masster 0.5.26__py3-none-any.whl → 0.5.28__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of masster might be problematic. Click here for more details.

@@ -1,10 +1,11 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: masster
3
- Version: 0.5.26
3
+ Version: 0.5.28
4
4
  Summary: Mass spectrometry data analysis package
5
5
  Project-URL: homepage, https://github.com/zamboni-lab/masster
6
6
  Project-URL: repository, https://github.com/zamboni-lab/masster
7
7
  Project-URL: documentation, https://github.com/zamboni-lab/masster#readme
8
+ Project-URL: Third-Party Licenses, https://github.com/zamboni-lab/masster/blob/main/THIRD_PARTY_NOTICES.md
8
9
  Author: Zamboni Lab
9
10
  License: GNU AFFERO GENERAL PUBLIC LICENSE
10
11
  Version 3, 19 November 2007
@@ -725,17 +726,39 @@ Requires-Dist: pytest-mock>=3.10.0; extra == 'test'
725
726
  Requires-Dist: pytest>=7.0.0; extra == 'test'
726
727
  Description-Content-Type: text/markdown
727
728
 
728
- # MASSter
729
+ # masster
729
730
  [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/masster)](https://badge.fury.io/py/masster)
730
731
  [![PyPI version](https://badge.fury.io/py/masster.svg)](https://badge.fury.io/py/masster)
731
732
 
732
- **MASSter** is a Python package for the analysis of mass spectrometry data, tailored for the purpose of metabolomics and LC-MS data processing. It is designed to deal with DDA, and hides functionalities for DIA and ZTScan DIA data. The sample-centric feature detection uses OpenMS. All other functionalities for e.g. centroiding, RT alignment, adduct and isotopomer detection, merging of multiple samples, gap-filling, quantification, etc. were redesigned and engineered to maximize scalability (tested with 3000 LC-MS), speed, quality, and results.
733
+ **MASSter** is a Python package for the analysis of metabolomics experiments by LC-MS/MS data, with a main focus on the challenging tasks of untargeted and large-scale studies.
733
734
 
734
- This is a poorly documented, stable branch of the development codebase in use in the Zamboni lab.
735
+ ## Background and motivation
736
+
737
+ MASSter is actively used, maintainted, and developed by the Zamboni Lab at ETH Zurich. The project started because many needs of were unmatched by the "usual" software packages (mzmine, msdial, W4M, ...), e.g. performance, scalability, sensitivity, robustness, speed, rapid implementation of new features, embedding in ETL systems, and so on.
738
+
739
+ All methods include a long list of parameters, and might wrap alternative algorithms. These are only relevant for advanced users. We recommend running the processing methods with defaults, or using the Wizard.
740
+
741
+ ## Content
742
+
743
+ MASSter is designed to deal with DDA data, and hides functionalities for DIA and ZTScan DIA data. The sample-centric feature detection uses OpenMS, which is both accurate and fast, and it was wrapped with additional code to improve isotope and adduct detection. All other functionalities are own implementations: centroiding, RT alignment, adduct and isotopomer detection, merging of multiple samples, gap-filling, quantification, etc.
744
+
745
+ MASSter was engineered to maximize quality of results, sensitivity, scalability, and also speed. Yes, it's Python which is notoriously slower than other languages, but considerable time was spent in speeding up everything, including the systematic use of [polars](https://pola.rs/), numpy vectorization, multiprocessing, chunking, etc. MASSter was tested with studies with 3000+ LC-MS/MS samples (1 Mio MS2 spectra), and it autonomously completed analysis within a few hours.
746
+
747
+ ## Architecture
748
+
749
+ MASSter defines own classes for Spectra, Chromatograms, Libraries, Samples, and Studies (= bunch of samples, i.e. a LC-MS sequence). Users will deal mostly with one Study() object at the time. Sample() objects are created when analyzing a batch - and saved for caching -, or will be used only for development, troubleshooting, or to generate illustrations.
750
+
751
+ The analysis can be done in scripts (without user intervention, e.g. by the integrated Wizard), or interactively in notebooks, i.e. [marimo](https://marimo.io/) or [jupyter](https://jupyter.org/).
735
752
 
736
753
  ## Prerequisites
737
754
 
738
- **MASSter** reads raw (Thermo), wiff (SCIEX), or mzML data. It's recommended to provide raw, profile data.
755
+ You'll need to install Python (3.10-3.13, 3.14 has not been tested yet).
756
+
757
+ MASSter reads raw (Thermo), wiff (SCIEX), or mzML data. Reading vendor formats relies on .NET libraries, and is only possible in Windows. On Linux or MacOS, you'll be forced to use mzML data.
758
+
759
+ **It's recommended to use data in either vendor's raw format (wiff and raw) or mzML in profile data.** MASSter includes a sophisticated and sufficiently fast centroiding algorithm that works well across the full dynamic range and will only act on the spectra that are relevant. In our tests with data from different vendors, the centroiding performed much better than most Vendor's implementations (that are primarily proteomics-centric).
760
+
761
+ If still want to convert raw data to centroided mzML, please use (CentroidR)[https://github.com/Adafede/CentroidR/tree/0.0.0.9001].
739
762
 
740
763
  ## Installation
741
764
 
@@ -743,48 +766,33 @@ This is a poorly documented, stable branch of the development codebase in use in
743
766
  pip install masster
744
767
  ```
745
768
 
746
- ## Basic usage
747
- ### Quick start: use the wizard
769
+ ## Getting started
770
+ **The quickest way to use, or learn how to use MASSter, is to use the Wizard** which we integrated and, ideally, takes care of everything automatically.
748
771
 
772
+ The Wizard only needs to know where to find the MS files and were the store the results.
749
773
  ```python
750
- import masster
751
- wiz = masster.wizard.create_scripts(
752
- source=r'..\..\folder_with_raw_data',
753
- folder=r'..\..folder_to_store_results'
774
+ from masster import Wizard
775
+ wiz = Wizard(
776
+ source=r'..\..\folder_with_raw_data', # where to find the data
777
+ folder=r'..\..folder_to_store_results', # where to save the results
778
+ ncores=10 # this is optional
754
779
  )
755
- wiz.run()
780
+ wiz.test_and_run()
756
781
  ```
757
782
 
758
- This will run a wizard that should perform all key steps and save the results to the `folder`.
783
+ This will trigger the analysis of raw data, and the creation of a script to process all samples and then assemble the study. The whole processing will be stored as `1_masster_workflow.py` in the output folder. The wizard will test once and, if successull, run the full workflow using parallel processes. Once the processing is over you, navigate to `folder` to see what happened...
759
784
 
760
- ### Basic workflow for analyzing a single sample
761
- ```python
762
- import masster
763
- sample = masster.Sample(filename='...') # full path to a *.raw, *.wiff, or *.mzML file
764
- # process
765
- sample.find_features(chrom_fwhm=0.5, noise=50) # for orbitrap data, set noise to 1e5
766
- sample.find_adducts()
767
- sample.find_ms2()
768
-
769
- # access data
770
- sample.features_df
771
-
772
- # save results
773
- sample.save() # stores to *.sample5, our custom hdf5 format
774
- sample.export_mgf()
785
+ If you want to interact with your data, we recommend using [marimo](https://marimo.io/) or [jupyter](https://jupyter.org/) and open the `*.study5` file, for example:
775
786
 
776
- # some plots
777
- sample.plot_bpc()
778
- sample.plot_tic()
779
- sample.plot_2d()
780
- sample.plot_features_stats()
781
-
782
- # explore methods
783
- dir(study)
787
+ ```bash
788
+ # use marimo to open the script created by marino
789
+ marimo edit '..\..folder_to_store_results\2_interactive_analysis.py'
790
+ # or, if you use uv to manage an environment with masster
791
+ uv run marimo edit '..\..folder_to_store_results\2_interactive_analysis.py'
784
792
  ```
785
793
 
786
- ### Basic Workflow for analyzing LC-MS study with 2-... samples
787
-
794
+ ### Basic Workflow for analyzing LC-MS study with 1-1000+ samples
795
+ In MASSter, the main object for data analysis is a `Study`, which consists of a bunch of `Samples`.
788
796
  ```python
789
797
  import masster
790
798
  # Initialize the Study object with the default folder
@@ -796,17 +804,20 @@ study.add(r'D:\...\...\...\*.wiff')
796
804
  # Perform retention time correction
797
805
  study.align(rt_tol=2.0)
798
806
  study.plot_alignment()
799
- study.plot_bpc()
800
807
  study.plot_rt_correction()
808
+ study.plot_bpc()
801
809
 
802
810
  # Find consensus features
803
- study.merge(min_samples=3)
811
+ study.merge(min_samples=3) # this will keep only the features that were found in 3 or more samples
804
812
  study.plot_consensus_2d()
805
813
 
806
- # Retrieve missing data for quantification
814
+ # retrieve information
815
+ study.info()
816
+
817
+ # Retrieve EICs for quantification
807
818
  study.fill()
808
819
 
809
- # Integrate according to consensus metadata
820
+ # Integrate EICs according to consensus metadata
810
821
  study.integrate()
811
822
 
812
823
  # export results
@@ -822,32 +833,63 @@ study.save()
822
833
  study.plot_samples_pca()
823
834
  study.plot_samples_umap()
824
835
  study.plot_samples_2d()
825
- ```
826
836
 
827
- ### Quick Start with Wizard
828
- MASSter includes a Wizard to automatically process everything:
837
+ # To know more about the available methods...
838
+ dir(study)
839
+ ```
840
+ The information is stored in Polars data frame, in particular:
841
+ ```python
842
+ # information on samples
843
+ study.samples_df
844
+ # information on consensus features
845
+ study.consensus_df
846
+ # information on original features from ALL samples, including MS2 and EICs
847
+ study.features_df
848
+ ```
829
849
 
850
+ ### Analysis of a single sample
851
+ For troubleshooting, exploration, or just to create a figure on a single file, you might want to open and process a single file:
830
852
  ```python
831
- from masster import Wizard
853
+ from masster import Sample
854
+ sample = Sample(filename='...') # full path to a *.raw, *.wiff, *.mzML, or *.sample5 file
855
+ # peek into sample
856
+ sample.info()
832
857
 
833
- # Create wizard instance
834
- wiz = Wizard(source="./raw_data",
835
- folder="./output",
836
- num_cores=8)
858
+ # process
859
+ sample.find_features(chrom_fwhm=0.5, noise=50) # for orbitrap data, set noise to 1e5
860
+ sample.find_adducts()
861
+ sample.find_ms2()
837
862
 
838
- # Generate analysis scripts
839
- wiz.create_scripts()
863
+ # access data
864
+ sample.features_df
840
865
 
841
- # Test with single file, then run full batch
842
- wiz.test_and_run()
843
- ```
866
+ # save results
867
+ sample.save() # stores to *.sample5, our custom hdf5 format
868
+ sample.export_mgf()
844
869
 
845
- ### One-Line Command Processing
846
- Or, from the command-line:
847
- ```bash
848
- python -c "from masster import Wizard; wiz = Wizard(source='D:/Data/studies/my_study/raw', folder='D:/Data/studies/my_study/masster'); wiz.create_scripts(); wiz.test_and_run()"
870
+ # some plots
871
+ sample.plot_bpc()
872
+ sample.plot_tic()
873
+ sample.plot_2d()
874
+ sample.plot_features_stats()
875
+
876
+ # explore methods
877
+ dir(study)
849
878
  ```
850
879
 
880
+ ## Disclaimer
881
+
882
+ **MASSter is research software under active development.** While we use it extensively in our lab and strive for quality and reliability, please be aware:
883
+
884
+ - **No warranties**: The software is provided "as is" without any warranty of any kind, express or implied
885
+ - **Backward compatibility**: We do not guarantee backward compatibility between versions. Breaking changes may occur as we improve the software
886
+ - **Performance**: While optimized for our workflows, performance may vary depending on your data and system configuration
887
+ - **Results**: We do our best to ensure accuracy, but you should validate results independently for your research
888
+ - **Support**: This is an academic project with limited resources. Community support is available through GitHub issues, but we cannot guarantee response times
889
+ - **Production use**: If you plan to use MASSter in production or critical workflows, thorough testing with your data is recommended
890
+
891
+ We welcome feedback, bug reports, and contributions via GitHub!
892
+
851
893
  ## License
852
894
  GNU Affero General Public License v3
853
895
 
@@ -857,4 +899,4 @@ See the [LICENSE](LICENSE) file for details.
857
899
  This project uses several third-party libraries, including pyOpenMS which is licensed under the BSD 3-Clause License. For complete information about third-party dependencies and their licenses, see [THIRD_PARTY_NOTICES.md](THIRD_PARTY_NOTICES.md).
858
900
 
859
901
  ## Citation
860
- If you use Masster in your research, please cite this repository.
902
+ If you use MASSter in your research, please cite this repository.
@@ -61,8 +61,8 @@ masster/study/defaults/merge_def.py,sha256=99TJtIk7mSoq8NMJMJ4b-cy7gUUixQN69krxt
61
61
  masster/study/defaults/study_def.py,sha256=xXOAcb8hez0woWwA1_T3fcokjiLJkq3hwA3OS6elb6I,15965
62
62
  masster/wizard/__init__.py,sha256=L9G_datyGSFJjrBVklEVpZVLGXzUhDiWobtiygBH8vQ,669
63
63
  masster/wizard/wizard.py,sha256=11utDrZSt7R8D16Sl-NbRKHcgzhQEu8gW_q2V02-Qi0,66483
64
- masster-0.5.26.dist-info/METADATA,sha256=CbX0pQSnyZwJ__Y10X-1hRqDyXUWF9uknfyciDC9XvA,46253
65
- masster-0.5.26.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
66
- masster-0.5.26.dist-info/entry_points.txt,sha256=ZHguQ_vPmdbpqq2uGtmEOLJfgP-DQ1T0c07Lxh30wc8,58
67
- masster-0.5.26.dist-info/licenses/LICENSE,sha256=bx5iLIKjgAdYQ7sISn7DsfHRKkoCUm1154sJJKhgqnU,35184
68
- masster-0.5.26.dist-info/RECORD,,
64
+ masster-0.5.28.dist-info/METADATA,sha256=KbBVi4lzwtoxbw1ljv1FlxwyN3_YTs1VJcU9hvoD-_k,50869
65
+ masster-0.5.28.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
66
+ masster-0.5.28.dist-info/entry_points.txt,sha256=ZHguQ_vPmdbpqq2uGtmEOLJfgP-DQ1T0c07Lxh30wc8,58
67
+ masster-0.5.28.dist-info/licenses/LICENSE,sha256=bx5iLIKjgAdYQ7sISn7DsfHRKkoCUm1154sJJKhgqnU,35184
68
+ masster-0.5.28.dist-info/RECORD,,