masster 0.6.1__py3-none-any.whl → 0.6.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of masster might be problematic. Click here for more details.
- masster/_version.py +1 -1
- masster/sample/importers.py +399 -0
- masster/sample/sample.py +8 -2
- masster/sample/save.py +724 -1
- masster/study/export.py +154 -3
- masster/study/importers.py +384 -1
- masster/study/study.py +3 -3
- masster/wizard/wizard.py +15 -16
- {masster-0.6.1.dist-info → masster-0.6.3.dist-info}/METADATA +1 -1
- {masster-0.6.1.dist-info → masster-0.6.3.dist-info}/RECORD +13 -13
- {masster-0.6.1.dist-info → masster-0.6.3.dist-info}/WHEEL +0 -0
- {masster-0.6.1.dist-info → masster-0.6.3.dist-info}/entry_points.txt +0 -0
- {masster-0.6.1.dist-info → masster-0.6.3.dist-info}/licenses/LICENSE +0 -0
masster/_version.py
CHANGED
masster/sample/importers.py
CHANGED
|
@@ -314,3 +314,402 @@ def import_oracle(
|
|
|
314
314
|
"id_matches": len(self.id_df),
|
|
315
315
|
},
|
|
316
316
|
)
|
|
317
|
+
|
|
318
|
+
|
|
319
|
+
def import_tima(
|
|
320
|
+
self,
|
|
321
|
+
folder,
|
|
322
|
+
file="mini",
|
|
323
|
+
):
|
|
324
|
+
"""
|
|
325
|
+
Import TIMA identification data and map it to features.
|
|
326
|
+
|
|
327
|
+
This method reads TIMA identification results from folder/*results_{file}.tsv
|
|
328
|
+
and creates lib_df and id_df DataFrames with detailed library and identification information.
|
|
329
|
+
It also updates features_df with top identification results.
|
|
330
|
+
|
|
331
|
+
Parameters:
|
|
332
|
+
folder (str): Path to folder containing TIMA results TSV file
|
|
333
|
+
file (str): File suffix to search for (default: "mini")
|
|
334
|
+
|
|
335
|
+
Returns:
|
|
336
|
+
None: Updates features_df, creates lib_df and id_df in-place with TIMA identification data
|
|
337
|
+
|
|
338
|
+
Raises:
|
|
339
|
+
FileNotFoundError: If the TIMA results file doesn't exist
|
|
340
|
+
ValueError: If features_df is empty or doesn't have required columns
|
|
341
|
+
|
|
342
|
+
Example:
|
|
343
|
+
>>> sample.import_tima(
|
|
344
|
+
... folder="path/to/tima_results",
|
|
345
|
+
... file="mini"
|
|
346
|
+
... )
|
|
347
|
+
"""
|
|
348
|
+
|
|
349
|
+
self.logger.info(f"Starting TIMA import from folder: {folder}")
|
|
350
|
+
|
|
351
|
+
# Validate inputs
|
|
352
|
+
if self.features_df is None or self.features_df.is_empty():
|
|
353
|
+
raise ValueError("features_df is empty or not available. Run find_features() first.")
|
|
354
|
+
|
|
355
|
+
if "feature_uid" not in self.features_df.columns:
|
|
356
|
+
raise ValueError("features_df must contain 'feature_uid' column")
|
|
357
|
+
|
|
358
|
+
# Find TIMA file
|
|
359
|
+
import glob
|
|
360
|
+
|
|
361
|
+
tima_pattern = os.path.join(folder, f"*results_{file}.tsv")
|
|
362
|
+
tima_files = glob.glob(tima_pattern)
|
|
363
|
+
|
|
364
|
+
if not tima_files:
|
|
365
|
+
raise FileNotFoundError(f"TIMA results file not found with pattern: {tima_pattern}")
|
|
366
|
+
|
|
367
|
+
tima_file_path = tima_files[0]
|
|
368
|
+
self.logger.debug(f"Loading TIMA data from: {tima_file_path}")
|
|
369
|
+
|
|
370
|
+
try:
|
|
371
|
+
# Read TIMA data using polars
|
|
372
|
+
tima_data = pl.read_csv(
|
|
373
|
+
tima_file_path,
|
|
374
|
+
separator="\t",
|
|
375
|
+
schema_overrides={
|
|
376
|
+
"feature_id": pl.Utf8, # Read as Utf8 string
|
|
377
|
+
},
|
|
378
|
+
infer_schema_length=10000
|
|
379
|
+
)
|
|
380
|
+
self.logger.info(f"TIMA data loaded successfully with {len(tima_data)} rows")
|
|
381
|
+
except Exception as e:
|
|
382
|
+
self.logger.error(f"Could not read {tima_file_path}: {e}")
|
|
383
|
+
raise
|
|
384
|
+
|
|
385
|
+
# Check if TIMA feature_ids match features_df feature_id column
|
|
386
|
+
if "feature_id" not in self.features_df.columns:
|
|
387
|
+
raise ValueError("features_df must contain 'feature_id' column")
|
|
388
|
+
|
|
389
|
+
# Compare TIMA feature_ids with features_df feature_ids
|
|
390
|
+
features_ids = set(self.features_df["feature_id"].to_list())
|
|
391
|
+
tima_ids = set(tima_data["feature_id"].to_list())
|
|
392
|
+
|
|
393
|
+
matching_ids = features_ids.intersection(tima_ids)
|
|
394
|
+
non_matching_ids = tima_ids - features_ids
|
|
395
|
+
|
|
396
|
+
if non_matching_ids:
|
|
397
|
+
self.logger.warning(
|
|
398
|
+
f"Found {len(non_matching_ids)} feature_ids in TIMA data that do not match any feature_id in features_df. "
|
|
399
|
+
f"These will be filtered out. Matching features: {len(matching_ids)}/{len(tima_ids)}"
|
|
400
|
+
)
|
|
401
|
+
# Filter to only matching feature_ids
|
|
402
|
+
tima_data = tima_data.filter(pl.col("feature_id").is_in(list(features_ids)))
|
|
403
|
+
|
|
404
|
+
if len(tima_data) == 0:
|
|
405
|
+
self.logger.error("No TIMA feature_ids match features_df feature_id values")
|
|
406
|
+
raise ValueError("No matching features found between TIMA data and features_df")
|
|
407
|
+
|
|
408
|
+
self.logger.debug(f"Matched {len(tima_data)} TIMA entries to features_df feature_id values")
|
|
409
|
+
|
|
410
|
+
# Filter to only rows with identification data (non-empty label_compound)
|
|
411
|
+
initial_count = len(tima_data)
|
|
412
|
+
tima_data = tima_data.filter(
|
|
413
|
+
pl.col("label_compound").is_not_null() &
|
|
414
|
+
(pl.col("label_compound").cast(pl.Utf8).str.strip_chars() != "")
|
|
415
|
+
)
|
|
416
|
+
|
|
417
|
+
self.logger.debug(f"Filtered to {len(tima_data)}/{initial_count} TIMA entries with identifications")
|
|
418
|
+
|
|
419
|
+
if len(tima_data) == 0:
|
|
420
|
+
self.logger.warning("No TIMA entries with identifications found")
|
|
421
|
+
return
|
|
422
|
+
|
|
423
|
+
# === CREATE LIB_DF ===
|
|
424
|
+
self.logger.debug("Creating lib_df from TIMA annotation data")
|
|
425
|
+
self.logger.debug(f"TIMA data shape before lib_df creation: {tima_data.shape}")
|
|
426
|
+
|
|
427
|
+
# Create unique lib_uid for each library entry
|
|
428
|
+
tima_data = tima_data.with_columns(
|
|
429
|
+
pl.arange(0, len(tima_data)).alias("lib_uid")
|
|
430
|
+
)
|
|
431
|
+
|
|
432
|
+
# Map TIMA columns to lib_df schema
|
|
433
|
+
lib_data = []
|
|
434
|
+
for row in tima_data.iter_rows(named=True):
|
|
435
|
+
# Extract z (charge) from adduct
|
|
436
|
+
z = None
|
|
437
|
+
adduct_str = str(row.get("adduct", ""))
|
|
438
|
+
if "+" in adduct_str:
|
|
439
|
+
z = 1
|
|
440
|
+
elif "-" in adduct_str:
|
|
441
|
+
z = -1
|
|
442
|
+
|
|
443
|
+
# Get SMILES
|
|
444
|
+
smiles = row.get("smiles_no_stereo", None)
|
|
445
|
+
if smiles is None or (isinstance(smiles, str) and smiles.strip() == ""):
|
|
446
|
+
smiles = None
|
|
447
|
+
|
|
448
|
+
# Calculate InChI from SMILES if available
|
|
449
|
+
inchi = None
|
|
450
|
+
if smiles:
|
|
451
|
+
try:
|
|
452
|
+
# Try to get InChI from SMILES using RDKit if available
|
|
453
|
+
try:
|
|
454
|
+
from rdkit import Chem
|
|
455
|
+
mol_rdkit = Chem.MolFromSmiles(smiles)
|
|
456
|
+
if mol_rdkit:
|
|
457
|
+
inchi = Chem.MolToInchi(mol_rdkit)
|
|
458
|
+
except ImportError:
|
|
459
|
+
pass # RDKit not available
|
|
460
|
+
except Exception:
|
|
461
|
+
pass
|
|
462
|
+
|
|
463
|
+
# Calculate formula from SMILES if available
|
|
464
|
+
formula = None
|
|
465
|
+
if smiles:
|
|
466
|
+
try:
|
|
467
|
+
from rdkit import Chem
|
|
468
|
+
mol_rdkit = Chem.MolFromSmiles(smiles)
|
|
469
|
+
if mol_rdkit:
|
|
470
|
+
formula = Chem.rdMolDescriptors.CalcMolFormula(mol_rdkit)
|
|
471
|
+
except ImportError:
|
|
472
|
+
pass # RDKit not available
|
|
473
|
+
except Exception:
|
|
474
|
+
pass
|
|
475
|
+
|
|
476
|
+
# Calculate mass from m/z and charge
|
|
477
|
+
m = None
|
|
478
|
+
mz_value = row.get("mz", None)
|
|
479
|
+
if mz_value is not None and z is not None:
|
|
480
|
+
try:
|
|
481
|
+
m = float(mz_value) * abs(z)
|
|
482
|
+
except (ValueError, TypeError):
|
|
483
|
+
pass
|
|
484
|
+
|
|
485
|
+
# Get class and clean NaN values
|
|
486
|
+
class_value = row.get("label_classyfire", None)
|
|
487
|
+
if class_value is None or (isinstance(class_value, str) and class_value.upper() == "NAN"):
|
|
488
|
+
class_value = None
|
|
489
|
+
|
|
490
|
+
lib_entry = {
|
|
491
|
+
"lib_uid": row["lib_uid"],
|
|
492
|
+
"cmpd_uid": row["lib_uid"], # Use lib_uid as compound identifier
|
|
493
|
+
"source_id": None, # Leave empty as requested
|
|
494
|
+
"name": row.get("label_compound", None),
|
|
495
|
+
"shortname": None, # Not available in TIMA data
|
|
496
|
+
"class": class_value,
|
|
497
|
+
"smiles": smiles,
|
|
498
|
+
"inchi": inchi,
|
|
499
|
+
"inchikey": row.get("inchikey_connectivity_layer", None),
|
|
500
|
+
"formula": formula,
|
|
501
|
+
"iso": 0, # Fixed isotope value
|
|
502
|
+
"adduct": row.get("adduct", None),
|
|
503
|
+
"probability": row.get("score", None),
|
|
504
|
+
"m": m,
|
|
505
|
+
"z": z,
|
|
506
|
+
"mz": row.get("mz", None),
|
|
507
|
+
"rt": None, # Set to null as requested
|
|
508
|
+
"quant_group": None,
|
|
509
|
+
"db_id": None, # Not available in TIMA data
|
|
510
|
+
"db": row.get("library", None),
|
|
511
|
+
}
|
|
512
|
+
lib_data.append(lib_entry)
|
|
513
|
+
|
|
514
|
+
self.logger.debug(f"Created {len(lib_data)} lib_data entries")
|
|
515
|
+
|
|
516
|
+
# Create lib_df as Polars DataFrame with error handling for mixed types
|
|
517
|
+
try:
|
|
518
|
+
lib_df_temp = pl.DataFrame(lib_data)
|
|
519
|
+
except Exception as e:
|
|
520
|
+
self.logger.warning(f"Error creating lib_df with polars: {e}")
|
|
521
|
+
# Fallback: convert to pandas first, then to polars
|
|
522
|
+
lib_df_pandas = pd.DataFrame(lib_data)
|
|
523
|
+
lib_df_temp = pl.from_pandas(lib_df_pandas)
|
|
524
|
+
|
|
525
|
+
# Ensure uniqueness by name and adduct combination
|
|
526
|
+
# Sort by lib_uid and keep first occurrence (earliest in processing order)
|
|
527
|
+
self.lib_df = lib_df_temp.sort("lib_uid").unique(subset=["name", "adduct"], keep="first")
|
|
528
|
+
|
|
529
|
+
self.logger.info(
|
|
530
|
+
f"Created lib_df with {len(self.lib_df)} library entries ({len(lib_data) - len(self.lib_df)} duplicates removed)"
|
|
531
|
+
)
|
|
532
|
+
|
|
533
|
+
# === CREATE ID_DF ===
|
|
534
|
+
self.logger.debug("Creating id_df from TIMA identification matches")
|
|
535
|
+
|
|
536
|
+
# Create a mapping from feature_id to feature_uid
|
|
537
|
+
# TIMA data has feature_id which must be mapped to features_df feature_uid for id_df
|
|
538
|
+
feature_id_to_uid_map = dict(zip(
|
|
539
|
+
self.features_df["feature_id"].to_list(),
|
|
540
|
+
self.features_df["feature_uid"].to_list()
|
|
541
|
+
))
|
|
542
|
+
|
|
543
|
+
# Create identification matches
|
|
544
|
+
id_data = []
|
|
545
|
+
for row in tima_data.iter_rows(named=True):
|
|
546
|
+
# Map TIMA feature_id to features_df feature_uid
|
|
547
|
+
tima_feature_id = row["feature_id"]
|
|
548
|
+
feature_uid = feature_id_to_uid_map.get(tima_feature_id)
|
|
549
|
+
|
|
550
|
+
if feature_uid is None:
|
|
551
|
+
# Skip if we can't find the mapping (shouldn't happen after filtering)
|
|
552
|
+
continue
|
|
553
|
+
|
|
554
|
+
# Use error_mz for mz_delta
|
|
555
|
+
mz_delta = None
|
|
556
|
+
error_mz = row.get("error_mz", None)
|
|
557
|
+
if error_mz is not None:
|
|
558
|
+
try:
|
|
559
|
+
mz_delta = float(error_mz)
|
|
560
|
+
except (ValueError, TypeError):
|
|
561
|
+
pass
|
|
562
|
+
|
|
563
|
+
# Use error_rt for rt_delta
|
|
564
|
+
rt_delta = None
|
|
565
|
+
rt_err_value = row.get("error_rt", None)
|
|
566
|
+
if rt_err_value is not None:
|
|
567
|
+
try:
|
|
568
|
+
rt_delta = float(rt_err_value)
|
|
569
|
+
except (ValueError, TypeError):
|
|
570
|
+
pass
|
|
571
|
+
|
|
572
|
+
# Create matcher as "tima-" + library
|
|
573
|
+
matcher = "tima" # default fallback
|
|
574
|
+
library_value = row.get("library", None)
|
|
575
|
+
if library_value is not None:
|
|
576
|
+
try:
|
|
577
|
+
library = str(library_value)
|
|
578
|
+
matcher = f"tima-{library}"
|
|
579
|
+
except (ValueError, TypeError):
|
|
580
|
+
pass
|
|
581
|
+
|
|
582
|
+
id_entry = {
|
|
583
|
+
"feature_uid": feature_uid, # Use mapped feature_uid from features_df
|
|
584
|
+
"lib_uid": row["lib_uid"],
|
|
585
|
+
"mz_delta": mz_delta,
|
|
586
|
+
"rt_delta": rt_delta,
|
|
587
|
+
"matcher": matcher,
|
|
588
|
+
"score": row.get("score", None),
|
|
589
|
+
"iso": 0, # Fixed isotope value for TIMA imports
|
|
590
|
+
}
|
|
591
|
+
id_data.append(id_entry)
|
|
592
|
+
|
|
593
|
+
# Create id_df as Polars DataFrame with explicit schema to avoid inference issues
|
|
594
|
+
# Match feature_uid type to features_df
|
|
595
|
+
feature_uid_dtype = self.features_df["feature_uid"].dtype
|
|
596
|
+
id_schema = {
|
|
597
|
+
"feature_uid": feature_uid_dtype, # Match the type from features_df
|
|
598
|
+
"lib_uid": pl.Int64,
|
|
599
|
+
"mz_delta": pl.Float64,
|
|
600
|
+
"rt_delta": pl.Float64,
|
|
601
|
+
"matcher": pl.Utf8,
|
|
602
|
+
"score": pl.Float64,
|
|
603
|
+
"iso": pl.Int64,
|
|
604
|
+
}
|
|
605
|
+
id_df_temp = pl.DataFrame(id_data, schema=id_schema)
|
|
606
|
+
|
|
607
|
+
# Filter id_df to only include lib_uids that exist in the final unique lib_df
|
|
608
|
+
unique_lib_uids = self.lib_df.select("lib_uid").to_series()
|
|
609
|
+
self.id_df = id_df_temp.filter(pl.col("lib_uid").is_in(unique_lib_uids))
|
|
610
|
+
|
|
611
|
+
self.logger.info(f"Created id_df with {len(self.id_df)} identification matches")
|
|
612
|
+
|
|
613
|
+
# === UPDATE FEATURES_DF ===
|
|
614
|
+
self.logger.debug("Updating features_df with top identification results")
|
|
615
|
+
|
|
616
|
+
# tima_data is already a polars DataFrame
|
|
617
|
+
tima_pl = tima_data
|
|
618
|
+
|
|
619
|
+
# Group by feature_id and select the best identification (highest score)
|
|
620
|
+
# In case of ties, take the first one
|
|
621
|
+
best_ids = (
|
|
622
|
+
tima_pl.group_by("feature_id")
|
|
623
|
+
.agg([pl.col("score").max().alias("max_score")])
|
|
624
|
+
.join(tima_pl, on="feature_id")
|
|
625
|
+
.filter(pl.col("score") == pl.col("max_score"))
|
|
626
|
+
.group_by("feature_id")
|
|
627
|
+
.first() # In case of ties, take the first
|
|
628
|
+
)
|
|
629
|
+
|
|
630
|
+
# Join with features_df to map feature_id to feature_uid
|
|
631
|
+
best_ids = best_ids.join(
|
|
632
|
+
self.features_df.select(["feature_id", "feature_uid"]),
|
|
633
|
+
on="feature_id",
|
|
634
|
+
how="left"
|
|
635
|
+
)
|
|
636
|
+
|
|
637
|
+
self.logger.debug(f"Selected best identifications for {len(best_ids)} features")
|
|
638
|
+
|
|
639
|
+
# Prepare the identification columns
|
|
640
|
+
id_columns = {
|
|
641
|
+
"id_top_name": best_ids.select("feature_uid", "label_compound"),
|
|
642
|
+
"id_top_adduct": best_ids.select("feature_uid", "adduct"),
|
|
643
|
+
"id_top_class": best_ids.select("feature_uid", "label_classyfire"),
|
|
644
|
+
"id_top_score": best_ids.select("feature_uid", pl.col("score").round(3).alias("score")),
|
|
645
|
+
}
|
|
646
|
+
|
|
647
|
+
# Initialize identification columns in features_df if they don't exist
|
|
648
|
+
for col_name in id_columns.keys():
|
|
649
|
+
if col_name not in self.features_df.columns:
|
|
650
|
+
if col_name == "id_top_score":
|
|
651
|
+
self.features_df = self.features_df.with_columns(pl.lit(None, dtype=pl.Float64).alias(col_name))
|
|
652
|
+
else:
|
|
653
|
+
self.features_df = self.features_df.with_columns(pl.lit(None, dtype=pl.String).alias(col_name))
|
|
654
|
+
|
|
655
|
+
# Update features_df with TIMA identifications
|
|
656
|
+
for col_name, id_data_col in id_columns.items():
|
|
657
|
+
tima_column = id_data_col.columns[1] # second column (after feature_uid)
|
|
658
|
+
|
|
659
|
+
# Create update dataframe
|
|
660
|
+
update_data = id_data_col.rename({tima_column: col_name})
|
|
661
|
+
|
|
662
|
+
# Join and update
|
|
663
|
+
self.features_df = (
|
|
664
|
+
self.features_df.join(update_data, on="feature_uid", how="left", suffix="_tima")
|
|
665
|
+
.with_columns(pl.coalesce([f"{col_name}_tima", col_name]).alias(col_name))
|
|
666
|
+
.drop(f"{col_name}_tima")
|
|
667
|
+
)
|
|
668
|
+
|
|
669
|
+
# Replace NaN values with None in identification columns
|
|
670
|
+
id_col_names = ["id_top_name", "id_top_adduct", "id_top_class", "id_top_score"]
|
|
671
|
+
for col_name in id_col_names:
|
|
672
|
+
if col_name in self.features_df.columns:
|
|
673
|
+
# For string columns, replace empty strings and "nan" with None
|
|
674
|
+
if col_name != "id_top_score":
|
|
675
|
+
self.features_df = self.features_df.with_columns(
|
|
676
|
+
pl.when(
|
|
677
|
+
pl.col(col_name).is_null()
|
|
678
|
+
| (pl.col(col_name) == "")
|
|
679
|
+
| (pl.col(col_name) == "nan")
|
|
680
|
+
| (pl.col(col_name) == "NaN")
|
|
681
|
+
)
|
|
682
|
+
.then(None)
|
|
683
|
+
.otherwise(pl.col(col_name))
|
|
684
|
+
.alias(col_name)
|
|
685
|
+
)
|
|
686
|
+
# For numeric columns, replace NaN with None
|
|
687
|
+
else:
|
|
688
|
+
self.features_df = self.features_df.with_columns(
|
|
689
|
+
pl.when(pl.col(col_name).is_null() | pl.col(col_name).is_nan())
|
|
690
|
+
.then(None)
|
|
691
|
+
.otherwise(pl.col(col_name))
|
|
692
|
+
.alias(col_name)
|
|
693
|
+
)
|
|
694
|
+
|
|
695
|
+
# Count how many features were updated
|
|
696
|
+
updated_count = self.features_df.filter(pl.col("id_top_name").is_not_null()).height
|
|
697
|
+
total_features = len(self.features_df)
|
|
698
|
+
|
|
699
|
+
self.logger.success(
|
|
700
|
+
f"TIMA import completed. {updated_count}/{total_features} "
|
|
701
|
+
f"features now have identifications ({updated_count / total_features * 100:.1f}%)"
|
|
702
|
+
)
|
|
703
|
+
|
|
704
|
+
# Update history
|
|
705
|
+
self.store_history(
|
|
706
|
+
["import_tima"],
|
|
707
|
+
{
|
|
708
|
+
"folder": folder,
|
|
709
|
+
"file": file,
|
|
710
|
+
"updated_features": updated_count,
|
|
711
|
+
"total_features": total_features,
|
|
712
|
+
"lib_entries": len(self.lib_df),
|
|
713
|
+
"id_matches": len(self.id_df),
|
|
714
|
+
},
|
|
715
|
+
)
|
masster/sample/sample.py
CHANGED
|
@@ -135,6 +135,7 @@ from masster.sample.id import get_id
|
|
|
135
135
|
from masster.sample.id import id_reset
|
|
136
136
|
from masster.sample.id import lib_reset
|
|
137
137
|
from masster.sample.importers import import_oracle
|
|
138
|
+
from masster.sample.importers import import_tima
|
|
138
139
|
from masster.sample.load import chrom_extract
|
|
139
140
|
from masster.sample.load import _index_file
|
|
140
141
|
from masster.sample.load import load
|
|
@@ -170,7 +171,9 @@ from masster.sample.save import export_chrom
|
|
|
170
171
|
from masster.sample.save import export_dda_stats
|
|
171
172
|
from masster.sample.save import export_features
|
|
172
173
|
from masster.sample.save import export_mgf
|
|
173
|
-
from masster.sample.save import
|
|
174
|
+
from masster.sample.save import export_excel
|
|
175
|
+
from masster.sample.save import export_slaw
|
|
176
|
+
from masster.sample.save import export_mztab
|
|
174
177
|
from masster.sample.save import save
|
|
175
178
|
|
|
176
179
|
|
|
@@ -307,11 +310,14 @@ class Sample:
|
|
|
307
310
|
lib_reset = lib_reset
|
|
308
311
|
# Importers from importers.py
|
|
309
312
|
import_oracle = import_oracle
|
|
313
|
+
import_tima = import_tima
|
|
310
314
|
export_features = export_features
|
|
311
|
-
|
|
315
|
+
export_excel = export_excel
|
|
316
|
+
export_slaw = export_slaw
|
|
312
317
|
export_mgf = export_mgf
|
|
313
318
|
export_chrom = export_chrom
|
|
314
319
|
export_dda_stats = export_dda_stats
|
|
320
|
+
export_mztab = export_mztab
|
|
315
321
|
plot_2d = plot_2d
|
|
316
322
|
plot_2d_oracle = plot_2d_oracle
|
|
317
323
|
plot_dda_stats = plot_dda_stats
|