matplotlib-map-utils 2.0.1__py3-none-any.whl → 2.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,336 @@
1
+ import re
2
+ import json
3
+ import warnings
4
+ from importlib import resources
5
+ from typing import List, Literal, Union
6
+
7
+ # Literal lists, for intellisense
8
+ regions = Literal["Midwest", "Northeast", "South", "West",
9
+ "Inhabited Territory", "Uninhabited Territory", "Sovereign State"]
10
+
11
+ divisions = Literal["East North Central", "East South Central", "Mid-Atlantic", "Mountain",
12
+ "New England", "Pacific", "South Atlantic", "West North Central", "West South Central",
13
+ "Commonwealth", "Compact of Free Association", "Incorporated and Unorganized",
14
+ "Unincorporated and Unorganized", "Unincorporated and Organized"]
15
+
16
+ ombs = Literal["Region I", "Region II", "Region III", "Region IV", "Region IX", "Region V",
17
+ "Region VI", "Region VII", "Region VIII", "Region X",
18
+ "Inhabited Territory", "Uninhabited Territory", "Sovereign State"]
19
+
20
+ beas = Literal["Far West", "Great Lakes", "Mideast", "New England", "Plains",
21
+ "Rocky Mountain", "Southeast", "Southwest",
22
+ "Inhabited Territory", "Uninhabited Territory", "Sovereign State"]
23
+
24
+ returns = Literal["fips","name","abbr","object","dict"]
25
+
26
+ class USA:
27
+ # No arguments need to pass on initialization really
28
+ def __init__(self):
29
+ self._jurisdictions = self._load_json()
30
+
31
+ # This is just for loading the JSON
32
+ def _load_json(self):
33
+ with resources.files("matplotlib_map_utils.utils").joinpath("usa.json").open("r") as f:
34
+ usa_json = json.load(f)
35
+ return usa_json
36
+
37
+ # Getter for all jurisdictions, VALID OR NOT
38
+ @property
39
+ def _all(self):
40
+ return self._jurisdictions
41
+
42
+ # Getter for all valid jurisdictions
43
+ @property
44
+ def jurisdictions(self):
45
+ return self.filter_valid(True, self._all, "object")
46
+
47
+ # Getter for all valid states
48
+ @property
49
+ def states(self):
50
+ return self.filter_state(True, self.jurisdictions, "object")
51
+
52
+ # Getter for all valid territories
53
+ @property
54
+ def territories(self):
55
+ return self.filter_territory(True, self.jurisdictions, "object")
56
+
57
+ # Getters to generate distinct values for Region, Division, OMB, and BEA
58
+ # which are useful if you can't recall which options are valid
59
+ # First, the function that will get the distinct values
60
+ def _distinct_options(self, key):
61
+ # First getting all the available options from the list
62
+ options = [j[key] for j in self.jurisdictions if j[key] is not None]
63
+ # Creating the distinct set
64
+ options_set = set(options)
65
+ # Returning the set (but as a list)
66
+ # this will also be alphabetically sorted
67
+ options = list(options_set)
68
+ options.sort()
69
+ return options
70
+
71
+ # The getters are now just calls to the properties
72
+ @property
73
+ def regions(self):
74
+ return self._distinct_options("region")
75
+
76
+ @property
77
+ def divisions(self):
78
+ return self._distinct_options("division")
79
+
80
+ @property
81
+ def omb(self):
82
+ return self._distinct_options("omb")
83
+
84
+ @property
85
+ def bea(self):
86
+ return self._distinct_options("bea")
87
+
88
+ # Main filter function
89
+ # Each filter step will follow the same process
90
+ ## Check that there is a non-None filter
91
+ ## Normalize the input to be in a list (if not already)
92
+ ## Perform the filter step
93
+ # Each step is also available as its own independent function, as needed
94
+ def filter(self, valid: bool | None=True,
95
+ fips: str | int | None=None,
96
+ name: str | None=None,
97
+ abbr: str | None=None,
98
+ state: bool | None=None,
99
+ contiguous: bool | None=None,
100
+ territory: bool | None=None,
101
+ region: Union[regions, List[regions]]=None,
102
+ division: Union[divisions, List[divisions]]=None,
103
+ omb: Union[ombs, List[ombs]]=None,
104
+ bea: Union[beas, List[beas]]=None,
105
+ to_return: Union[returns, List[returns]]="fips"):
106
+
107
+ # Getting a copy of our jurisdictions, which will be filtered each time
108
+ filter_juris = self.jurisdictions.copy()
109
+
110
+ # Starting with an initial valid filtering
111
+ # Which will drop invalid FIPS codes 03, 07, 14, 43, and 52
112
+ if (valid is not None) and (len(filter_juris) > 0):
113
+ filter_juris = self.filter_valid(valid, filter_juris, to_return="_ignore")
114
+
115
+ # Going through each step
116
+ if (fips is not None) and (len(filter_juris) > 0):
117
+ filter_juris = self.filter_fips(fips, filter_juris, to_return="_ignore")
118
+
119
+ if (name is not None) and (len(filter_juris) > 0):
120
+ filter_juris = self.filter_name(name, filter_juris, to_return="_ignore")
121
+
122
+ if (abbr is not None) and (len(filter_juris) > 0):
123
+ filter_juris = self.filter_abbr(abbr, filter_juris, to_return="_ignore")
124
+
125
+ if (state is not None) and (len(filter_juris) > 0):
126
+ filter_juris = self.filter_state(state, filter_juris, to_return="_ignore")
127
+
128
+ if (contiguous is not None) and (len(filter_juris) > 0):
129
+ filter_juris = self.filter_contiguous(contiguous, filter_juris, to_return="_ignore")
130
+
131
+ if (territory is not None) and (len(filter_juris) > 0):
132
+ filter_juris = self.filter_territory(territory, filter_juris, to_return="_ignore")
133
+
134
+ if (region is not None) and (len(filter_juris) > 0):
135
+ filter_juris = self.filter_region(region, filter_juris, to_return="_ignore")
136
+
137
+ if (division is not None) and (len(filter_juris) > 0):
138
+ filter_juris = self.filter_division(division, filter_juris, to_return="_ignore")
139
+
140
+ if (omb is not None) and (len(filter_juris) > 0):
141
+ filter_juris = self.filter_omb(omb, filter_juris, to_return="_ignore")
142
+
143
+ if (bea is not None) and (len(filter_juris) > 0):
144
+ filter_juris = self.filter_bea(bea, filter_juris, to_return="_ignore")
145
+
146
+ # Final step is to process the input based on to_return
147
+ # and then return it!
148
+ return self._process_return(filter_juris, to_return)
149
+
150
+ # Filtering bool values (valid, state, contiguous, territory)
151
+ # Will accept either true or false
152
+ def _filter_bool(self, value, key, to_filter=None, to_return="_ignore"):
153
+ # If nothing is passed to to_filter, getting the jurisdictions list
154
+ to_filter = self.jurisdictions.copy() if to_filter is None else to_filter
155
+ if not isinstance(value, bool):
156
+ warnings.warn(f"Invalid {key} filter: {value}. Only boolean values (True/False) are considered valid, see documentation for details.")
157
+ else:
158
+ # Performing the filter
159
+ filtered = [j for j in to_filter if j[key] == value]
160
+ # And returning the values
161
+ return self._process_return(filtered, to_return)
162
+
163
+ # Shortcuts for filtering based on valid, state, contiguous, and territory
164
+ def filter_valid(self, valid: bool, to_filter=None, to_return="fips"):
165
+ return self._filter_bool(valid, "valid", to_filter, to_return)
166
+
167
+ def filter_state(self, state: bool, to_filter=None, to_return="fips"):
168
+ return self._filter_bool(state, "state", to_filter, to_return)
169
+
170
+ def filter_contiguous(self, contiguous: bool, to_filter=None, to_return="fips"):
171
+ return self._filter_bool(contiguous, "contiguous", to_filter, to_return)
172
+
173
+ def filter_territory(self, territory: bool, to_filter=None, to_return="fips"):
174
+ return self._filter_bool(territory, "territory", to_filter, to_return)
175
+
176
+ # Filtering FIPS
177
+ # Will accept an integer or a two-digit string as an input
178
+ # If a longer string is inserted, will truncate to only the first two characters
179
+ def filter_fips(self, fips: str | List[str], to_filter=None, to_return="abbr"):
180
+ # If nothing is passed to to_filter, getting the jurisdictions list
181
+ to_filter = self.jurisdictions.copy() if to_filter is None else to_filter
182
+ # Normalizing the fips value being passed
183
+ fips = self._normalize_input(fips)
184
+ # This will store the cleaned-up fips codes
185
+ fips_clean = []
186
+ for f in fips:
187
+ # If the input is an integer, convert it to a two-digit string
188
+ if isinstance(f, int):
189
+ fips_clean.append(str(f).zfill(2)[:2])
190
+ # If the input is already a string, get the first two characters
191
+ elif isinstance(f, str):
192
+ fips_clean.append(f.zfill(2)[:2])
193
+ # Otherwise, throw a *warning*
194
+ else:
195
+ warnings.warn(f"Invalid FIPS filter: {f}. Only integers and strings are considered valid, see documentation for details.")
196
+ # Now can use the clean fips to actually filter
197
+ filtered = [j for j in to_filter if j["fips"] in fips_clean]
198
+ # And returning the values
199
+ return self._process_return(filtered, to_return)
200
+
201
+ # Filtering name
202
+ # Will accept strings
203
+ # Will normalize the string first (trim, case, special characters), before checking
204
+ # Some states also have an alias available for checking against (Washington, D.C. and District of Columbia are equivalent)
205
+ def filter_name(self, name: str | List[str], to_filter=None, to_return="fips"):
206
+ # If nothing is passed to to_filter, getting the jurisdictions list
207
+ to_filter = self.jurisdictions.copy() if to_filter is None else to_filter
208
+ # Normalizing the name input being passed
209
+ name = self._normalize_input(name)
210
+ # This will store the cleaned-up name input
211
+ name_clean = []
212
+ for n in name:
213
+ # If the input is a string, clean it
214
+ if isinstance(n, str):
215
+ name_clean.append(self._normalize_string(n, case="lower"))
216
+ else:
217
+ warnings.warn(f"Invalid name filter: {n}. Only strings are considered valid, see documentation for details.")
218
+ # Now we can use the clean name to filter
219
+ # Note that we also normalize the names and aliases in our to_filter list!
220
+ filtered = [j for j in to_filter if ((self._normalize_string(j["name"], case="lower") in name_clean) or
221
+ (j["alias"] is not None and self._normalize_string(j["alias"], case="lower") in name_clean))]
222
+ # And returning the values
223
+ return self._process_return(filtered, to_return)
224
+
225
+ # Filtering abbr
226
+ # Will accept strings
227
+ # Will normalize the string first (trim, case, special characters), before checking
228
+ # If a string longer than two characters is passed, will only look at the first two characters!
229
+ def filter_abbr(self, abbr: str | List[str], to_filter=None, to_return="fips"):
230
+ # If nothing is passed to to_filter, getting the jurisdictions list
231
+ to_filter = self.jurisdictions.copy() if to_filter is None else to_filter
232
+ # Normalizing the input being passed
233
+ abbr = self._normalize_input(abbr)
234
+ # This will store the cleaned-up input
235
+ abbr_clean = []
236
+ for a in abbr:
237
+ # If the input is a string, clean it
238
+ if isinstance(a, str):
239
+ abbr_clean.append(self._normalize_string(a, case="lower"))
240
+ else:
241
+ warnings.warn(f"Invalid abbr filter: {a}. Only strings are considered valid, see documentation for details.")
242
+ # Now we can use the clean input to filter
243
+ filtered = [j for j in to_filter if (j["abbr"] is not None and self._normalize_string(j["abbr"], case="lower")[:2] in abbr_clean)]
244
+ # And returning the values
245
+ return self._process_return(filtered, to_return)
246
+
247
+ # Filtering for categorical values (region/division/omb/bea)
248
+ # Will get the list of acceptable values and compare inputs to it
249
+ # while also warning if an invalid filter is requested
250
+ def _filter_categorical(self, input, key, to_filter=None, to_return="_ignore"):
251
+ # If nothing is passed to to_filter, getting the jurisdictions list
252
+ to_filter = self.jurisdictions.copy() if to_filter is None else to_filter
253
+ # Normalizing the input being passed
254
+ input = self._normalize_input(input)
255
+ # This has the acceptable inputs we want to compare against
256
+ accepted_inputs = self._distinct_options(key)
257
+ # This will store the cleaned-up input
258
+ input_clean = []
259
+ for i in input:
260
+ # If the input is not a string, warn
261
+ if not isinstance(i, str):
262
+ warnings.warn(f"Invalid {key} filter: {i}. Only strings are considered valid, see documentation for details.")
263
+ # If the input is not in our list, warn the user
264
+ elif i not in accepted_inputs:
265
+ warnings.warn(f"Invalid {key} filter: {i}. Only the following inputs are considered valid: {accepted_inputs}.")
266
+ # Otherwise, add it to our list
267
+ else:
268
+ input_clean.append(i)
269
+ # Now we can use the clean input to filter
270
+ filtered = [j for j in to_filter if j[key] in input_clean]
271
+ # And returning the values
272
+ return self._process_return(filtered, to_return)
273
+
274
+ # Iterations for each categorical filter based on their respective inputs
275
+ def filter_region(self, region: Union[regions, List[regions]], to_filter=None, to_return="fips"):
276
+ return self._filter_categorical(region, "region", to_filter, to_return)
277
+
278
+ def filter_division(self, division: Union[divisions, List[divisions]], to_filter=None, to_return="fips"):
279
+ return self._filter_categorical(division, "division", to_filter, to_return)
280
+
281
+ def filter_omb(self, omb: Union[ombs, List[ombs]], to_filter=None, to_return="fips"):
282
+ return self._filter_categorical(omb, "omb", to_filter, to_return)
283
+
284
+ def filter_bea(self, bea: Union[beas, List[beas]], to_filter=None, to_return="fips"):
285
+ return self._filter_categorical(bea, "bea", to_filter, to_return)
286
+
287
+ # Function that processes the returning of a filtered jurisdiction
288
+ def _process_return(self, filter_juris, to_return):
289
+ # If the length is zero, warn!
290
+ if filter_juris is None or len(filter_juris) == 0:
291
+ warnings.warn(f"No matching entities found. Please refer to the documentation and double-check your filters.")
292
+ return None
293
+ if to_return is None:
294
+ to_return == "_ignore"
295
+ # Available options for to_return include fips, name, and abbr
296
+ elif to_return.lower() == "fips":
297
+ juris_return = [j["fips"] for j in filter_juris]
298
+ elif to_return.lower() == "name":
299
+ juris_return = [j["name"] for j in filter_juris]
300
+ elif to_return.lower() == "abbr":
301
+ juris_return = [j["abbr"] for j in filter_juris]
302
+ # Can also request that the entire object be returned, in which case nothing is done
303
+ # This will also happen if an invalid return object is passed
304
+ elif to_return.lower() not in ["object","dict","_ignore"]:
305
+ warnings.warn(f"Invalid to_return request: {to_return}. The entire object will be returned.")
306
+ juris_return = filter_juris.copy()
307
+ else:
308
+ juris_return = filter_juris.copy()
309
+
310
+ # Now, also processing the return request based on the length of the returned list
311
+ # If the length is zero, warn!
312
+ if len(juris_return) == 0:
313
+ warnings.warn(f"No matching entities found. Please refer to the documentation and double-check your filters.")
314
+ return None
315
+ # If only one element is returned, return the element itself, not a list
316
+ elif len(juris_return) == 1 and to_return != "_ignore":
317
+ return juris_return[0]
318
+ # Otherwise return the whole thing
319
+ else:
320
+ return juris_return
321
+
322
+ # Utility function to normalize a string that is passed to it
323
+ def _normalize_string(self, string, case="keep", nan="", spaces="_"):
324
+ string = string.strip()
325
+ if case == "lower":
326
+ string = string.lower()
327
+ string = re.sub(r"\W\S",nan,string)
328
+ string = re.sub(r"\s",spaces,string)
329
+ return string
330
+
331
+ # Utility function to convert a relevant non-list input to a list
332
+ def _normalize_input(self, input):
333
+ if not isinstance(input, (list, tuple)):
334
+ return [input]
335
+ else:
336
+ return input
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: matplotlib-map-utils
3
- Version: 2.0.1
3
+ Version: 2.1.0
4
4
  Summary: A suite of tools for creating maps in matplotlib
5
5
  Author-email: David Moss <davidmoss1221@gmail.com>
6
6
  Project-URL: Homepage, https://github.com/moss-xyz/matplotlib-map-utils/
@@ -8,12 +8,13 @@ Project-URL: Bug Tracker, https://github.com/moss-xyz/matplotlib-map-utils/issue
8
8
  Classifier: Programming Language :: Python :: 3
9
9
  Classifier: License :: OSI Approved :: GNU General Public License (GPL)
10
10
  Classifier: Operating System :: OS Independent
11
- Requires-Python: >=3.9
11
+ Requires-Python: >=3.10
12
12
  Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
14
  Requires-Dist: matplotlib>=3.9.0
15
15
  Requires-Dist: cartopy>=0.23.0
16
16
  Requires-Dist: great-circle-calculator>=1.3.1
17
+ Dynamic: license-file
17
18
 
18
19
  # matplotlib-map-utils
19
20
 
@@ -29,12 +30,14 @@ Requires-Dist: great-circle-calculator>=1.3.1
29
30
 
30
31
  `matplotlib_map_utils` is intended to be a package that provides various functions and objects that assist with the the creation of maps using [`matplotlib`](https://matplotlib.org/stable/).
31
32
 
32
- As of `v2.x` (the current version), this includes two tools:
33
+ As of `v2.x` (the current version), this includes two tools and one utility:
33
34
 
34
35
  * `north_arrow.py`, which generates a high quality, context-aware north arrow for a given plot.
35
36
 
36
37
  * `scale_bar.py`, which generates a high quality, context-aware scale bar to a given plot.
37
38
 
39
+ * `usa.py`, which contains a class that helps filter for states and territories within the USA based on given characteristics.
40
+
38
41
  Future releases (if the project is continued) might provide a similar tool inset maps, or other functions that I have created myself that give more control in the formatting of maps.
39
42
 
40
43
  ---
@@ -49,11 +52,11 @@ pip install matplotlib-map-utils
49
52
 
50
53
  The requirements for this package are:
51
54
 
52
- * `python >= 3.9.0` (due to the dictionary-concatenation method utilized)
55
+ * `python >= 3.10` (due to the use of the pipe operator to concatenate dictionaries and types)
53
56
 
54
- * `matplotlib >= 3.9.0` (might work with lower versions but not guaranteed)
57
+ * `matplotlib >= 3.9` (might work with lower versions but not guaranteed)
55
58
 
56
- * `cartopy >= 0.23.0` (due to earlier bug with calling `copy()` on `CRS` objects)
59
+ * `cartopy >= 0.23` (due to earlier bug with calling `copy()` on `CRS` objects)
57
60
 
58
61
  ---
59
62
 
@@ -78,6 +81,10 @@ package_name/
78
81
  │ ├── __init__.py
79
82
  │ ├── north_arrow.py
80
83
  │ └── scale_bar.py
84
+ ├── utils/
85
+ │ ├── __init__.py
86
+ │ ├── usa.py
87
+ │ └── usa.json
81
88
  ```
82
89
 
83
90
  Where:
@@ -230,6 +237,38 @@ Refer to `docs\howto_scale_bar` for details on how to customize each facet of th
230
237
 
231
238
  ---
232
239
 
240
+ ### Utilities
241
+
242
+ <details>
243
+ <summary><i>Expand instructions</i></summary>
244
+
245
+ #### Quick Start
246
+
247
+ Importing the bundled utility functions and classes can be done like so:
248
+
249
+ ```py
250
+ from matplotlib_map_utils.utils import USA
251
+ ```
252
+
253
+ As of `v2.1.0`, there is only one utility class available: `USA`, an object to help quickly filter for subsets of US states and territories. This utility class is still in beta, and might change.
254
+
255
+ An example:
256
+
257
+ ```python
258
+ # Loading the object
259
+ usa = USA()
260
+ # Getting a list FIPS codes for US States
261
+ usa.filter(states=True, to_return="fips")
262
+ # Getting a list of State Names for states in the South and Midwest regions
263
+ usa.filter(region=["South","Midtwest"], to_return="name")
264
+ ```
265
+
266
+ Refer to `docs\howto_utils` for details on how to use this class, including with `pandas.apply()`.
267
+
268
+ </details>
269
+
270
+ ---
271
+
233
272
  ### Development Notes
234
273
 
235
274
  #### Inspiration and Thanks
@@ -246,6 +285,10 @@ Two more projects assisted with the creation of this script:
246
285
 
247
286
  - `v2.0.1`: Fixed a bug in the `dual_bars()` function that prevented empty dictionaries to be passed. Also added a warning when auto-calculated bar widths appear to be exceeding the dimension of the axis (usually occurs when the axis is <2 kilometeres or miles long, depending on the units selected).
248
287
 
288
+ - `v2.0.2`: Changed f-string formatting to alternate double and single quotes, so as to maintain compatibility with versions of Python before 3.12 (see [here](https://github.com/moss-xyz/matplotlib-map-utils/issues/3)). However, this did reveal that another aspect of the code, namely concatenating `type` in function arguments, requires 3.10, and so the minimum python version was incremented.
289
+
290
+ - `v2.1.0`: Added a utility class, `USA`, for filtering subsets of US states and territories based on FIPS code, name, abbreviation, region, division, and more. This is considered a beta release, and might be subject to change later on.
291
+
249
292
  #### Future Roadmap
250
293
 
251
294
  With the release of `v2.x`, and the addition of **Scale Bar** tools, this project has achieved the two main objectives that I set out to.
@@ -268,7 +311,15 @@ If I continue development of this project, I will be looking to add or fix the f
268
311
 
269
312
  * Create more styles for the bar, potentiallly including dual boxes and a sawtooth bar
270
313
 
271
- If that goes well, `v3` can then either create a tool for generating inset maps (which `matplotlib` has *some* support for), or the various functions that I have created in the past that assist with formatting a map "properly", such as centering on a given object and coverting FIPS codes.
314
+ * **Utils:**
315
+
316
+ * (USA): Stronger fuzzy search mechanics, so that it will accept flexible inputs for FIPS/abbr/name
317
+
318
+ * (USA): More integrated class types to allow for a more fully-formed object model (USA being a `Country`, with subclasses related to `State` and `Territory` that have their own classes of attributes, etc.)
319
+
320
+ * (USA): Stronger typing options, so you don't have to recall which `region` or `division` types are available, etc.
321
+
322
+ If that goes well, `v3` can then either create a tool for generating inset maps (which `matplotlib` has *some* support for), or the various functions that I have created in the past that assist with formatting a map "properly", such as centering on a given object.
272
323
 
273
324
  I am also open to ideas for other extensions to create!
274
325
 
@@ -1,18 +1,21 @@
1
1
  matplotlib_map_utils/__init__.py,sha256=X6lN1yfP4ckb6l-ej20YqFvIHUNLZQxRWnvvyWBlJEY,305
2
2
  matplotlib_map_utils/core/__init__.py,sha256=G4fxPpfE77EhZr7yGZCjppP7zvwRthl8yHM0b2KgrFs,184
3
3
  matplotlib_map_utils/core/north_arrow.py,sha256=vikwYtSP2-sPRF_SQBALezB3uEY_PHA9dglm503hkvU,22531
4
- matplotlib_map_utils/core/scale_bar.py,sha256=HxHFhiElE3jlyY6ZeHlxIf4LS2bNA2pQkyUXVyggXW8,62248
4
+ matplotlib_map_utils/core/scale_bar.py,sha256=l2tS35xa_pv40lag4Y00hT6FEGhQ-wOb07ipxDUYCNw,62248
5
5
  matplotlib_map_utils/defaults/__init__.py,sha256=_pegE5kv_sb0ansSF4XpWBRwboaP4zUjWY1KIGbK-TE,119
6
6
  matplotlib_map_utils/defaults/north_arrow.py,sha256=uZb1RsUWxFTHywm8HATj_9iPF_GjCs_Z2HOn0JchjTY,8571
7
7
  matplotlib_map_utils/defaults/scale_bar.py,sha256=GpXiWUHcOsv43G1HOfpqw-dzDPQQzQB7RNdtIf0e7Bc,8225
8
8
  matplotlib_map_utils/scratch/map_utils.py,sha256=j8dOX9uuotl9rRCAXapFLHycUwVE4nzIrqWYOGG2Lgg,19653
9
9
  matplotlib_map_utils/scratch/north_arrow_old_classes.py,sha256=1xKQ6yUghX4BWzIv8GsGBHDDPJ8B0Na7ixdw2jgtTqw,50993
10
+ matplotlib_map_utils/utils/__init__.py,sha256=uUy0kUMMGrDpvo88J_OLk2dQI-UwCXclccaEyk8x5R0,41
11
+ matplotlib_map_utils/utils/usa.json,sha256=kLB9JXNSWf8VU-9XwXuMRAPKO-zA4aluQUEln7Ktc_s,26563
12
+ matplotlib_map_utils/utils/usa.py,sha256=7SlUdxtCan5PFNIoLe-HfOC5r2cxJAF-9QKhNIK71EI,16853
10
13
  matplotlib_map_utils/validation/__init__.py,sha256=0fL3N63jxjRwTU44b7-6ZYZJfOT_0ac7dx7M6Gpu_5M,52
11
14
  matplotlib_map_utils/validation/functions.py,sha256=QpOHs-GQ1NUMXO0HxAtEZvAcrXwsIE2ekqUhYm-IKGg,11783
12
15
  matplotlib_map_utils/validation/north_arrow.py,sha256=dlWbcKit7dq93PJVrv1efE_865irT6zwBuqD6NYLYPg,10349
13
16
  matplotlib_map_utils/validation/scale_bar.py,sha256=7rYs7ei0rQ5iJfapcBWkn7s4P-CnSh9B441GpsGpFO4,17628
14
- matplotlib_map_utils-2.0.1.dist-info/LICENSE,sha256=aFLFZg6LEJFpTlNQ8su3__jw4GfV-xWBmC1cePkKZVw,35802
15
- matplotlib_map_utils-2.0.1.dist-info/METADATA,sha256=COgaYVKbtktPoHyqzhW9uPoTrS5aEo88oeBUoF_VuR4,10644
16
- matplotlib_map_utils-2.0.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
17
- matplotlib_map_utils-2.0.1.dist-info/top_level.txt,sha256=6UyDpxsnMhSOd9a-abQe0lLJveybJyYtUHMdX7zXgKA,21
18
- matplotlib_map_utils-2.0.1.dist-info/RECORD,,
17
+ matplotlib_map_utils-2.1.0.dist-info/licenses/LICENSE,sha256=aFLFZg6LEJFpTlNQ8su3__jw4GfV-xWBmC1cePkKZVw,35802
18
+ matplotlib_map_utils-2.1.0.dist-info/METADATA,sha256=KaD3ZBhrkgi25DYJV2xJXx0wjcTM9MgmNcNr58Z6UcE,12839
19
+ matplotlib_map_utils-2.1.0.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
20
+ matplotlib_map_utils-2.1.0.dist-info/top_level.txt,sha256=6UyDpxsnMhSOd9a-abQe0lLJveybJyYtUHMdX7zXgKA,21
21
+ matplotlib_map_utils-2.1.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.0)
2
+ Generator: setuptools (78.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5