matrice-analytics 0.1.70__py3-none-any.whl → 0.1.96__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- matrice_analytics/post_processing/__init__.py +8 -2
- matrice_analytics/post_processing/config.py +4 -2
- matrice_analytics/post_processing/core/base.py +1 -1
- matrice_analytics/post_processing/core/config.py +40 -3
- matrice_analytics/post_processing/face_reg/face_recognition.py +1014 -201
- matrice_analytics/post_processing/face_reg/face_recognition_client.py +171 -29
- matrice_analytics/post_processing/face_reg/people_activity_logging.py +19 -0
- matrice_analytics/post_processing/post_processor.py +4 -0
- matrice_analytics/post_processing/usecases/__init__.py +4 -1
- matrice_analytics/post_processing/usecases/advanced_customer_service.py +913 -500
- matrice_analytics/post_processing/usecases/color_detection.py +19 -18
- matrice_analytics/post_processing/usecases/customer_service.py +356 -9
- matrice_analytics/post_processing/usecases/fire_detection.py +241 -23
- matrice_analytics/post_processing/usecases/footfall.py +750 -0
- matrice_analytics/post_processing/usecases/license_plate_monitoring.py +638 -40
- matrice_analytics/post_processing/usecases/people_counting.py +66 -33
- matrice_analytics/post_processing/usecases/vehicle_monitoring.py +35 -34
- matrice_analytics/post_processing/usecases/weapon_detection.py +2 -1
- matrice_analytics/post_processing/utils/alert_instance_utils.py +1018 -0
- matrice_analytics/post_processing/utils/business_metrics_manager_utils.py +1338 -0
- matrice_analytics/post_processing/utils/incident_manager_utils.py +1754 -0
- {matrice_analytics-0.1.70.dist-info → matrice_analytics-0.1.96.dist-info}/METADATA +1 -1
- {matrice_analytics-0.1.70.dist-info → matrice_analytics-0.1.96.dist-info}/RECORD +26 -22
- {matrice_analytics-0.1.70.dist-info → matrice_analytics-0.1.96.dist-info}/WHEEL +0 -0
- {matrice_analytics-0.1.70.dist-info → matrice_analytics-0.1.96.dist-info}/licenses/LICENSE.txt +0 -0
- {matrice_analytics-0.1.70.dist-info → matrice_analytics-0.1.96.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,750 @@
|
|
|
1
|
+
from typing import Any, Dict, List, Optional
|
|
2
|
+
from dataclasses import asdict
|
|
3
|
+
import time
|
|
4
|
+
from datetime import datetime, timezone
|
|
5
|
+
|
|
6
|
+
from ..core.base import BaseProcessor, ProcessingContext, ProcessingResult, ConfigProtocol, ResultFormat
|
|
7
|
+
from ..utils import (
|
|
8
|
+
filter_by_confidence,
|
|
9
|
+
filter_by_categories,
|
|
10
|
+
apply_category_mapping,
|
|
11
|
+
count_objects_by_category,
|
|
12
|
+
count_objects_in_zones,
|
|
13
|
+
calculate_counting_summary,
|
|
14
|
+
match_results_structure,
|
|
15
|
+
bbox_smoothing,
|
|
16
|
+
BBoxSmoothingConfig,
|
|
17
|
+
BBoxSmoothingTracker
|
|
18
|
+
)
|
|
19
|
+
from dataclasses import dataclass, field
|
|
20
|
+
from ..core.config import BaseConfig, AlertConfig, ZoneConfig
|
|
21
|
+
|
|
22
|
+
@dataclass
|
|
23
|
+
class FootFallConfig(BaseConfig):
|
|
24
|
+
"""Configuration for footfall use case."""
|
|
25
|
+
|
|
26
|
+
# Smoothing configuration
|
|
27
|
+
enable_smoothing: bool = False
|
|
28
|
+
smoothing_algorithm: str = "observability" # "window" or "observability"
|
|
29
|
+
smoothing_window_size: int = 20
|
|
30
|
+
smoothing_cooldown_frames: int = 5
|
|
31
|
+
smoothing_confidence_range_factor: float = 0.5
|
|
32
|
+
|
|
33
|
+
# Zone configuration
|
|
34
|
+
zone_config: Optional[ZoneConfig] = None
|
|
35
|
+
|
|
36
|
+
# Counting parameters
|
|
37
|
+
enable_unique_counting: bool = True
|
|
38
|
+
time_window_minutes: int = 60
|
|
39
|
+
|
|
40
|
+
# Category mapping
|
|
41
|
+
person_categories: List[str] = field(default_factory=lambda: ["person"])
|
|
42
|
+
index_to_category: Optional[Dict[int, str]] = None
|
|
43
|
+
|
|
44
|
+
# Alert configuration
|
|
45
|
+
alert_config: Optional[AlertConfig] = None
|
|
46
|
+
|
|
47
|
+
target_categories: List[str] = field(
|
|
48
|
+
default_factory=lambda: ['person']
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
def validate(self) -> List[str]:
|
|
52
|
+
"""Validate people counting configuration."""
|
|
53
|
+
errors = super().validate()
|
|
54
|
+
|
|
55
|
+
if self.time_window_minutes <= 0:
|
|
56
|
+
errors.append("time_window_minutes must be positive")
|
|
57
|
+
|
|
58
|
+
if not self.person_categories:
|
|
59
|
+
errors.append("person_categories cannot be empty")
|
|
60
|
+
|
|
61
|
+
# Validate nested configurations
|
|
62
|
+
if self.zone_config:
|
|
63
|
+
errors.extend(self.zone_config.validate())
|
|
64
|
+
|
|
65
|
+
if self.alert_config:
|
|
66
|
+
errors.extend(self.alert_config.validate())
|
|
67
|
+
|
|
68
|
+
return errors
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class FootFallUseCase(BaseProcessor):
|
|
73
|
+
CATEGORY_DISPLAY = {
|
|
74
|
+
"person": "Person"
|
|
75
|
+
}
|
|
76
|
+
|
|
77
|
+
def __init__(self):
|
|
78
|
+
super().__init__("footfall")
|
|
79
|
+
self.category = "retail"
|
|
80
|
+
self.CASE_TYPE: Optional[str] = 'footfall'
|
|
81
|
+
self.CASE_VERSION: Optional[str] = '1.1'
|
|
82
|
+
self.target_categories = ['person'] #['person', 'people','human','man','woman','male','female']
|
|
83
|
+
self.smoothing_tracker = None
|
|
84
|
+
self.tracker = None
|
|
85
|
+
self._total_frame_counter = 0
|
|
86
|
+
self._global_frame_offset = 0
|
|
87
|
+
self._tracking_start_time = None
|
|
88
|
+
self._track_aliases: Dict[Any, Any] = {}
|
|
89
|
+
self._canonical_tracks: Dict[Any, Dict[str, Any]] = {}
|
|
90
|
+
self._track_merge_iou_threshold: float = 0.05
|
|
91
|
+
self._track_merge_time_window: float = 7.0
|
|
92
|
+
self._ascending_alert_list: List[int] = []
|
|
93
|
+
self.current_incident_end_timestamp: str = "N/A"
|
|
94
|
+
self.start_timer = None
|
|
95
|
+
|
|
96
|
+
def process(self, data: Any, config: ConfigProtocol, context: Optional[ProcessingContext] = None,
|
|
97
|
+
stream_info: Optional[Dict[str, Any]] = None) -> ProcessingResult:
|
|
98
|
+
processing_start = time.time()
|
|
99
|
+
if not isinstance(config, FootFallConfig):
|
|
100
|
+
return self.create_error_result("Invalid config type", usecase=self.name, category=self.category, context=context)
|
|
101
|
+
if context is None:
|
|
102
|
+
context = ProcessingContext()
|
|
103
|
+
|
|
104
|
+
input_format = match_results_structure(data)
|
|
105
|
+
context.input_format = input_format
|
|
106
|
+
context.confidence_threshold = config.confidence_threshold
|
|
107
|
+
|
|
108
|
+
if config.confidence_threshold is not None:
|
|
109
|
+
processed_data = filter_by_confidence(data, config.confidence_threshold)
|
|
110
|
+
self.logger.debug(f"Applied confidence filtering with threshold {config.confidence_threshold}")
|
|
111
|
+
else:
|
|
112
|
+
processed_data = data
|
|
113
|
+
self.logger.debug("Did not apply confidence filtering since no threshold provided")
|
|
114
|
+
|
|
115
|
+
if config.index_to_category:
|
|
116
|
+
processed_data = apply_category_mapping(processed_data, config.index_to_category)
|
|
117
|
+
self.logger.debug("Applied category mapping")
|
|
118
|
+
|
|
119
|
+
if config.target_categories:
|
|
120
|
+
processed_data = [d for d in processed_data if d.get('category') in self.target_categories]
|
|
121
|
+
self.logger.debug("Applied category filtering")
|
|
122
|
+
|
|
123
|
+
# if config.enable_smoothing:
|
|
124
|
+
# if self.smoothing_tracker is None:
|
|
125
|
+
# smoothing_config = BBoxSmoothingConfig(
|
|
126
|
+
# smoothing_algorithm=config.smoothing_algorithm,
|
|
127
|
+
# window_size=config.smoothing_window_size,
|
|
128
|
+
# cooldown_frames=config.smoothing_cooldown_frames,
|
|
129
|
+
# confidence_threshold=config.confidence_threshold,
|
|
130
|
+
# confidence_range_factor=config.smoothing_confidence_range_factor,
|
|
131
|
+
# enable_smoothing=True
|
|
132
|
+
# )
|
|
133
|
+
# self.smoothing_tracker = BBoxSmoothingTracker(smoothing_config)
|
|
134
|
+
# processed_data = bbox_smoothing(processed_data, self.smoothing_tracker.config, self.smoothing_tracker)
|
|
135
|
+
|
|
136
|
+
try:
|
|
137
|
+
from ..advanced_tracker import AdvancedTracker
|
|
138
|
+
from ..advanced_tracker.config import TrackerConfig
|
|
139
|
+
if self.tracker is None:
|
|
140
|
+
tracker_config = TrackerConfig(
|
|
141
|
+
track_high_thresh=0.4,
|
|
142
|
+
track_low_thresh=0.05,
|
|
143
|
+
new_track_thresh=0.3,
|
|
144
|
+
match_thresh=0.8)
|
|
145
|
+
self.tracker = AdvancedTracker(tracker_config)
|
|
146
|
+
self.logger.info("Initialized AdvancedTracker for People Counting")
|
|
147
|
+
processed_data = self.tracker.update(processed_data)
|
|
148
|
+
except Exception as e:
|
|
149
|
+
self.logger.warning(f"AdvancedTracker failed: {e}")
|
|
150
|
+
|
|
151
|
+
self._update_tracking_state(processed_data)
|
|
152
|
+
self._total_frame_counter += 1
|
|
153
|
+
|
|
154
|
+
frame_number = None
|
|
155
|
+
if stream_info:
|
|
156
|
+
input_settings = stream_info.get("input_settings", {})
|
|
157
|
+
start_frame = input_settings.get("start_frame")
|
|
158
|
+
end_frame = input_settings.get("end_frame")
|
|
159
|
+
if start_frame is not None and end_frame is not None and start_frame == end_frame:
|
|
160
|
+
frame_number = start_frame
|
|
161
|
+
|
|
162
|
+
general_counting_summary = calculate_counting_summary(data)
|
|
163
|
+
counting_summary = self._count_categories(processed_data, config)
|
|
164
|
+
total_counts = self.get_total_counts()
|
|
165
|
+
counting_summary['total_counts'] = total_counts
|
|
166
|
+
|
|
167
|
+
alerts = self._check_alerts(counting_summary, frame_number, config)
|
|
168
|
+
predictions = self._extract_predictions(processed_data)
|
|
169
|
+
|
|
170
|
+
incidents_list = self._generate_incidents(counting_summary, alerts, config, frame_number, stream_info)
|
|
171
|
+
tracking_stats_list = self._generate_tracking_stats(counting_summary, alerts, config, frame_number, stream_info)
|
|
172
|
+
business_analytics_list = self._generate_business_analytics(counting_summary, alerts, config, stream_info, is_empty=True)
|
|
173
|
+
summary_list = self._generate_summary(counting_summary, incidents_list, tracking_stats_list, business_analytics_list, alerts)
|
|
174
|
+
|
|
175
|
+
incidents = incidents_list[0] if incidents_list else {}
|
|
176
|
+
tracking_stats = tracking_stats_list[0] if tracking_stats_list else {}
|
|
177
|
+
business_analytics = business_analytics_list[0] if business_analytics_list else {}
|
|
178
|
+
summary = summary_list[0] if summary_list else {}
|
|
179
|
+
agg_summary = {str(frame_number): {
|
|
180
|
+
"incidents": incidents,
|
|
181
|
+
"tracking_stats": tracking_stats,
|
|
182
|
+
"business_analytics": business_analytics,
|
|
183
|
+
"alerts": alerts,
|
|
184
|
+
"human_text": summary}
|
|
185
|
+
}
|
|
186
|
+
|
|
187
|
+
context.mark_completed()
|
|
188
|
+
result = self.create_result(
|
|
189
|
+
data={"agg_summary": agg_summary},
|
|
190
|
+
usecase=self.name,
|
|
191
|
+
category=self.category,
|
|
192
|
+
context=context
|
|
193
|
+
)
|
|
194
|
+
proc_time = time.time() - processing_start
|
|
195
|
+
processing_latency_ms = proc_time * 1000.0
|
|
196
|
+
processing_fps = (1.0 / proc_time) if proc_time > 0 else None
|
|
197
|
+
# Log the performance metrics using the module-level logger
|
|
198
|
+
print("latency in ms:",processing_latency_ms,"| Throughput fps:",processing_fps,"| Frame_Number:",self._total_frame_counter)
|
|
199
|
+
return result
|
|
200
|
+
|
|
201
|
+
def _check_alerts(self, summary: dict, frame_number: Any, config: FootFallConfig) -> List[Dict]:
|
|
202
|
+
def get_trend(data, lookback=900, threshold=0.6):
|
|
203
|
+
window = data[-lookback:] if len(data) >= lookback else data
|
|
204
|
+
if len(window) < 2:
|
|
205
|
+
return True
|
|
206
|
+
increasing = 0
|
|
207
|
+
total = 0
|
|
208
|
+
for i in range(1, len(window)):
|
|
209
|
+
if window[i] >= window[i - 1]:
|
|
210
|
+
increasing += 1
|
|
211
|
+
total += 1
|
|
212
|
+
ratio = increasing / total
|
|
213
|
+
return ratio >= threshold
|
|
214
|
+
|
|
215
|
+
frame_key = str(frame_number) if frame_number is not None else "current_frame"
|
|
216
|
+
alerts = []
|
|
217
|
+
total_detections = summary.get("total_count", 0)
|
|
218
|
+
total_counts_dict = summary.get("total_counts", {})
|
|
219
|
+
per_category_count = summary.get("per_category_count", {})
|
|
220
|
+
|
|
221
|
+
if not config.alert_config:
|
|
222
|
+
return alerts
|
|
223
|
+
|
|
224
|
+
if hasattr(config.alert_config, 'count_thresholds') and config.alert_config.count_thresholds:
|
|
225
|
+
for category, threshold in config.alert_config.count_thresholds.items():
|
|
226
|
+
if category == "all" and total_detections > threshold:
|
|
227
|
+
alerts.append({
|
|
228
|
+
"alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
|
|
229
|
+
"alert_id": f"alert_{category}_{frame_key}",
|
|
230
|
+
"incident_category": self.CASE_TYPE,
|
|
231
|
+
"threshold_level": threshold,
|
|
232
|
+
"ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
|
|
233
|
+
"settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
|
|
234
|
+
getattr(config.alert_config, 'alert_value', ['JSON']))}
|
|
235
|
+
})
|
|
236
|
+
elif category in per_category_count and per_category_count[category] > threshold:
|
|
237
|
+
alerts.append({
|
|
238
|
+
"alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
|
|
239
|
+
"alert_id": f"alert_{category}_{frame_key}",
|
|
240
|
+
"incident_category": self.CASE_TYPE,
|
|
241
|
+
"threshold_level": threshold,
|
|
242
|
+
"ascending": get_trend(self._ascending_alert_list, lookback=900, threshold=0.8),
|
|
243
|
+
"settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
|
|
244
|
+
getattr(config.alert_config, 'alert_value', ['JSON']))}
|
|
245
|
+
})
|
|
246
|
+
return alerts
|
|
247
|
+
|
|
248
|
+
def _generate_incidents(self, counting_summary: Dict, alerts: List, config: FootFallConfig,
|
|
249
|
+
frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[Dict]:
|
|
250
|
+
incidents = []
|
|
251
|
+
total_detections = counting_summary.get("total_count", 0)
|
|
252
|
+
current_timestamp = self._get_current_timestamp_str(stream_info)
|
|
253
|
+
camera_info = self.get_camera_info_from_stream(stream_info)
|
|
254
|
+
|
|
255
|
+
self._ascending_alert_list = self._ascending_alert_list[-900:] if len(self._ascending_alert_list) > 900 else self._ascending_alert_list
|
|
256
|
+
|
|
257
|
+
if total_detections > 0:
|
|
258
|
+
level = "low"
|
|
259
|
+
intensity = 5.0
|
|
260
|
+
start_timestamp = self._get_start_timestamp_str(stream_info)
|
|
261
|
+
if start_timestamp and self.current_incident_end_timestamp == 'N/A':
|
|
262
|
+
self.current_incident_end_timestamp = 'Incident still active'
|
|
263
|
+
elif start_timestamp and self.current_incident_end_timestamp == 'Incident still active':
|
|
264
|
+
if len(self._ascending_alert_list) >= 15 and sum(self._ascending_alert_list[-15:]) / 15 < 1.5:
|
|
265
|
+
self.current_incident_end_timestamp = current_timestamp
|
|
266
|
+
elif self.current_incident_end_timestamp != 'Incident still active' and self.current_incident_end_timestamp != 'N/A':
|
|
267
|
+
self.current_incident_end_timestamp = 'N/A'
|
|
268
|
+
|
|
269
|
+
if config.alert_config and config.alert_config.count_thresholds:
|
|
270
|
+
threshold = config.alert_config.count_thresholds.get("all", 15)
|
|
271
|
+
intensity = min(10.0, (total_detections / threshold) * 10)
|
|
272
|
+
if intensity >= 9:
|
|
273
|
+
level = "critical"
|
|
274
|
+
self._ascending_alert_list.append(3)
|
|
275
|
+
elif intensity >= 7:
|
|
276
|
+
level = "significant"
|
|
277
|
+
self._ascending_alert_list.append(2)
|
|
278
|
+
elif intensity >= 5:
|
|
279
|
+
level = "medium"
|
|
280
|
+
self._ascending_alert_list.append(1)
|
|
281
|
+
else:
|
|
282
|
+
level = "low"
|
|
283
|
+
self._ascending_alert_list.append(0)
|
|
284
|
+
else:
|
|
285
|
+
if total_detections > 30:
|
|
286
|
+
level = "critical"
|
|
287
|
+
intensity = 10.0
|
|
288
|
+
self._ascending_alert_list.append(3)
|
|
289
|
+
elif total_detections > 25:
|
|
290
|
+
level = "significant"
|
|
291
|
+
intensity = 9.0
|
|
292
|
+
self._ascending_alert_list.append(2)
|
|
293
|
+
elif total_detections > 15:
|
|
294
|
+
level = "medium"
|
|
295
|
+
intensity = 7.0
|
|
296
|
+
self._ascending_alert_list.append(1)
|
|
297
|
+
else:
|
|
298
|
+
level = "low"
|
|
299
|
+
intensity = min(10.0, total_detections / 3.0)
|
|
300
|
+
self._ascending_alert_list.append(0)
|
|
301
|
+
|
|
302
|
+
human_text_lines = [f"COUNTING INCIDENTS DETECTED @ {current_timestamp}:"]
|
|
303
|
+
human_text_lines.append(f"\tSeverity Level: {(self.CASE_TYPE, level)}")
|
|
304
|
+
human_text = "\n".join(human_text_lines)
|
|
305
|
+
|
|
306
|
+
alert_settings = []
|
|
307
|
+
if config.alert_config and hasattr(config.alert_config, 'alert_type'):
|
|
308
|
+
alert_settings.append({
|
|
309
|
+
"alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
|
|
310
|
+
"incident_category": self.CASE_TYPE,
|
|
311
|
+
"threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
|
|
312
|
+
"ascending": True,
|
|
313
|
+
"settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
|
|
314
|
+
getattr(config.alert_config, 'alert_value', ['JSON']))}
|
|
315
|
+
})
|
|
316
|
+
|
|
317
|
+
event = self.create_incident(
|
|
318
|
+
incident_id=f"{self.CASE_TYPE}_{frame_number}",
|
|
319
|
+
incident_type=self.CASE_TYPE,
|
|
320
|
+
severity_level=level,
|
|
321
|
+
human_text=human_text,
|
|
322
|
+
camera_info=camera_info,
|
|
323
|
+
alerts=alerts,
|
|
324
|
+
alert_settings=alert_settings,
|
|
325
|
+
start_time=start_timestamp,
|
|
326
|
+
end_time=self.current_incident_end_timestamp,
|
|
327
|
+
level_settings={"low": 1, "medium": 3, "significant": 4, "critical": 7}
|
|
328
|
+
)
|
|
329
|
+
incidents.append(event)
|
|
330
|
+
else:
|
|
331
|
+
self._ascending_alert_list.append(0)
|
|
332
|
+
incidents.append({})
|
|
333
|
+
return incidents
|
|
334
|
+
|
|
335
|
+
def _generate_tracking_stats(self, counting_summary: Dict, alerts: List, config: FootFallConfig,
|
|
336
|
+
frame_number: Optional[int] = None, stream_info: Optional[Dict[str, Any]] = None) -> List[Dict]:
|
|
337
|
+
camera_info = self.get_camera_info_from_stream(stream_info)
|
|
338
|
+
tracking_stats = []
|
|
339
|
+
total_detections = counting_summary.get("total_count", 0)
|
|
340
|
+
total_counts_dict = counting_summary.get("total_counts", {})
|
|
341
|
+
per_category_count = counting_summary.get("per_category_count", {})
|
|
342
|
+
current_timestamp = self._get_current_timestamp_str(stream_info, precision=False)
|
|
343
|
+
start_timestamp = self._get_start_timestamp_str(stream_info, precision=False)
|
|
344
|
+
high_precision_start_timestamp = self._get_current_timestamp_str(stream_info, precision=True)
|
|
345
|
+
high_precision_reset_timestamp = self._get_start_timestamp_str(stream_info, precision=True)
|
|
346
|
+
|
|
347
|
+
total_counts = [{"category": cat, "count": count} for cat, count in total_counts_dict.items() if count > 0]
|
|
348
|
+
current_counts = [{"category": cat, "count": count} for cat, count in per_category_count.items() if count > 0 or total_detections > 0]
|
|
349
|
+
|
|
350
|
+
detections = []
|
|
351
|
+
for detection in counting_summary.get("detections", []):
|
|
352
|
+
bbox = detection.get("bounding_box", {})
|
|
353
|
+
category = detection.get("category", "person")
|
|
354
|
+
if detection.get("masks"):
|
|
355
|
+
segmentation = detection.get("masks", [])
|
|
356
|
+
detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
|
|
357
|
+
elif detection.get("segmentation"):
|
|
358
|
+
segmentation = detection.get("segmentation")
|
|
359
|
+
detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
|
|
360
|
+
elif detection.get("mask"):
|
|
361
|
+
segmentation = detection.get("mask")
|
|
362
|
+
detection_obj = self.create_detection_object(category, bbox, segmentation=segmentation)
|
|
363
|
+
else:
|
|
364
|
+
detection_obj = self.create_detection_object(category, bbox)
|
|
365
|
+
detections.append(detection_obj)
|
|
366
|
+
|
|
367
|
+
alert_settings = []
|
|
368
|
+
if config.alert_config and hasattr(config.alert_config, 'alert_type'):
|
|
369
|
+
alert_settings.append({
|
|
370
|
+
"alert_type": getattr(config.alert_config, 'alert_type', ['Default']),
|
|
371
|
+
"incident_category": self.CASE_TYPE,
|
|
372
|
+
"threshold_level": config.alert_config.count_thresholds if hasattr(config.alert_config, 'count_thresholds') else {},
|
|
373
|
+
"ascending": True,
|
|
374
|
+
"settings": {t: v for t, v in zip(getattr(config.alert_config, 'alert_type', ['Default']),
|
|
375
|
+
getattr(config.alert_config, 'alert_value', ['JSON']))}
|
|
376
|
+
})
|
|
377
|
+
|
|
378
|
+
human_text_lines = []
|
|
379
|
+
human_text_lines.append(f"CURRENT FRAME @ {current_timestamp}:")
|
|
380
|
+
for cat, count in per_category_count.items():
|
|
381
|
+
human_text_lines.append(f"\t- People Detected: {count}")
|
|
382
|
+
human_text_lines.append("")
|
|
383
|
+
# human_text_lines.append(f"TOTAL SINCE {start_timestamp}")
|
|
384
|
+
# for cat, count in total_counts_dict.items():
|
|
385
|
+
# if count > 0:
|
|
386
|
+
# human_text_lines.append("")
|
|
387
|
+
# human_text_lines.append(f"\t- Total unique people count: {count}")
|
|
388
|
+
# if alerts:
|
|
389
|
+
# for alert in alerts:
|
|
390
|
+
# human_text_lines.append(f"Alerts: {alert.get('settings', {})} sent @ {current_timestamp}")
|
|
391
|
+
# else:
|
|
392
|
+
# human_text_lines.append("Alerts: None")
|
|
393
|
+
human_text = "\n".join(human_text_lines)
|
|
394
|
+
|
|
395
|
+
reset_settings = [{"interval_type": "daily", "reset_time": {"value": 9, "time_unit": "hour"}}]
|
|
396
|
+
tracking_stat = self.create_tracking_stats(
|
|
397
|
+
total_counts=total_counts,
|
|
398
|
+
current_counts=current_counts,
|
|
399
|
+
detections=detections,
|
|
400
|
+
human_text=human_text,
|
|
401
|
+
camera_info=camera_info,
|
|
402
|
+
alerts=alerts,
|
|
403
|
+
alert_settings=alert_settings,
|
|
404
|
+
reset_settings=reset_settings,
|
|
405
|
+
start_time=high_precision_start_timestamp,
|
|
406
|
+
reset_time=high_precision_reset_timestamp
|
|
407
|
+
)
|
|
408
|
+
tracking_stat['target_categories'] = self.target_categories
|
|
409
|
+
tracking_stats.append(tracking_stat)
|
|
410
|
+
return tracking_stats
|
|
411
|
+
|
|
412
|
+
def _generate_business_analytics(self, counting_summary: Dict, alerts: Any, config: FootFallConfig,
|
|
413
|
+
stream_info: Optional[Dict[str, Any]] = None, is_empty=False) -> List[Dict]:
|
|
414
|
+
if is_empty:
|
|
415
|
+
return []
|
|
416
|
+
|
|
417
|
+
def _generate_summary(self, summary: dict, incidents: List, tracking_stats: List, business_analytics: List, alerts: List) -> List[str]:
|
|
418
|
+
"""
|
|
419
|
+
Generate a human_text string for the tracking_stat, incident, business analytics and alerts.
|
|
420
|
+
"""
|
|
421
|
+
lines = []
|
|
422
|
+
lines.append("Application Name: "+self.CASE_TYPE)
|
|
423
|
+
lines.append("Application Version: "+self.CASE_VERSION)
|
|
424
|
+
# if len(incidents) > 0:
|
|
425
|
+
# lines.append("Incidents: "+f"\n\t{incidents[0].get('human_text', 'No incidents detected')}")
|
|
426
|
+
if len(tracking_stats) > 0:
|
|
427
|
+
lines.append("Tracking Statistics: "+f"\t{tracking_stats[0].get('human_text', 'No tracking statistics detected')}")
|
|
428
|
+
if len(business_analytics) > 0:
|
|
429
|
+
lines.append("Business Analytics: "+f"\t{business_analytics[0].get('human_text', 'No business analytics detected')}")
|
|
430
|
+
|
|
431
|
+
if len(incidents) == 0 and len(tracking_stats) == 0 and len(business_analytics) == 0:
|
|
432
|
+
lines.append("Summary: "+"No Summary Data")
|
|
433
|
+
|
|
434
|
+
return ["\n".join(lines)]
|
|
435
|
+
|
|
436
|
+
def _get_track_ids_info(self, detections: list) -> Dict[str, Any]:
|
|
437
|
+
frame_track_ids = set()
|
|
438
|
+
for det in detections:
|
|
439
|
+
tid = det.get('track_id')
|
|
440
|
+
if tid is not None:
|
|
441
|
+
frame_track_ids.add(tid)
|
|
442
|
+
total_track_ids = set()
|
|
443
|
+
for s in getattr(self, '_per_category_total_track_ids', {}).values():
|
|
444
|
+
total_track_ids.update(s)
|
|
445
|
+
return {
|
|
446
|
+
"total_count": len(total_track_ids),
|
|
447
|
+
"current_frame_count": len(frame_track_ids),
|
|
448
|
+
"total_unique_track_ids": len(total_track_ids),
|
|
449
|
+
"current_frame_track_ids": list(frame_track_ids),
|
|
450
|
+
"last_update_time": time.time(),
|
|
451
|
+
"total_frames_processed": getattr(self, '_total_frame_counter', 0)
|
|
452
|
+
}
|
|
453
|
+
|
|
454
|
+
def _update_tracking_state(self, detections: list):
|
|
455
|
+
if not hasattr(self, "_per_category_total_track_ids"):
|
|
456
|
+
self._per_category_total_track_ids = {cat: set() for cat in self.target_categories}
|
|
457
|
+
self._current_frame_track_ids = {cat: set() for cat in self.target_categories}
|
|
458
|
+
|
|
459
|
+
for det in detections:
|
|
460
|
+
cat = det.get("category")
|
|
461
|
+
raw_track_id = det.get("track_id")
|
|
462
|
+
if cat not in self.target_categories or raw_track_id is None:
|
|
463
|
+
continue
|
|
464
|
+
bbox = det.get("bounding_box", det.get("bbox"))
|
|
465
|
+
canonical_id = self._merge_or_register_track(raw_track_id, bbox)
|
|
466
|
+
det["track_id"] = canonical_id
|
|
467
|
+
self._per_category_total_track_ids.setdefault(cat, set()).add(canonical_id)
|
|
468
|
+
self._current_frame_track_ids[cat].add(canonical_id)
|
|
469
|
+
|
|
470
|
+
def get_total_counts(self):
|
|
471
|
+
return {cat: len(ids) for cat, ids in getattr(self, '_per_category_total_track_ids', {}).items()}
|
|
472
|
+
|
|
473
|
+
def _format_timestamp_for_stream(self, timestamp: float) -> str:
|
|
474
|
+
dt = datetime.fromtimestamp(timestamp, tz=timezone.utc)
|
|
475
|
+
return dt.strftime('%Y:%m:%d %H:%M:%S')
|
|
476
|
+
|
|
477
|
+
def _format_timestamp_for_video(self, timestamp: float) -> str:
|
|
478
|
+
hours = int(timestamp // 3600)
|
|
479
|
+
minutes = int((timestamp % 3600) // 60)
|
|
480
|
+
seconds = round(float(timestamp % 60), 2)
|
|
481
|
+
return f"{hours:02d}:{minutes:02d}:{seconds:.1f}"
|
|
482
|
+
|
|
483
|
+
def _format_timestamp(self, timestamp: Any) -> str:
|
|
484
|
+
"""Format a timestamp to match the current timestamp format: YYYY:MM:DD HH:MM:SS.
|
|
485
|
+
|
|
486
|
+
The input can be either:
|
|
487
|
+
1. A numeric Unix timestamp (``float`` / ``int``) – it will be converted to datetime.
|
|
488
|
+
2. A string in the format ``YYYY-MM-DD-HH:MM:SS.ffffff UTC``.
|
|
489
|
+
|
|
490
|
+
The returned value will be in the format: YYYY:MM:DD HH:MM:SS (no milliseconds, no UTC suffix).
|
|
491
|
+
|
|
492
|
+
Example
|
|
493
|
+
-------
|
|
494
|
+
>>> self._format_timestamp("2025-10-27-19:31:20.187574 UTC")
|
|
495
|
+
'2025:10:27 19:31:20'
|
|
496
|
+
"""
|
|
497
|
+
|
|
498
|
+
# Convert numeric timestamps to datetime first
|
|
499
|
+
if isinstance(timestamp, (int, float)):
|
|
500
|
+
dt = datetime.fromtimestamp(timestamp, timezone.utc)
|
|
501
|
+
return dt.strftime('%Y:%m:%d %H:%M:%S')
|
|
502
|
+
|
|
503
|
+
# Ensure we are working with a string from here on
|
|
504
|
+
if not isinstance(timestamp, str):
|
|
505
|
+
return str(timestamp)
|
|
506
|
+
|
|
507
|
+
# Remove ' UTC' suffix if present
|
|
508
|
+
timestamp_clean = timestamp.replace(' UTC', '').strip()
|
|
509
|
+
|
|
510
|
+
# Remove milliseconds if present (everything after the last dot)
|
|
511
|
+
if '.' in timestamp_clean:
|
|
512
|
+
timestamp_clean = timestamp_clean.split('.')[0]
|
|
513
|
+
|
|
514
|
+
# Parse the timestamp string and convert to desired format
|
|
515
|
+
try:
|
|
516
|
+
# Handle format: YYYY-MM-DD-HH:MM:SS
|
|
517
|
+
if timestamp_clean.count('-') >= 2:
|
|
518
|
+
# Replace first two dashes with colons for date part, third with space
|
|
519
|
+
parts = timestamp_clean.split('-')
|
|
520
|
+
if len(parts) >= 4:
|
|
521
|
+
# parts = ['2025', '10', '27', '19:31:20']
|
|
522
|
+
formatted = f"{parts[0]}:{parts[1]}:{parts[2]} {'-'.join(parts[3:])}"
|
|
523
|
+
return formatted
|
|
524
|
+
except Exception:
|
|
525
|
+
pass
|
|
526
|
+
|
|
527
|
+
# If parsing fails, return the cleaned string as-is
|
|
528
|
+
return timestamp_clean
|
|
529
|
+
|
|
530
|
+
def _get_current_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False, frame_id: Optional[str]=None) -> str:
|
|
531
|
+
"""Get formatted current timestamp based on stream type."""
|
|
532
|
+
|
|
533
|
+
if not stream_info:
|
|
534
|
+
return "00:00:00.00"
|
|
535
|
+
if precision:
|
|
536
|
+
if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
|
|
537
|
+
if frame_id:
|
|
538
|
+
start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
|
|
539
|
+
else:
|
|
540
|
+
start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
|
|
541
|
+
stream_time_str = self._format_timestamp_for_video(start_time)
|
|
542
|
+
|
|
543
|
+
return self._format_timestamp(stream_info.get("input_settings", {}).get("stream_time", "NA"))
|
|
544
|
+
else:
|
|
545
|
+
return datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
|
|
546
|
+
|
|
547
|
+
if stream_info.get("input_settings", {}).get("start_frame", "na") != "na":
|
|
548
|
+
if frame_id:
|
|
549
|
+
start_time = int(frame_id)/stream_info.get("input_settings", {}).get("original_fps", 30)
|
|
550
|
+
else:
|
|
551
|
+
start_time = stream_info.get("input_settings", {}).get("start_frame", 30)/stream_info.get("input_settings", {}).get("original_fps", 30)
|
|
552
|
+
|
|
553
|
+
stream_time_str = self._format_timestamp_for_video(start_time)
|
|
554
|
+
|
|
555
|
+
|
|
556
|
+
return self._format_timestamp(stream_info.get("input_settings", {}).get("stream_time", "NA"))
|
|
557
|
+
else:
|
|
558
|
+
stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
|
|
559
|
+
if stream_time_str:
|
|
560
|
+
try:
|
|
561
|
+
timestamp_str = stream_time_str.replace(" UTC", "")
|
|
562
|
+
dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
|
|
563
|
+
timestamp = dt.replace(tzinfo=timezone.utc).timestamp()
|
|
564
|
+
return self._format_timestamp_for_stream(timestamp)
|
|
565
|
+
except:
|
|
566
|
+
return self._format_timestamp_for_stream(time.time())
|
|
567
|
+
else:
|
|
568
|
+
return self._format_timestamp_for_stream(time.time())
|
|
569
|
+
|
|
570
|
+
def _get_start_timestamp_str(self, stream_info: Optional[Dict[str, Any]], precision=False) -> str:
|
|
571
|
+
"""Get formatted start timestamp for 'TOTAL SINCE' based on stream type."""
|
|
572
|
+
if not stream_info:
|
|
573
|
+
return "00:00:00"
|
|
574
|
+
|
|
575
|
+
if precision:
|
|
576
|
+
if self.start_timer is None:
|
|
577
|
+
candidate = stream_info.get("input_settings", {}).get("stream_time")
|
|
578
|
+
if not candidate or candidate == "NA":
|
|
579
|
+
candidate = datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
|
|
580
|
+
self.start_timer = candidate
|
|
581
|
+
return self._format_timestamp(self.start_timer)
|
|
582
|
+
elif stream_info.get("input_settings", {}).get("start_frame", "na") == 1:
|
|
583
|
+
candidate = stream_info.get("input_settings", {}).get("stream_time")
|
|
584
|
+
if not candidate or candidate == "NA":
|
|
585
|
+
candidate = datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
|
|
586
|
+
self.start_timer = candidate
|
|
587
|
+
return self._format_timestamp(self.start_timer)
|
|
588
|
+
else:
|
|
589
|
+
return self._format_timestamp(self.start_timer)
|
|
590
|
+
|
|
591
|
+
if self.start_timer is None:
|
|
592
|
+
# Prefer direct input_settings.stream_time if available and not NA
|
|
593
|
+
candidate = stream_info.get("input_settings", {}).get("stream_time")
|
|
594
|
+
if not candidate or candidate == "NA":
|
|
595
|
+
# Fallback to nested stream_info.stream_time used by current timestamp path
|
|
596
|
+
stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
|
|
597
|
+
if stream_time_str:
|
|
598
|
+
try:
|
|
599
|
+
timestamp_str = stream_time_str.replace(" UTC", "")
|
|
600
|
+
dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
|
|
601
|
+
self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
|
|
602
|
+
candidate = datetime.fromtimestamp(self._tracking_start_time, timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
|
|
603
|
+
except:
|
|
604
|
+
candidate = datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
|
|
605
|
+
else:
|
|
606
|
+
candidate = datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
|
|
607
|
+
self.start_timer = candidate
|
|
608
|
+
return self._format_timestamp(self.start_timer)
|
|
609
|
+
elif stream_info.get("input_settings", {}).get("start_frame", "na") == 1:
|
|
610
|
+
candidate = stream_info.get("input_settings", {}).get("stream_time")
|
|
611
|
+
if not candidate or candidate == "NA":
|
|
612
|
+
stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
|
|
613
|
+
if stream_time_str:
|
|
614
|
+
try:
|
|
615
|
+
timestamp_str = stream_time_str.replace(" UTC", "")
|
|
616
|
+
dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
|
|
617
|
+
ts = dt.replace(tzinfo=timezone.utc).timestamp()
|
|
618
|
+
candidate = datetime.fromtimestamp(ts, timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
|
|
619
|
+
except:
|
|
620
|
+
candidate = datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
|
|
621
|
+
else:
|
|
622
|
+
candidate = datetime.now(timezone.utc).strftime("%Y-%m-%d-%H:%M:%S.%f UTC")
|
|
623
|
+
self.start_timer = candidate
|
|
624
|
+
return self._format_timestamp(self.start_timer)
|
|
625
|
+
|
|
626
|
+
else:
|
|
627
|
+
if self.start_timer is not None and self.start_timer != "NA":
|
|
628
|
+
return self._format_timestamp(self.start_timer)
|
|
629
|
+
|
|
630
|
+
if self._tracking_start_time is None:
|
|
631
|
+
stream_time_str = stream_info.get("input_settings", {}).get("stream_info", {}).get("stream_time", "")
|
|
632
|
+
if stream_time_str:
|
|
633
|
+
try:
|
|
634
|
+
timestamp_str = stream_time_str.replace(" UTC", "")
|
|
635
|
+
dt = datetime.strptime(timestamp_str, "%Y-%m-%d-%H:%M:%S.%f")
|
|
636
|
+
self._tracking_start_time = dt.replace(tzinfo=timezone.utc).timestamp()
|
|
637
|
+
except:
|
|
638
|
+
self._tracking_start_time = time.time()
|
|
639
|
+
else:
|
|
640
|
+
self._tracking_start_time = time.time()
|
|
641
|
+
|
|
642
|
+
dt = datetime.fromtimestamp(self._tracking_start_time, tz=timezone.utc)
|
|
643
|
+
dt = dt.replace(minute=0, second=0, microsecond=0)
|
|
644
|
+
return dt.strftime('%Y:%m:%d %H:%M:%S')
|
|
645
|
+
|
|
646
|
+
def _count_categories(self, detections: list, config: FootFallConfig) -> dict:
|
|
647
|
+
counts = {}
|
|
648
|
+
for det in detections:
|
|
649
|
+
cat = det.get('category', 'unknown')
|
|
650
|
+
counts[cat] = counts.get(cat, 0) + 1
|
|
651
|
+
return {
|
|
652
|
+
"total_count": sum(counts.values()),
|
|
653
|
+
"per_category_count": counts,
|
|
654
|
+
"detections": [
|
|
655
|
+
{
|
|
656
|
+
"bounding_box": det.get("bounding_box"),
|
|
657
|
+
"category": det.get("category"),
|
|
658
|
+
"confidence": det.get("confidence"),
|
|
659
|
+
"track_id": det.get("track_id"),
|
|
660
|
+
"frame_id": det.get("frame_id")
|
|
661
|
+
}
|
|
662
|
+
for det in detections
|
|
663
|
+
]
|
|
664
|
+
}
|
|
665
|
+
|
|
666
|
+
def _extract_predictions(self, detections: list) -> List[Dict[str, Any]]:
|
|
667
|
+
return [
|
|
668
|
+
{
|
|
669
|
+
"category": det.get("category", "unknown"),
|
|
670
|
+
"confidence": det.get("confidence", 0.0),
|
|
671
|
+
"bounding_box": det.get("bounding_box", {})
|
|
672
|
+
}
|
|
673
|
+
for det in detections
|
|
674
|
+
]
|
|
675
|
+
|
|
676
|
+
def _compute_iou(self, box1: Any, box2: Any) -> float:
|
|
677
|
+
def _bbox_to_list(bbox):
|
|
678
|
+
if bbox is None:
|
|
679
|
+
return []
|
|
680
|
+
if isinstance(bbox, list):
|
|
681
|
+
return bbox[:4] if len(bbox) >= 4 else []
|
|
682
|
+
if isinstance(bbox, dict):
|
|
683
|
+
if "xmin" in bbox:
|
|
684
|
+
return [bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"]]
|
|
685
|
+
if "x1" in bbox:
|
|
686
|
+
return [bbox["x1"], bbox["y1"], bbox["x2"], bbox["y2"]]
|
|
687
|
+
values = [v for v in bbox.values() if isinstance(v, (int, float))]
|
|
688
|
+
return values[:4] if len(values) >= 4 else []
|
|
689
|
+
return []
|
|
690
|
+
|
|
691
|
+
l1 = _bbox_to_list(box1)
|
|
692
|
+
l2 = _bbox_to_list(box2)
|
|
693
|
+
if len(l1) < 4 or len(l2) < 4:
|
|
694
|
+
return 0.0
|
|
695
|
+
x1_min, y1_min, x1_max, y1_max = l1
|
|
696
|
+
x2_min, y2_min, x2_max, y2_max = l2
|
|
697
|
+
x1_min, x1_max = min(x1_min, x1_max), max(x1_min, x1_max)
|
|
698
|
+
y1_min, y1_max = min(y1_min, y1_max), max(y1_min, y1_max)
|
|
699
|
+
x2_min, x2_max = min(x2_min, x2_max), max(x2_min, x2_max)
|
|
700
|
+
y2_min, y2_max = min(y2_min, y2_max), max(y2_min, y2_max)
|
|
701
|
+
inter_x_min = max(x1_min, x2_min)
|
|
702
|
+
inter_y_min = max(y1_min, y2_min)
|
|
703
|
+
inter_x_max = min(x1_max, x2_max)
|
|
704
|
+
inter_y_max = min(y1_max, y2_max)
|
|
705
|
+
inter_w = max(0.0, inter_x_max - inter_x_min)
|
|
706
|
+
inter_h = max(0.0, inter_y_max - inter_y_min)
|
|
707
|
+
inter_area = inter_w * inter_h
|
|
708
|
+
area1 = (x1_max - x1_min) * (y1_max - y1_min)
|
|
709
|
+
area2 = (x2_max - x2_min) * (y2_max - y2_min)
|
|
710
|
+
union_area = area1 + area2 - inter_area
|
|
711
|
+
return (inter_area / union_area) if union_area > 0 else 0.0
|
|
712
|
+
|
|
713
|
+
def _merge_or_register_track(self, raw_id: Any, bbox: Any) -> Any:
|
|
714
|
+
if raw_id is None or bbox is None:
|
|
715
|
+
return raw_id
|
|
716
|
+
now = time.time()
|
|
717
|
+
if raw_id in self._track_aliases:
|
|
718
|
+
canonical_id = self._track_aliases[raw_id]
|
|
719
|
+
track_info = self._canonical_tracks.get(canonical_id)
|
|
720
|
+
if track_info is not None:
|
|
721
|
+
track_info["last_bbox"] = bbox
|
|
722
|
+
track_info["last_update"] = now
|
|
723
|
+
track_info["raw_ids"].add(raw_id)
|
|
724
|
+
return canonical_id
|
|
725
|
+
for canonical_id, info in self._canonical_tracks.items():
|
|
726
|
+
if now - info["last_update"] > self._track_merge_time_window:
|
|
727
|
+
continue
|
|
728
|
+
iou = self._compute_iou(bbox, info["last_bbox"])
|
|
729
|
+
if iou >= self._track_merge_iou_threshold:
|
|
730
|
+
self._track_aliases[raw_id] = canonical_id
|
|
731
|
+
info["last_bbox"] = bbox
|
|
732
|
+
info["last_update"] = now
|
|
733
|
+
info["raw_ids"].add(raw_id)
|
|
734
|
+
return canonical_id
|
|
735
|
+
canonical_id = raw_id
|
|
736
|
+
self._track_aliases[raw_id] = canonical_id
|
|
737
|
+
self._canonical_tracks[canonical_id] = {
|
|
738
|
+
"last_bbox": bbox,
|
|
739
|
+
"last_update": now,
|
|
740
|
+
"raw_ids": {raw_id},
|
|
741
|
+
}
|
|
742
|
+
return canonical_id
|
|
743
|
+
|
|
744
|
+
def _get_tracking_start_time(self) -> str:
|
|
745
|
+
if self._tracking_start_time is None:
|
|
746
|
+
return "N/A"
|
|
747
|
+
return self._format_timestamp(self._tracking_start_time)
|
|
748
|
+
|
|
749
|
+
def _set_tracking_start_time(self) -> None:
|
|
750
|
+
self._tracking_start_time = time.time()
|