masster 0.5.27__py3-none-any.whl → 0.6.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of masster might be problematic. Click here for more details.

@@ -1,12 +1,12 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: masster
3
- Version: 0.5.27
3
+ Version: 0.6.1
4
4
  Summary: Mass spectrometry data analysis package
5
5
  Project-URL: homepage, https://github.com/zamboni-lab/masster
6
6
  Project-URL: repository, https://github.com/zamboni-lab/masster
7
7
  Project-URL: documentation, https://github.com/zamboni-lab/masster#readme
8
8
  Project-URL: Third-Party Licenses, https://github.com/zamboni-lab/masster/blob/main/THIRD_PARTY_NOTICES.md
9
- Author: Zamboni Lab
9
+ Author: Zamboni Lab, ETH Zurich
10
10
  License: GNU AFFERO GENERAL PUBLIC LICENSE
11
11
  Version 3, 19 November 2007
12
12
 
@@ -726,17 +726,39 @@ Requires-Dist: pytest-mock>=3.10.0; extra == 'test'
726
726
  Requires-Dist: pytest>=7.0.0; extra == 'test'
727
727
  Description-Content-Type: text/markdown
728
728
 
729
- # MASSter
729
+ # masster
730
730
  [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/masster)](https://badge.fury.io/py/masster)
731
731
  [![PyPI version](https://badge.fury.io/py/masster.svg)](https://badge.fury.io/py/masster)
732
732
 
733
- **MASSter** is a Python package for the analysis of mass spectrometry data, tailored for the purpose of metabolomics and LC-MS data processing. It is designed to deal with DDA, and hides functionalities for DIA and ZTScan DIA data. The sample-centric feature detection uses OpenMS. All other functionalities for e.g. centroiding, RT alignment, adduct and isotopomer detection, merging of multiple samples, gap-filling, quantification, etc. were redesigned and engineered to maximize scalability (tested with 3000 LC-MS), speed, quality, and results.
733
+ **MASSter** is a Python package for the analysis of metabolomics experiments by LC-MS/MS data, with a main focus on the challenging tasks of untargeted and large-scale studies.
734
734
 
735
- This is a poorly documented, stable branch of the development codebase in use in the Zamboni lab.
735
+ ## Background and motivation
736
+
737
+ MASSter is actively used, maintained, and developed by the Zamboni Lab at ETH Zurich. The project started because many needs were unmet by the "usual" software packages (mzMine, MS-DIAL, Workflow4Metabolomics (W4M), ...), for example performance, scalability, sensitivity, robustness, speed, rapid implementation of new features, and embedding in ETL systems.
738
+
739
+ All methods include many parameters and may wrap alternative algorithms. These options are primarily relevant for advanced users. We recommend running the processing methods with the defaults or using the Wizard.
740
+
741
+ ## Content
742
+
743
+ MASSter is designed to deal with DDA data, and hides functionalities for DIA and ZTScan DIA data. The sample-centric feature detection uses OpenMS, which is both accurate and fast, and it was wrapped with additional code to improve isotope and adduct detection. All other functionalities are own implementations: centroiding, RT alignment, adduct and isotopomer detection, merging of multiple samples, gap-filling, quantification, etc.
744
+
745
+ MASSter was engineered to maximize result quality, sensitivity, scalability, and speed. Yes, it's Python, which can be slower than other languages, but considerable effort was spent on optimizations, including the systematic use of [Polars](https://pola.rs/), NumPy vectorization, multiprocessing, and chunking. MASSter has been tested on studies with 3,000+ LC–MS/MS samples (≈1 million MS2 spectra) and autonomously completed analyses within a few hours.
746
+
747
+ ## Architecture
748
+
749
+ MASSter defines classes for Spectra, Chromatograms, Libraries, Samples, and Studies (a Study is a collection of samples, i.e. an LC–MS sequence). Users will typically work with a single `Study` object at a time. `Sample` objects are created when analyzing a batch (and saved for caching), or used for development, troubleshooting, or generating illustrations.
750
+
751
+ The analysis can be done in scripts (without user intervention, e.g. by the integrated Wizard), or interactively in notebooks, i.e. [marimo](https://marimo.io/) or [jupyter](https://jupyter.org/).
736
752
 
737
753
  ## Prerequisites
738
754
 
739
- **MASSter** reads raw (Thermo), wiff (SCIEX), or mzML data. It's recommended to provide raw, profile data.
755
+ You'll need to install Python (3.10-3.13, 3.14 has not been tested yet).
756
+
757
+ MASSter reads raw (Thermo), wiff (SCIEX), or mzML data. Reading vendor formats relies on .NET libraries, and is only possible in Windows. On Linux or MacOS, you'll be forced to use mzML data.
758
+
759
+ **It's recommended to use data in either the vendor's raw formats (WIFF and Thermo RAW) or mzML in profile mode.** MASSter includes a sophisticated and sufficiently fast centroiding algorithm that works well across the full dynamic range and will only act on spectra that are relevant. In our tests with data from different vendors, the centroiding performed much better than most vendor implementations (which are primarily proteomics-centric).
760
+
761
+ If you still want to convert raw data to centroided mzML, please use CentroidR: https://github.com/Adafede/CentroidR/tree/0.0.0.9001
740
762
 
741
763
  ## Installation
742
764
 
@@ -744,48 +766,33 @@ This is a poorly documented, stable branch of the development codebase in use in
744
766
  pip install masster
745
767
  ```
746
768
 
747
- ## Basic usage
748
- ### Quick start: use the wizard
769
+ ## Getting started
770
+ **The quickest way to use, or learn how to use MASSter, is to use the Wizard** which we integrated and, ideally, takes care of everything automatically.
749
771
 
772
+ The Wizard only needs to know where to find the MS files and where to store the results.
750
773
  ```python
751
- import masster
752
- wiz = masster.wizard.create_scripts(
753
- source=r'..\..\folder_with_raw_data',
754
- folder=r'..\..folder_to_store_results'
774
+ from masster import Wizard
775
+ wiz = Wizard(
776
+ source=r'..\..\folder_with_raw_data', # where to find the data
777
+ folder=r'..\..folder_to_store_results', # where to save the results
778
+ ncores=10 # this is optional
755
779
  )
756
- wiz.run()
780
+ wiz.test_and_run()
757
781
  ```
758
782
 
759
- This will run a wizard that should perform all key steps and save the results to the `folder`.
760
-
761
- ### Basic workflow for analyzing a single sample
762
- ```python
763
- import masster
764
- sample = masster.Sample(filename='...') # full path to a *.raw, *.wiff, or *.mzML file
765
- # process
766
- sample.find_features(chrom_fwhm=0.5, noise=50) # for orbitrap data, set noise to 1e5
767
- sample.find_adducts()
768
- sample.find_ms2()
769
-
770
- # access data
771
- sample.features_df
783
+ This will trigger the analysis of raw data, and the creation of a script to process all samples and then assemble the study. The whole processing will be stored as `1_masster_workflow.py` in the output folder. The wizard will test once and, if successful, run the full workflow using parallel processes. Once the processing is over you, navigate to `folder` to see what happened...
772
784
 
773
- # save results
774
- sample.save() # stores to *.sample5, our custom hdf5 format
775
- sample.export_mgf()
776
-
777
- # some plots
778
- sample.plot_bpc()
779
- sample.plot_tic()
780
- sample.plot_2d()
781
- sample.plot_features_stats()
785
+ If you want to interact with your data, we recommend using [marimo](https://marimo.io/) or [jupyter](https://jupyter.org/) and open the `*.study5` file, for example:
782
786
 
783
- # explore methods
784
- dir(study)
787
+ ```bash
788
+ # use marimo to open the script created by marimo
789
+ marimo edit '..\\..\\folder_to_store_results\\2_interactive_analysis.py'
790
+ # or, if you use uv to manage an environment with masster
791
+ uv run marimo edit '..\\..\\folder_to_store_results\\2_interactive_analysis.py'
785
792
  ```
786
793
 
787
- ### Basic Workflow for analyzing LC-MS study with 2-... samples
788
-
794
+ ### Basic Workflow for analyzing LC-MS study with 1-1000+ samples
795
+ In MASSter, the main object for data analysis is a `Study`, which consists of a bunch of `Samples`.
789
796
  ```python
790
797
  import masster
791
798
  # Initialize the Study object with the default folder
@@ -797,17 +804,20 @@ study.add(r'D:\...\...\...\*.wiff')
797
804
  # Perform retention time correction
798
805
  study.align(rt_tol=2.0)
799
806
  study.plot_alignment()
800
- study.plot_bpc()
801
807
  study.plot_rt_correction()
808
+ study.plot_bpc()
802
809
 
803
810
  # Find consensus features
804
- study.merge(min_samples=3)
811
+ study.merge(min_samples=3) # this will keep only the features that were found in 3 or more samples
805
812
  study.plot_consensus_2d()
806
813
 
807
- # Retrieve missing data for quantification
814
+ # retrieve information
815
+ study.info()
816
+
817
+ # Retrieve EICs for quantification
808
818
  study.fill()
809
819
 
810
- # Integrate according to consensus metadata
820
+ # Integrate EICs according to consensus metadata
811
821
  study.integrate()
812
822
 
813
823
  # export results
@@ -823,32 +833,62 @@ study.save()
823
833
  study.plot_samples_pca()
824
834
  study.plot_samples_umap()
825
835
  study.plot_samples_2d()
826
- ```
836
+ study.plot_heatmap()
827
837
 
828
- ### Quick Start with Wizard
829
- MASSter includes a Wizard to automatically process everything:
838
+ # To know more about the available methods...
839
+ dir(study)
840
+ ```
841
+ The information is stored in Polars data frame, in particular:
842
+ ```python
843
+ # information on samples
844
+ study.samples_df
845
+ # information on consensus features
846
+ study.consensus_df
847
+ # information on original features from ALL samples, including MS2 and EICs
848
+ study.features_df
849
+ ```
830
850
 
851
+ ### Analysis of a single sample
852
+ For troubleshooting, exploration, or just to create a figure on a single file, you might want to open and process a single file:
831
853
  ```python
832
- from masster import Wizard
854
+ from masster import Sample
855
+ sample = Sample(filename='...') # full path to a *.raw, *.wiff, *.mzML, or *.sample5 file
856
+ # peek into sample
857
+ sample.info()
858
+
859
+ # process
860
+ sample.find_features(chrom_fwhm=0.5, noise=50) # for orbitrap data, set noise to 1e5
861
+ sample.find_adducts()
862
+ sample.find_ms2()
833
863
 
834
- # Create wizard instance
835
- wiz = Wizard(source="./raw_data",
836
- folder="./output",
837
- num_cores=8)
864
+ # access data
865
+ sample.features_df
838
866
 
839
- # Generate analysis scripts
840
- wiz.create_scripts()
867
+ # save results
868
+ sample.save() # stores to *.sample5, our custom hdf5 format
869
+ sample.export_mgf()
841
870
 
842
- # Test with single file, then run full batch
843
- wiz.test_and_run()
844
- ```
871
+ # some plots
872
+ sample.plot_bpc()
873
+ sample.plot_tic()
874
+ sample.plot_2d()
875
+ sample.plot_features_stats()
845
876
 
846
- ### One-Line Command Processing
847
- Or, from the command-line:
848
- ```bash
849
- python -c "from masster import Wizard; wiz = Wizard(source='D:/Data/studies/my_study/raw', folder='D:/Data/studies/my_study/masster'); wiz.create_scripts(); wiz.test_and_run()"
877
+ # explore methods
878
+ dir(sample)
850
879
  ```
851
880
 
881
+ ## Disclaimer
882
+
883
+ **MASSter is research software under active development.** While we use it extensively in our lab and strive for quality and reliability, please be aware:
884
+
885
+ - **No warranties**: The software is provided "as is" without any warranty of any kind, express or implied
886
+ - **Backward compatibility**: We do not guarantee backward compatibility between versions. Breaking changes may occur as we improve the software
887
+ - **Performance**: While optimized for our workflows, performance may vary depending on your data and system configuration
888
+ - **Results**: We do our best to ensure accuracy, but you should validate results independently for your research
889
+ - **Support**: This is an academic project with limited resources. At the moment, we do not provide external user support.
890
+ - **Production use**: If you plan to use MASSter in production or critical workflows, thorough testing with your data is recommended
891
+
852
892
  ## License
853
893
  GNU Affero General Public License v3
854
894
 
@@ -858,4 +898,4 @@ See the [LICENSE](LICENSE) file for details.
858
898
  This project uses several third-party libraries, including pyOpenMS which is licensed under the BSD 3-Clause License. For complete information about third-party dependencies and their licenses, see [THIRD_PARTY_NOTICES.md](THIRD_PARTY_NOTICES.md).
859
899
 
860
900
  ## Citation
861
- If you use Masster in your research, please cite this repository.
901
+ If you use MASSter in your research, please cite this repository.
@@ -1,53 +1,54 @@
1
1
  masster/__init__.py,sha256=B7zftzdElF2Wb5B7KvkD6TONnMIY-Jxeen3s49dgmzs,1029
2
- masster/_version.py,sha256=1ymsIuIjSvggBFAIWxPqWntiqdxjPZEjAmDJy3vRsLE,257
2
+ masster/_version.py,sha256=wvOsoiyUS6iLCwOZr1qUKMtknzSBYapqQBYeUjDPwj4,256
3
3
  masster/chromatogram.py,sha256=iYpdv8C17zVnlWvOFgAn9ns2uFGiF-GgoYf5QVVAbHs,19319
4
- masster/logger.py,sha256=oHEFPH1LzBHbmeP9WFaRZCWyqd14GasJjZMLI8a4O3I,19439
4
+ masster/logger.py,sha256=MbQ3uLI3N0G3tnvtGIJZN_HEwjKRfIhBVZmIzUev7oc,18827
5
5
  masster/spectrum.py,sha256=LlmxrI5MFS3aPrGSdqUSKVY0rJnKeBh3Frdh6a4dPvA,49722
6
- masster/data/libs/aa.csv,sha256=Sja1DyMsiaM2NfLcct4kAAcXYwPCukJJW8sDkup9w_c,1924
7
- masster/data/libs/ccm.csv,sha256=Q6nylV1152uTpX-ydqWeGrc6L9kgv45xN_fBZ4f7Tvo,12754
8
- masster/data/libs/urine.csv,sha256=iRrR4N8Wzb8KDhHJA4LqoQC35pp93FSaOKvXPrgFHis,653736
6
+ masster/data/libs/aa_nort.json,sha256=tadOrusSrcAIxTcvME-Vy_PVNQskCU4jN9XVDeYhq4o,6052
7
+ masster/data/libs/ccm_nort.json,sha256=9Dq_JqLqQ700Nri6LDe7stBUQkiTGXukK2GqsFaOrTw,35425
9
8
  masster/data/wiff/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.timeseries.data,sha256=01vC6m__Qqm2rLvlTMZoeKIKowFvovBTUnrNl8Uav3E,24576
10
9
  masster/data/wiff/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.wiff,sha256=go5N9gAM1rn4PZAVaoCmdteY9f7YGEM9gyPdSmkQ8PE,1447936
11
10
  masster/data/wiff/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.wiff.scan,sha256=ahi1Y3UhAj9Bj4Q2MlbgPekNdkJvMOoMXVOoR6CeIxc,13881220
12
11
  masster/data/wiff/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.wiff2,sha256=TFB0HW4Agkig6yht7FtgjUdbXax8jjKaHpSZSvuU5vs,3252224
13
12
  masster/lib/__init__.py,sha256=TcePNx3SYZHz6763TL9Sg4gUNXaRWjlrOtyS6vsu-hg,178
14
- masster/lib/lib.py,sha256=SGWuiCTHc65khmLndC2cFBCO1rk8-SS6BkG4C_nOf-o,44984
13
+ masster/lib/lib.py,sha256=j3aFmS_xohvjgVi2XrfIOcNA5v3-slusDIOqHTij-Og,45016
15
14
  masster/sample/__init__.py,sha256=HL0m1ept0PMAYUCQtDDnkdOS12IFl6oLAq4TZQz83uY,170
16
- masster/sample/adducts.py,sha256=ALUSeY8fDf4oWl-g1wEffBDRk_apKTDwd_FOdxtP5Es,33511
17
- masster/sample/h5.py,sha256=uEbsfaMgRWgADLhw3j6rdXjHqRz4bmLQKjAzXXGA12M,109285
18
- masster/sample/helpers.py,sha256=opitF12aS3KNfwM0GFwiITX129AAi0HXvEW32oljTL4,43627
15
+ masster/sample/adducts.py,sha256=kVsVZTUIQsVGDgmzvkhPn-9XdilGjuNe-xqUZG--Huc,33519
16
+ masster/sample/h5.py,sha256=80ClWBCZH8eY5hLmUIy0GRvHshq0FvT4LWKmQ9Hn7L4,116017
17
+ masster/sample/helpers.py,sha256=ldQ05ha4whONSB-5YouZEXf0E9v90AnAN7fePAc3Y4s,48094
18
+ masster/sample/id.py,sha256=f2Y3JFn_0PPAscnfpllDR_82tiHH1j-SuxahiGsBjjU,46428
19
+ masster/sample/importers.py,sha256=F7hcOaDKPVYsT1iYLHseWSpOYa586u17jsQOPpXLS1I,13286
19
20
  masster/sample/lib.py,sha256=YIeG9nBiSMllu3xkqcQXnMe6pXJ9sJSN7un8SORgVJ4,33968
20
21
  masster/sample/load.py,sha256=tpPqRZtmfOY1AibHBBqcYfPD8SoI8Uue-IiDOA20DYc,48402
21
22
  masster/sample/parameters.py,sha256=Gg2KcuNbV_wZ_Wwv93QlM5J19ji0oSIvZLPV1NoBmq0,4456
22
- masster/sample/plot.py,sha256=fQWWG-BeJz3XdtIVYTlV1_mM5xqZw5cYjQEmJU68t2U,105244
23
+ masster/sample/plot.py,sha256=CHfsAIeTxxjXwCd4E6rAKTZdtjtq_cpDNoYAo0Gi0zs,110454
23
24
  masster/sample/processing.py,sha256=7FmlDO_vsVbUfI62QSoHXKkgGtfjMLHLRdvaB4KdmP4,56018
24
25
  masster/sample/quant.py,sha256=tHNjvUFTdehKR31BXBZnVsBxMD9XJHgaltITOjr71uE,7562
25
- masster/sample/sample.py,sha256=-xliZfE_6I0tRkMZa8yChiMtdbKXdLnF4xnD-LtIgZY,22078
26
- masster/sample/sample5_schema.json,sha256=H5e2T6rHIDzul2kp_yP-ILUUWUpW08wP2pEQjMR0nSk,3977
26
+ masster/sample/sample.py,sha256=EfB4CweOCkuxseHVxLIlxaL6hGWd6k9J5LKT5wHyId0,22672
27
+ masster/sample/sample5_schema.json,sha256=szuRsrs2o50jEjXOAT7T6zLQhZauN_0nc_605uQjgVA,5839
27
28
  masster/sample/save.py,sha256=RD3tRoTNy2ANKoU-oZSfu47nQ4ATSAB-Io2EN0RUZaI,37994
28
29
  masster/sample/sciex.py,sha256=jzMrw5iKzbCFVgmgbU65eIr10eegzKng9WKx1Inl8Dg,21740
29
30
  masster/sample/thermo.py,sha256=zcH4aZg2hQnZp9rM618ZUiQXRuUqFRmVFdbCg0SnIOQ,27775
30
31
  masster/sample/defaults/__init__.py,sha256=A09AOP44cxD_oYohyt7XFUho0zndRcrzVD4DUaGnKH4,447
31
- masster/sample/defaults/find_adducts_def.py,sha256=bK05FcACdj0t-T8x6zWUbCzxRxbR7P0u8o8U23RIFrc,13552
32
+ masster/sample/defaults/find_adducts_def.py,sha256=RFZGaP3VeVEnSxlqvUaHq6wl1m5mfr7yvyf7pHWgtJI,13553
32
33
  masster/sample/defaults/find_features_def.py,sha256=Bcd39uav1BniwKgrsB-I1maF3ljf4Wb1f5yv0pDYfts,17745
33
34
  masster/sample/defaults/find_ms2_def.py,sha256=mr_XtzlhYfXt7kYWVFPt1ReGqHZQDPXe-1pGND2VvV8,9844
34
35
  masster/sample/defaults/get_spectrum_def.py,sha256=o62p31PhGd-LiIkTOzKQhwPtnO2AtQDHcPu-O-YoQPs,11460
35
36
  masster/sample/defaults/sample_def.py,sha256=MWWeEexGG2Ahbs-id4uq2doIgH-Ja96GioXaSl2CxN8,15449
36
37
  masster/study/__init__.py,sha256=55axdFuqRX4aXtJ8ocnhcLB32fNtmmJpCi58moO0r4g,237
37
38
  masster/study/analysis.py,sha256=bf2o_ywvwdPz1mZAHPETCPjWbvhoL9eEl1rLaz46Rp4,82032
38
- masster/study/export.py,sha256=oRgM4F4hL3-nBRr_xd4KTin8WoH8QqCJnz3K_S1M14E,60258
39
+ masster/study/export.py,sha256=H-FEdQXNHmUhZ6gBcdpgY9DC9P2egWkVbH5L3wqsDXQ,60185
39
40
  masster/study/h5.py,sha256=gJRWNQxBTyFKD3qRmEbM24YZ-HdyUk-veYgwQbK0eoE,99104
40
41
  masster/study/helpers.py,sha256=pRcVvGmm6NX-GEvWfYZXZjGc_C0WyklqSQx1PdpYn2E,189694
41
- masster/study/id.py,sha256=dTMNdBE7eOQZdFSU0KZwd7vFpqOmNlQnLI0VGW98y8w,89570
42
+ masster/study/id.py,sha256=iKMcxEzFpCKSBWWrBoOHWWM43tYJSRFvDqmYJTIQ1eU,92348
42
43
  masster/study/importers.py,sha256=iOe9w6uEn39ShosRms8n_zIrsSBczb51CAMoMrxSUw4,13587
43
- masster/study/load.py,sha256=-qz9tAVYzI5is7_-z43FndcJJk95BmuMUOIxYzZoO_I,71314
44
- masster/study/merge.py,sha256=FEya_v2cMNvzNBtxzTv57KxfwNxT1R63LDrvnYIHORY,164557
44
+ masster/study/load.py,sha256=GrdXuY7EFrmkqnzNk4gdqE41ufFE39pUvBrQaA7RPXA,70649
45
+ masster/study/merge.py,sha256=6jZPaCFp4Z8lnG8ztgEeoOzoxRmULIS4SKBYoPnEaTc,171480
45
46
  masster/study/parameters.py,sha256=bTvmcwX9INxzcrEAmTiFH8qeWVhwkvMTZjuP394pz5o,3279
46
- masster/study/plot.py,sha256=HIz8GMxN988KDXP425cpYohCgrgMrMCWBQ2s5ncmLoI,113816
47
+ masster/study/plot.py,sha256=2tRjZFViYq_I5ih1TruelzIdnGynKsOpnHyhTzGUr-k,120731
47
48
  masster/study/processing.py,sha256=oQGepG5-AXP9GGk8NTzl_i1ztgDp3TPwE2x15BmnpMw,57353
48
49
  masster/study/save.py,sha256=tF00anwwQDe2qxumv_4AP_1UOo0-f28Tkd2WXGyNHbI,9182
49
- masster/study/study.py,sha256=_IL6pCw29JI0p2ujdaMr_gsfaFkq3PFWO5NPuLpshYA,37867
50
- masster/study/study5_schema.json,sha256=uLA9TIb5loki87_BEdwSNyPYahwOanacYisXdIK0_Z0,8044
50
+ masster/study/study.py,sha256=sIoi03DBTzdcJjqvXZTt15kWK_pHiyQXJQSkR1cwCII,37959
51
+ masster/study/study5_schema.json,sha256=tvlQZezS4bwRRxlUi8cpoiPIE3qTzk2WDQfZw8mE724,8359
51
52
  masster/study/defaults/__init__.py,sha256=m3Z5KXGqsTdh7GjYzZoENERt39yRg0ceVRV1DeCt1P0,610
52
53
  masster/study/defaults/align_def.py,sha256=Du0F592ej2einT8kOx8EUs610axSvur8_-6N19O-uJY,10209
53
54
  masster/study/defaults/export_def.py,sha256=eXl3h4aoLX88XkHTpqahLd-QZ2gjUqrmjq8IJULXeWo,1203
@@ -58,11 +59,11 @@ masster/study/defaults/identify_def.py,sha256=nFj-pv6q1eRgSgoRr78YEnqulPPMWo2Ju5
58
59
  masster/study/defaults/integrate_chrom_def.py,sha256=0MNIWGTjty-Zu-NTQsIweuj3UVqEY3x1x8pK0mPwYak,7264
59
60
  masster/study/defaults/integrate_def.py,sha256=Vf4SAzdBfnsSZ3IRaF0qZvWu3gMDPHdgPfMYoPKeWv8,7246
60
61
  masster/study/defaults/merge_def.py,sha256=99TJtIk7mSoq8NMJMJ4b-cy7gUUixQN69krxttBnkfA,12899
61
- masster/study/defaults/study_def.py,sha256=xXOAcb8hez0woWwA1_T3fcokjiLJkq3hwA3OS6elb6I,15965
62
+ masster/study/defaults/study_def.py,sha256=kSvhiqpFp8b84vUsE8608LQsSXwz9lAPcU2BqK0T8z0,16095
62
63
  masster/wizard/__init__.py,sha256=L9G_datyGSFJjrBVklEVpZVLGXzUhDiWobtiygBH8vQ,669
63
- masster/wizard/wizard.py,sha256=11utDrZSt7R8D16Sl-NbRKHcgzhQEu8gW_q2V02-Qi0,66483
64
- masster-0.5.27.dist-info/METADATA,sha256=PnpTZ5qf1lH8R7eOZ4IACjRXoH_67n8qPgv3SfL-7U4,46360
65
- masster-0.5.27.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
66
- masster-0.5.27.dist-info/entry_points.txt,sha256=ZHguQ_vPmdbpqq2uGtmEOLJfgP-DQ1T0c07Lxh30wc8,58
67
- masster-0.5.27.dist-info/licenses/LICENSE,sha256=bx5iLIKjgAdYQ7sISn7DsfHRKkoCUm1154sJJKhgqnU,35184
68
- masster-0.5.27.dist-info/RECORD,,
64
+ masster/wizard/wizard.py,sha256=yAcEK7aPzWV9fILY4TQcwAhmJKpKE0q9BK8Ur9Eu9Og,66677
65
+ masster-0.6.1.dist-info/METADATA,sha256=IXdmr09jJ-u5Mv90fm08TaLut6DvpTGNyAuld4rxEFs,50818
66
+ masster-0.6.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
67
+ masster-0.6.1.dist-info/entry_points.txt,sha256=ZHguQ_vPmdbpqq2uGtmEOLJfgP-DQ1T0c07Lxh30wc8,58
68
+ masster-0.6.1.dist-info/licenses/LICENSE,sha256=bx5iLIKjgAdYQ7sISn7DsfHRKkoCUm1154sJJKhgqnU,35184
69
+ masster-0.6.1.dist-info/RECORD,,
masster/data/libs/aa.csv DELETED
@@ -1,22 +0,0 @@
1
- name,smiles,inchikey,formula,db_id,db
2
- L-Glutamic acid,N[C@@H](CCC(O)=O)C(O)=O,WHUUTDBJXJRKMK-VKHMYHEASA-N,C5H9NO4,CID:33032,pubchem
3
- L-Tyrosine,N[C@@H](CC1=CC=C(O)C=C1)C(O)=O,OUYCCCASQSFEME-QMMMGPOBSA-N,C9H11NO3,CID:6057,pubchem
4
- L-Phenylalanine,N[C@@H](CC1=CC=CC=C1)C(O)=O,COLNVLDHVKWLRT-QMMMGPOBSA-N,C9H11NO2,CID:6140,pubchem
5
- L-Alanine,C[C@H](N)C(O)=O,QNAYBMKLOCPYGJ-REOHCLBHSA-N,C3H7NO2,CID:5950,pubchem
6
- L-Proline,OC(=O)[C@@H]1CCCN1,ONIBWKKTOPOVIA-BYPYZUCNSA-N,C5H9NO2,CID:145742,pubchem
7
- L-Threonine,C[C@@H](O)[C@H](N)C(O)=O,AYFVYJQAPQTCCC-GBXIJSLDSA-N,C4H9NO3,CID:6288,pubchem
8
- L-Asparagine,N[C@@H](CC(N)=O)C(O)=O,DCXYFEDJOCDNAF-REOHCLBHSA-N,C4H8N2O3,CID:6267,pubchem
9
- L-Isoleucine,CC[C@H](C)[C@H](N)C(O)=O,AGPKZVBTJJNPAG-WHFBIAKZSA-N,C6H13NO2,CID:6306,pubchem
10
- L-Histidine,N[C@@H](CC1=CN=CN1)C(O)=O,HNDVDQJCIGZPNO-YFKPBYRVSA-N,C6H9N3O2,CID:6274,pubchem
11
- L-Lysine,NCCCC[C@H](N)C(O)=O,KDXKERNSBIXSRK-YFKPBYRVSA-N,C6H14N2O2,CID:5962,pubchem
12
- L-Serine,N[C@@H](CO)C(O)=O,MTCFGRXMJLQNBG-REOHCLBHSA-N,C3H7NO3,CID:5951,pubchem
13
- L-Aspartic acid,N[C@@H](CC(O)=O)C(O)=O,CKLJMWTZIZZHCS-REOHCLBHSA-N,C4H7NO4,CID:5960,pubchem
14
- L-Cystine,N[C@@H](CSSC[C@H](N)C(O)=O)C(O)=O,LEVWYRKDKASIDU-IMJSIDKUSA-N,C6H12N2O4S2,CID:67678,pubchem
15
- L-Arginine,N[C@@H](CCCNC(N)=N)C(O)=O,ODKSFYDXXFIFQN-BYPYZUCNSA-N,C6H14N4O2,CID:6322,pubchem
16
- L-Cysteine,N[C@@H](CS)C(O)=O,XUJNEKJLAYXESH-REOHCLBHSA-N,C3H7NO2S,CID:5862,pubchem
17
- L-Glutamine,N[C@@H](CCC(N)=O)C(O)=O,ZDXPYRJPNDTMRX-VKHMYHEASA-N,C5H10N2O3,CID:5961,pubchem
18
- L-Leucine,CC(C)C[C@H](N)C(O)=O,ROHFNLRQFUQHCH-YFKPBYRVSA-N,C6H13NO2,CID:6106,pubchem
19
- L-Methionine,CSCC[C@H](N)C(O)=O,FFEARJCKVFRZRR-BYPYZUCNSA-N,C5H11NO2S,CID:6137,pubchem
20
- L-Valine,CC(C)[C@H](N)C(O)=O,KZSNJWFQEVHDMF-BYPYZUCNSA-N,C5H11NO2,CID:6287,pubchem
21
- L-Tryptophan,N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O,QIVBCDIJIAJPQS-VIFPVBQESA-N,C11H12N2O2,CID:6305,pubchem
22
- Glycine,NCC(O)=O,QNAYBMKLOCPYGJ-UHFFFAOYSA-N,C2H5NO2,CID:750,Glycine
masster/data/libs/ccm.csv DELETED
@@ -1,120 +0,0 @@
1
- Name,Formula,SMILES,InChIKey,db_id,db
2
- Glucose,C6H11O,OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O,WQZGKKKJIJFFOK-GASJEMHNSA-N,CID:5793,pubchem
3
- Glucose-6-phosphate,C6H13O9P,O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)COP(=O)(O)O,VFRROHXSMXFLSN-SLPGGIOYSA-N,CID:439958,pubchem
4
- Fructose-6-phosphate,C6H13O9P,O=C(CO)[C@@H](O)[C@H](O)[C@H](O)COP(=O)(O)O,GSXOAOHZAIYLCY-HSUXUTPPSA-N,CID:69507,pubchem
5
- "Fructose-1,6-bisphosphate",C6H13O12P,O=P(O)(O)OC[C@H]1O[C@](O)(COP(=O)(O)O)[C@@H](O)[C@@H]1O,RNBGYGVWRKECFJ-ARQDHWQXSA-N,CID:10267,pubchem
6
- Glyceraldehyde-3-phosphate,C3H7O6P,O=C[C@H](O)COP(=O)(O)O,LXJXRIRHZLFYRP-VKHMYHEASA-N,CID:439168,pubchem
7
- Dihydroxyacetone phosphate,C3H7O6P,O=C(CO)COP(=O)(O)O,GNGACRATGGDKBX-UHFFFAOYSA-N,CID:668,pubchem
8
- 3-Phosphoglycerate,C3H7O7P,O=C(O)C(O)COP(=O)(O)O,OSJPPGNTCRNQQC-UHFFFAOYSA-N,CID:724,pubchem
9
- 2-Phosphoglycerate,C3H7O7P,O=C(O)C(CO)OP(=O)(O)O,GXIURPTVHJPJLF-UHFFFAOYSA-N,CID:59,pubchem
10
- Phosphoenolpyruvate,C3H5O6P,C=C(OP(=O)(O)O)C(=O)O,DTBNBXWJWCWCIK-UHFFFAOYSA-N,CID:1005,pubchem
11
- Pyruvate,C3H6O,CC(=O)C(=O)O,LCTONWCANYUPML-UHFFFAOYSA-M,CID:107735,pubchem
12
- Lactate,C3H8O,CC(O)C(=O)O,JVTAAEKCZFNVCJ-UHFFFAOYSA-M,CID:91435,pubchem
13
- Acetyl-CoA,C23H38N7O17P3S,CC(=O)SCCN=C(O)CCN=C(O)[C@H](O)C(C)(C)COP(=O)(O)OP(=O)(O)OC[C@H]1O[C@@H](n2cnc3c(N)ncnc32)[C@H](O)[C@@H]1OP(=O)(O)O,ZSLZBFCDCINBPY-ZSJPKINUSA-N,CID:444493,pubchem
14
- Citric acid,C6H7O,O=C(O)CC(O)(CC(=O)O)C(=O)O,KRKNYBCHXYNGOX-UHFFFAOYSA-N,CID:311,pubchem
15
- Isocitrate,C6H7O,O=C(O)CC(C(=O)O)C(O)C(=O)O,ODBLHEXUDAPZAU-UHFFFAOYSA-N,CID:1198,pubchem
16
- Alpha-ketoglutaric acid,C5H5O,O=C(O)CCC(=O)C(=O)O,KPGXRSRHYNQIFN-UHFFFAOYSA-N,CID:51,pubchem
17
- Succinyl-CoA,C25H40N7O19P3S,CC(C)(COP(=O)(O)OP(=O)(O)OC[C@H]1O[C@@H](n2cnc3c(N)ncnc32)[C@H](O)[C@@H]1OP(=O)(O)O)[C@@H](O)C(O)=NCCC(O)=NCCSC(=O)CCC(=O)O,VNOYUJKHFWYWIR-ITIYDSSPSA-N,CID:92133,pubchem
18
- Succinic acid,C4H5O,O=C(O)CCC(=O)O,KDYFGRWQOYBRFD-UHFFFAOYSA-N,CID:1110,pubchem
19
- Fumaric acid,C4H3O,O=C(O)/C=C/C(=O)O,VZCYOOQTPOCHFL-OWOJBTEDSA-N,CID:444972,pubchem
20
- Malic acid,C4H5O,O=C(O)CC(O)C(=O)O,BJEPYKJPYRNKOW-UHFFFAOYSA-N,CID:525,pubchem
21
- Oxaloacetic acid,C4H3O,O=C(O)CC(=O)C(=O)O,KHPXUQMNIQBQEV-UHFFFAOYSA-N,CID:970,pubchem
22
- Ribose-5-phosphate,C5H11O8P,O=C[C@H](O)[C@H](O)[C@H](O)COP(=O)(O)O,PPQRONHOSHZGFQ-LMVFSUKVSA-N,CID:77982,pubchem
23
- Ribulose-5-phosphate,C5H11O8P,O=C(CO)[C@H](O)[C@H](O)COP(=O)(O)O,FNZLKVNUWIIPSJ-UHNVWZDZSA-N,CID:439184,pubchem
24
- Sedoheptulose-7-phosphate,C7H15O10P,O=C(CO)[C@@H](O)[C@H](O)[C@H](O)[C@H](O)COP(=O)(O)O,JDTUMPKOJBQPKX-GBNDHIKLSA-N,CID:165007,pubchem
25
- Erythrose-4-phosphate,C4H9O7P,O=C[C@H](O)[C@H](O)COP(=O)(O)O,NGHMDNPXVRFFGS-IUYQGCFVSA-N,CID:122357,pubchem
26
- "Sedoheptulose-1,7-bisphosphate",C7H15O13P,O=C(COP(=O)(O)O)[C@@H](O)[C@H](O)[C@H](O)[C@H](O)COP(=O)(O)O,OKHXOUGRECCASI-SHUUEZRQSA-N,CID:164735,pubchem
27
- Glycerol-3-phosphate,C3H9O6P,O=P(O)(O)OCC(O)CO,AWUCVROLDVIAJX-UHFFFAOYSA-N,CID:754,pubchem
28
- Glycerate,C3H9O,O=C(O)C(O)CO,RBNPOMFGQQGHHO-UHFFFAOYSA-M,CID:4643312,pubchem
29
- Pentose,C5H9O,OC1COC(O)C(O)C1O,SRBFZHDQGSBBOR-UHFFFAOYSA-N,CID:229,pubchem
30
- Acetaldehyde,C2H4O,CC=O,IKHGUXGNUITLKF-UHFFFAOYSA-N,CID:177,pubchem
31
- Acetic acid,C2H3O,CC(=O)O,QTBSBXVTEAMEQO-UHFFFAOYSA-N,CID:176,pubchem
32
- Alanine,C3H6NO,C[C@H](N)C(=O)O,QNAYBMKLOCPYGJ-REOHCLBHSA-N,CID:5950,pubchem
33
- Arginine,C6H13N4O,N=C(N)NCCC[C@H](N)C(=O)O,ODKSFYDXXFIFQN-BYPYZUCNSA-N,CID:6322,pubchem
34
- Asparagine,C4H7N2O,N=C(O)C[C@H](N)C(=O)O,DCXYFEDJOCDNAF-REOHCLBHSA-N,CID:6267,pubchem
35
- Aspartic acid,C4H6NO,N[C@@H](CC(=O)O)C(=O)O,CKLJMWTZIZZHCS-REOHCLBHSA-N,CID:5960,pubchem
36
- Cysteine,C3H7NO2S,N[C@@H](CS)C(=O)O,XUJNEKJLAYXESH-REOHCLBHSA-N,CID:5862,pubchem
37
- Glutamic acid,C5H8NO,N[C@@H](CCC(=O)O)C(=O)O,WHUUTDBJXJRKMK-VKHMYHEASA-N,CID:33032,pubchem
38
- Glutamine,C5H9N2O,N=C(O)CC[C@H](N)C(=O)O,ZDXPYRJPNDTMRX-VKHMYHEASA-N,CID:5961,pubchem
39
- Glycine,C2H4NO,NCC(=O)O,DHMQDGOQFOQNFH-UHFFFAOYSA-N,CID:750,pubchem
40
- Histidine,C6H8N3O,N[C@@H](Cc1cnc[nH]1)C(=O)O,HNDVDQJCIGZPNO-YFKPBYRVSA-N,CID:6274,pubchem
41
- Isoleucine,C6H12NO,CC[C@H](C)[C@H](N)C(=O)O,AGPKZVBTJJNPAG-WHFBIAKZSA-N,CID:6306,pubchem
42
- Leucine,C6H12NO,CC(C)C[C@H](N)C(=O)O,ROHFNLRQFUQHCH-YFKPBYRVSA-N,CID:6106,pubchem
43
- Lysine,C6H13N2O,NCCCC[C@H](N)C(=O)O,KDXKERNSBIXSRK-YFKPBYRVSA-N,CID:5962,pubchem
44
- Methionine,C5H11NO2S,CSCC[C@H](N)C(=O)O,FFEARJCKVFRZRR-BYPYZUCNSA-N,CID:6137,pubchem
45
- Phenylalanine,C9H10NO,N[C@@H](Cc1ccccc1)C(=O)O,COLNVLDHVKWLRT-QMMMGPOBSA-N,CID:6140,pubchem
46
- Proline,C5H8NO,O=C(O)[C@@H]1CCCN1,ONIBWKKTOPOVIA-BYPYZUCNSA-N,CID:145742,pubchem
47
- Serine,C3H6NO,N[C@@H](CO)C(=O)O,MTCFGRXMJLQNBG-REOHCLBHSA-N,CID:5951,pubchem
48
- Threonine,C4H8NO,C[C@@H](O)[C@H](N)C(=O)O,AYFVYJQAPQTCCC-GBXIJSLDSA-N,CID:6288,pubchem
49
- Tryptophan,C11H11N2O,N[C@@H](Cc1c[nH]c2ccccc12)C(=O)O,QIVBCDIJIAJPQS-VIFPVBQESA-N,CID:6305,pubchem
50
- Tyrosine,C9H10NO,N[C@@H](Cc1ccc(O)cc1)C(=O)O,OUYCCCASQSFEME-QMMMGPOBSA-N,CID:6057,pubchem
51
- Valine,C5H10NO,CC(C)[C@H](N)C(=O)O,KZSNJWFQEVHDMF-BYPYZUCNSA-N,CID:6287,pubchem
52
- Ornithine,C5H11N2O,NCCC[C@H](N)C(=O)O,AHLPHDHHMVZTML-BYPYZUCNSA-N,CID:6262,pubchem
53
- Citrulline,C6H12N3O,N=C(O)NCCC[C@H](N)C(=O)O,RHGKLRLOHDJJDR-BYPYZUCNSA-N,CID:9750,pubchem
54
- Homocysteine,C4H9NO2S,N[C@@H](CCS)C(=O)O,FFFHZYDWPBMWHY-VKHMYHEASA-N,CID:91552,pubchem
55
- S-adenosylmethionine,C15H22N6O5S,C[S](CC[C@H](N)C(=O)O)C[C@H]1O[C@@H](n2cnc3c(N)ncnc32)[C@H](O)[C@@H]1O,MEFKEPWMEQBLKI-AIRLBKTGSA-N,CID:34755,pubchem
56
- S-adenosylhomocysteine,C14H20N6O5S,Nc1ncnc2c1ncn2[C@@H]1O[C@H](CSCC[C@H](N)C(=O)O)[C@@H](O)[C@H]1O,ZJUKTBDSGOFHSH-WFMPWKQPSA-N,CID:439155,pubchem
57
- Formic acid,CHO,O=CO,BDAGIHXWWSANSR-UHFFFAOYSA-N,CID:284,pubchem
58
- Propionic acid,C3H5O,CCC(=O)O,XBDQKXXYIPTUBI-UHFFFAOYSA-N,CID:1032,pubchem
59
- Butyric acid,C4H7O,CCCC(=O)O,FERIUCNNQQJTOY-UHFFFAOYSA-N,CID:264,pubchem
60
- Malonic acid,C3H3O,O=C(O)CC(=O)O,OFOBLEOULBTSOW-UHFFFAOYSA-N,CID:867,pubchem
61
- 2-Hydroxyglutarate,C5H7O,O=C(O)CCC(O)C(=O)O,HWXBTNAVRSUOJR-UHFFFAOYSA-N,CID:43,pubchem
62
- 3-Hydroxybutyrate,C4H10O,CC(O)CC(=O)O,WHBMMWSBFZVSSR-UHFFFAOYSA-M,CID:3541112,pubchem
63
- Acetoacetate,C4H8O,CC(=O)CC(=O)O,WDJHALXBUFZDSR-UHFFFAOYSA-M,CID:6971017,pubchem
64
- Beta-hydroxybutyrate,C4H7O,CC(O)CC(=O)O,WHBMMWSBFZVSSR-UHFFFAOYSA-N,CID:441,pubchem
65
- Pyruvic acid,C3H3O,CC(=O)C(=O)O,LCTONWCANYUPML-UHFFFAOYSA-N,CID:1060,pubchem
66
- Lactic acid,C3H5O,CC(O)C(=O)O,JVTAAEKCZFNVCJ-UHFFFAOYSA-N,CID:612,pubchem
67
- Myristic acid,C14H27O,CCCCCCCCCCCCCC(=O)O,TUNFSRHWOTWDNC-UHFFFAOYSA-N,CID:11005,pubchem
68
- Palmitic acid,C16H31O,CCCCCCCCCCCCCCCC(=O)O,IPCSVZSSVZVIGE-UHFFFAOYSA-N,CID:985,pubchem
69
- Stearic acid,C18H35O,CCCCCCCCCCCCCCCCCC(=O)O,QIQXTHQIDYTFRH-UHFFFAOYSA-N,CID:5281,pubchem
70
- Palmitoleic acid,C16H29O,CCCCCC/C=C\CCCCCCCC(=O)O,SECPZKHBENQXJG-FPLPWBNLSA-N,CID:445638,pubchem
71
- Oleic acid,C18H33O,CCCCCCCC/C=C\CCCCCCCC(=O)O,ZQPPMHVWECSIRJ-KTKRTIGZSA-N,CID:445639,pubchem
72
- Linoleic acid,C18H31O,CCCCC/C=C\C/C=C\CCCCCCCC(=O)O,OYHQOLUKZRVURQ-HZJYTTRNSA-N,CID:5280450,pubchem
73
- Alpha-linolenic acid,C18H29O,CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)O,DTOSIQBPPRVQHS-PDBXOOCHSA-N,CID:5280934,pubchem
74
- Arachidonic acid,C20H31O,CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)O,YZXBAPSDXZZRGB-DOFZRALJSA-N,CID:444899,pubchem
75
- Adenine,C5H4N,Nc1nc[nH]c2ncnc1-2,GFFGJBXGBJISGV-UHFFFAOYSA-N,CID:190,pubchem
76
- Guanine,C5H5N5O,N=c1nc(O)c2nc[nH]c2[nH]1,UYTPUPDQBNUYGX-UHFFFAOYSA-N,CID:135398634,pubchem
77
- Cytosine,C4H5N3O,N=c1ccnc(O)[nH]1,OPTASPLRGRRNAP-UHFFFAOYSA-N,CID:597,pubchem
78
- Thymine,C5H5N2O,Cc1cnc(O)nc1O,RWQNBRDOKXIBIV-UHFFFAOYSA-N,CID:1135,pubchem
79
- Uracil,C4H3N2O,Oc1ccnc(O)n1,ISAKRJDGNUQOIC-UHFFFAOYSA-N,CID:1174,pubchem
80
- Adenosine,C10H12N5O,Nc1ncnc2c1ncn2[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O,OIRDTQYFTABQOQ-KQYNXXCUSA-N,CID:60961,pubchem
81
- Guanosine,C10H12N5O,N=c1nc(O)c2ncn([C@@H]3O[C@H](CO)[C@@H](O)[C@H]3O)c2[nH]1,NYHBQMYGNKIUIF-UUOKFMHZSA-N,CID:135398635,pubchem
82
- Cytidine,C9H12N3O,N=c1ccn([C@@H]2O[C@H](CO)[C@@H](O)[C@H]2O)c(O)n1,UHDGCWIWMRVCDJ-XVFCMESISA-N,CID:6175,pubchem
83
- Uridine,C9H11N2O,O=c1nc(O)ccn1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O,DRTQHJPVMGBUCF-XVFCMESISA-N,CID:6029,pubchem
84
- AMP,C10H14N5O7P,Nc1ncnc2c1ncn2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O,UDMBCSSLTHHNCD-KQYNXXCUSA-N,CID:6083,pubchem
85
- ADP,C10H14N5O10P,Nc1ncnc2c1ncn2[C@@H]1O[C@H](COP(=O)(O)OP(=O)(O)O)[C@@H](O)[C@H]1O,XTWYTFMLZFPYCI-KQYNXXCUSA-N,CID:6022,pubchem
86
- ATP,C10H15N5O13P,Nc1ncnc2c1ncn2[C@@H]1O[C@H](COP(=O)(O)OP(=O)(O)OP(=O)(O)O)[C@@H](O)[C@H]1O,ZKHQWZAMYRWXGA-KQYNXXCUSA-N,CID:5957,pubchem
87
- GMP,C10H14N5O8P,N=c1nc(O)c2ncn([C@@H]3O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]3O)c2[nH]1,RQFCJASXJCIDSX-UUOKFMHZSA-N,CID:135398631,pubchem
88
- GDP,C10H14N5O11P,N=c1nc(O)c2ncn([C@@H]3O[C@H](COP(=O)(O)OP(=O)(O)O)[C@@H](O)[C@H]3O)c2[nH]1,QGWNDRXFNXRZMB-UUOKFMHZSA-N,CID:135398619,pubchem
89
- GTP,C10H15N5O14P,N=c1nc(O)c2ncn([C@@H]3O[C@H](COP(=O)(O)OP(=O)(O)OP(=O)(O)O)[C@@H](O)[C@H]3O)c2[nH]1,XKMLYUALXHKNFT-UUOKFMHZSA-N,CID:135398633,pubchem
90
- CMP,C9H14N3O8P,N=c1ccn([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)c(O)n1,IERHLVCPSMICTF-XVFCMESISA-N,CID:6131,pubchem
91
- CDP,C9H14N3O11P,N=c1ccn([C@@H]2O[C@H](COP(=O)(O)OP(=O)(O)O)[C@@H](O)[C@H]2O)c(O)n1,ZWIADYZPOWUWEW-XVFCMESISA-N,CID:6132,pubchem
92
- CTP,C9H15N3O14P,N=c1ccn([C@@H]2O[C@H](COP(=O)(O)OP(=O)(O)OP(=O)(O)O)[C@@H](O)[C@H]2O)c(O)n1,PCDQPRRSZKQHHS-XVFCMESISA-N,CID:6176,pubchem
93
- UMP,C9H13N2O9P,O=c1nc(O)ccn1[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O,DJJCXFVJDGTHFX-XVFCMESISA-N,CID:6030,pubchem
94
- UDP,C9H13N2O12P,O=c1nc(O)ccn1[C@@H]1O[C@H](COP(=O)(O)OP(=O)(O)O)[C@@H](O)[C@H]1O,XCCTYIAWTASOJW-XVFCMESISA-N,CID:6031,pubchem
95
- UTP,C9H14N2O15P,O=c1nc(O)ccn1[C@@H]1O[C@H](COP(=O)(O)OP(=O)(O)OP(=O)(O)O)[C@@H](O)[C@H]1O,PGAVKCOVUIYSFO-XVFCMESISA-N,CID:6133,pubchem
96
- NAD+,C21H26N7O14P,N=C(O)C1CCCN([C@@H]2O[C@H](COP(=O)(O)OP(=O)(O)OC[C@H]3O[C@@H](n4cnc5c(N)ncnc54)[C@H](O)[C@@H]3O)[C@@H](O)[C@H]2O)C1,BAWFJGJZGIEFAR-NNYOXOHSSA-N,CID:5892,pubchem
97
- NADH,C21H28N7O14P,N=C(O)C1=CN([C@@H]2O[C@H](COP(=O)(O)OP(=O)(O)OC[C@H]3O[C@@H](n4cnc5c(N)ncnc54)[C@H](O)[C@@H]3O)[C@@H](O)[C@H]2O)C=CC1,BOPGDPNILDQYTO-NNYOXOHSSA-N,CID:439153,pubchem
98
- NADP+,C21H27N7O17P,N=C(O)C1CCCN([C@@H]2O[C@H](COP(=O)(O)OP(=O)(O)OC[C@H]3O[C@@H](n4cnc5c(N)ncnc54)[C@H](OP(=O)(O)O)[C@@H]3O)[C@@H](O)[C@H]2O)C1,XJLXINKUBYWONI-NNYOXOHSSA-N,CID:5885,pubchem
99
- NADPH,C21H29N7O17P,N=C(O)C1=CN([C@@H]2O[C@H](COP(=O)(O)OP(=O)(O)OC[C@H]3O[C@@H](n4cnc5c(N)ncnc54)[C@H](OP(=O)(O)O)[C@@H]3O)[C@@H](O)[C@H]2O)C=CC1,ACFIXJIJDZMPPO-NNYOXOHSSA-N,CID:5884,pubchem
100
- FAD,C27H32N9O15P,Cc1cc2nc3c(O)nc(=O)nc-3n(C[C@H](O)[C@H](O)[C@H](O)COP(=O)(O)OP(=O)(O)OC[C@H]3O[C@@H](n4cnc5c(N)ncnc54)[C@H](O)[C@@H]3O)c2cc1C,VWWQXMAJTJZDQX-UYBVJOGSSA-N,CID:643975,pubchem
101
- FMN,C17H21N4O9P,Cc1cc2nc3c(O)nc(=O)nc-3n(C[C@H](O)[C@H](O)[C@H](O)COP(=O)(O)O)c2cc1C,FVTCRASFADXXNN-SCRDCRAPSA-N,CID:643976,pubchem
102
- Coenzyme A,C21H36N7O16P3S,CC(C)(COP(=O)(O)OP(=O)(O)OC[C@H]1O[C@@H](n2cnc3c(N)ncnc32)[C@H](O)[C@@H]1OP(=O)(O)O)[C@@H](O)C(O)=NCCC(O)=NCCS,RGJOEKWQDUBAIZ-IBOSZNHHSA-N,CID:87642,pubchem
103
- Pantothenic acid,C9H16NO,CC(C)(CO)[C@@H](O)C(O)=NCCC(=O)O,GHOKWGTUZJEAQD-ZETCQYMHSA-N,CID:6613,pubchem
104
- Riboflavin,C17H19N4O,Cc1cc2nc3c(O)nc(=O)nc-3n(C[C@H](O)[C@H](O)[C@H](O)CO)c2cc1C,AUNGANRZJHBGPY-SCRDCRAPSA-N,CID:493570,pubchem
105
- Niacin,C6H4NO,O=C(O)c1cccnc1,PVNIIMVLHYAWGP-UHFFFAOYSA-N,CID:938,pubchem
106
- Fructose,C6H11O,OCC1(O)OC[C@@H](O)[C@@H](O)[C@@H]1O,LKDRXBCSQODPBY-VRPWFDPXSA-N,CID:2723872,pubchem
107
- Mannose,C6H11O,OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O,WQZGKKKJIJFFOK-QTVWNMPRSA-N,CID:18950,pubchem
108
- Mannose-6-phosphate,C6H13O9P,O=C[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)COP(=O)(O)O,VFRROHXSMXFLSN-KVTDHHQDSA-N,CID:6101690,pubchem
109
- Ribose,C5H9O,OC1OC[C@@H](O)[C@@H](O)[C@H]1O,SRBFZHDQGSBBOR-SOOFDHNKSA-N,CID:10975657,pubchem
110
- Glucosamine,C6H12NO,N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O,MSWZFWKMSRAUBD-IVMDWMLBSA-N,CID:439213,pubchem
111
- N-acetylglucosamine,C8H14NO,CC(O)=N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO,MBLBDJOUHNCFQT-LXGUWJNJSA-N,CID:1738118,pubchem
112
- Choline,C5H13NO,[H]OC([H])([H])C([H])([H])N(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H],OEYIOHPDSNJKLS-UHFFFAOYSA-N,CID:305,pubchem
113
- Betaine,C5H10NO,[H]OC(=O)C([H])([H])N(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H],KWIUHFFTVRNATP-UHFFFAOYSA-N,CID:247,pubchem
114
- Carnitine,C7H14NO,[H]OC(=O)C([H])([H])C([H])(O[H])C([H])([H])N(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H],PHIQHXFUZVPYII-UHFFFAOYSA-N,CID:288,pubchem
115
- Phosphocholine,C5H14NO4P,[H]OP(=O)(O[H])OC([H])([H])C([H])([H])N(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H],YHHSONZFOIEMCP-UHFFFAOYSA-O,CID:1014,pubchem
116
- Glycerol,C3H7O,OCC(O)CO,PEDCQBHIVMGVHV-UHFFFAOYSA-N,CID:753,pubchem
117
- Sorbitol,C6H13O,OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)CO,FBPFZTCFMRRESA-JGWLITMVSA-N,CID:5780,pubchem
118
- Inositol,C6H11O,OC1C(O)C(O)C(O)C(O)C1O,CDAISMWEOUEBRE-UHFFFAOYSA-N,CID:892,pubchem
119
- Cholesterol,C27H46O,CC(C)CCC[C@@H](C)[C@H]1CC[C@H]2[C@@H]3CC=C4C[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C,HVYWMOMLDIMFJA-DPAQBDIFSA-N,CID:5997,pubchem
120
- Pantothenate,C9H21NO,CC(C)(CO)C(O)C(O)=NCCC(=O)O,GHOKWGTUZJEAQD-UHFFFAOYSA-M,CID:5191579,pubchem