790
+ """Format timestamp for video output."""
791
+ hours = int(timestamp // 3600)
792
+ minutes = int((timestamp % 3600) // 60)
793
+ seconds = round(float(timestamp % 60), 2)
794
+ return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
795
+
796
+ def _format_timestamp(self, timestamp: Any) -> str:
797
+ """Format timestamp to standard format."""
798
+ if isinstance(timestamp, (int, float)):
799
+ dt = datetime.fromtimestamp(timestamp, timezone.utc)
800
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
801
+ if not isinstance(timestamp, str):
802
+ return str(timestamp)
803
+ timestamp_clean = timestamp.replace(' UTC', '').strip()
804
+ if '.' in timestamp_clean:
805
+ timestamp_clean = timestamp_clean.split('.')[0]
806
+ try:
807
+ if timestamp_clean.count('-') >= 2:
808
+ parts = timestamp_clean.split('-')
809
+ if len(parts) >= 4:
810
+ return f"{parts[0]}:{parts[1]}:{parts[2]} {'-'.join(parts[3:])}"
811
+ except Exception:
812
+ pass
813
+ return timestamp_clean
814
+
815
+ def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
816
+ """Get formatted current timestamp based on stream type."""
817
+ if not stream_info:
818
+ return "00:00:00.00"
819
+
820
+ if precision:
821
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
822
+ return self._format_timestamp(stream_info.get("input_settings", {}).get("stream_time", "NA"))
823
+ else:
824
+ return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
825
+
826
+ if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
827
+ return self._format_timestamp(stream_info.get("input_settings", {}).get("stream_time", "NA"))
828
+ else:
829
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
830
+ if stream_time_str:
831
+ try:
832
+ timestamp_str = stream_time_str.replace(" UTC", "")
833
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
834
+ timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
835
+ return self._format_timestamp_for_stream(timestamp)
836
+ except:
837
+ return self._format_timestamp_for_stream(time.time())
838
+ else:
839
+ return self._format_timestamp_for_stream(time.time())
840
+
841
+ def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
842
+ """Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
843
+ if not stream_info:
844
+ return "00:00:00"
845
+
846
+ if precision:
847
+ if self.start_timer is None:
848
+ candidate = stream_info.get("input_settings", {}).get("stream_time")
849
+ if not candidate or candidate == "NA":
850
+ candidate = datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
851
+ self.start_timer = candidate
852
+ return self._format_timestamp(self.start_timer)
853
+ elif stream_info.get("input_settings", {}).get("start_frame", "na") == 1:
854
+ candidate = stream_info.get("input_settings", {}).get("stream_time")
855
+ if not candidate or candidate == "NA":
856
+ candidate = datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
857
+ self.start_timer = candidate
858
+ return self._format_timestamp(self.start_timer)
859
+ else:
860
+ return self._format_timestamp(self.start_timer)
861
+
862
+ if self.start_timer is None:
863
+ # Prefer direct input_settings.stream_time if available and not NA
864
+ candidate = stream_info.get("input_settings", {}).get("stream_time")
865
+ if not candidate or candidate == "NA":
866
+ # Fallback to nested stream_info.stream_time used by current timestamp path
867
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
868
+ if stream_time_str:
869
+ try:
870
+ timestamp_str = stream_time_str.replace(" UTC", "")
871
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
872
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
873
+ candidate = datetime.fromtimestamp(self._tracking_start_time, timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
874
+ except:
875
+ candidate = datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
876
+ else:
877
+ candidate = datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
878
+ self.start_timer = candidate
879
+ return self._format_timestamp(self.start_timer)
880
+ elif stream_info.get("input_settings", {}).get("start_frame", "na") == 1:
881
+ candidate = stream_info.get("input_settings", {}).get("stream_time")
882
+ if not candidate or candidate == "NA":
883
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
884
+ if stream_time_str:
885
+ try:
886
+ timestamp_str = stream_time_str.replace(" UTC", "")
887
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
888
+ ts = dt.replace(tzinfo=timezone.utc).timestamp()
889
+ candidate = datetime.fromtimestamp(ts, timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
890
+ except:
891
+ candidate = datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
892
+ else:
893
+ candidate = datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
894
+ self.start_timer = candidate
895
+ return self._format_timestamp(self.start_timer)
896
+
897
+ else:
898
+ if self.start_timer is not None and self.start_timer != "NA":
899
+ return self._format_timestamp(self.start_timer)
900
+
901
+ if self._tracking_start_time is None:
902
+ stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
903
+ if stream_time_str:
904
+ try:
905
+ timestamp_str = stream_time_str.replace(" UTC", "")
906
+ dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
907
+ self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
908
+ except:
909
+ self._tracking_start_time = time.time()
910
+ else:
911
+ self._tracking_start_time = time.time()
912
+
913
+ dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
914
+ dt = dt.replace(minute=0, second=0, microsecond=0)
915
+ return dt.strftime('%Y:%m:%d %H:%M:%S')
916
+
917
+ def _count_categories(self, detections: list, config: VehicleMonitoringWrongWayConfig) -> dict:
918
+ counts = {}
919
+ for det in detections:
920
+ cat = det.get('category', 'unknown')
921
+ counts[cat] = counts.get(cat, 0) + 1
922
+ return {
923
+ "total_count": sum(counts.values()),
924
+ "per_category_count": counts,
925
+ "detections": [
926
+ {
927
+ "bounding_box": det.get("bounding_box"),
928
+ "category": det.get("category"),
929
+ "confidence": det.get("confidence"),
930
+ "track_id": det.get("track_id"),
931
+ "frame_id": det.get("frame_id")
932
+ }
933
+ for det in detections
934
+ ]
935
+ }
936
+
937
+ def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
938
+ return [
939
+ {
940
+ "category": det.get("category", "unknown"),
941
+ "confidence": det.get("confidence", 0.0),
942
+ "bounding_box": det.get("bounding_box", {})
943
+ }
944
+ for det in detections
945
+ ]
946
+
947
+ def _compute_iou(self, box1: Any, box2: Any) -> float:
948
+ def _bbox_to_list(bbox):
949
+ if bbox is None:
950
+ return []
951
+ if isinstance(bbox, list):
952
+ return bbox[:4] if len(bbox) >= 4 else []
953
+ if isinstance(bbox, dict):
954
+ if "xmin" in bbox:
955
+ return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
956
+ if "x1" in bbox:
957
+ return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
958
+ values = [v for v in bbox.values() if isinstance(v, (int, float))]
959
+ return values[:4] if len(values) >= 4 else []
960
+ return []
961
+
962
+ l1 = _bbox_to_list(box1)
963
+ l2 = _bbox_to_list(box2)
964
+ if len(l1) < 4 or len(l2) < 4:
965
+ return 0.0
966
+ x1_min, y1_min, x1_max, y1_max = l1
967
+ x2_min, y2_min, x2_max, y2_max = l2
968
+ x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
969
+ y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
970
+ x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
971
+ y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
972
+ inter_x_min = max(x1_min, x2_min)
973
+ inter_y_min = max(y1_min, y2_min)
974
+ inter_x_max = min(x1_max, x2_max)
975
+ inter_y_max = min(y1_max, y2_max)
976
+ inter_w = max(0.0, inter_x_max - inter_x_min)
977
+ inter_h = max(0.0, inter_y_max - inter_y_min)
978
+ inter_area = inter_w * inter_h
979
+ area1 = (x1_max - x1_min) * (y1_max - y1_min)
980
+ area2 = (x2_max - x2_min) * (y2_max - y2_min)
981
+ union_area = area1 + area2 - inter_area
982
+ return (inter_area / union_area) if union_area > 0 else 0.0
983
+
984
+ def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
985
+ if raw_id is None or bbox is None:
986
+ return raw_id
987
+ now = time.time()
988
+ if raw_id in self._track_aliases:
989
+ canonical_id = self._track_aliases[raw_id]
990
+ track_info = self._canonical_tracks.get(canonical_id)
991
+ if track_info is not None:
992
+ track_info["last_bbox"] = bbox
993
+ track_info["last_update"] = now
994
+ track_info["raw_ids"].add(raw_id)
995
+ return canonical_id
996
+ for canonical_id, info in self._canonical_tracks.items():
997
+ if now - info["last_update"] > self._track_merge_time_window:
998
+ continue
999
+ iou = self._compute_iou(bbox, info["last_bbox"])
1000
+ if iou >= self._track_merge_iou_threshold:
1001
+ self._track_aliases[raw_id] = canonical_id
1002
+ info["last_bbox"] = bbox
1003
+ info["last_update"] = now
1004
+ info["raw_ids"].add(raw_id)
1005
+ return canonical_id
1006
+ canonical_id = raw_id
1007
+ self._track_aliases[raw_id] = canonical_id
1008
+ self._canonical_tracks[canonical_id] = {
1009
+ "last_bbox": bbox,
1010
+ "last_update": now,
1011
+ "raw_ids": {raw_id},
1012
+ }
1013
+ return canonical_id
1014
+
1015
+ def _get_tracking_start_time(self) -> str:
1016
+ if self._tracking_start_time is None:
1017
+ return "N/A"
1018
+ return self._format_timestamp(self._tracking_start_time)
1019
+
1020
+ def _set_tracking_start_time(self) -> None:
1021
+ self._tracking_start_time = time.time()