masster 0.2.5__py3-none-any.whl → 0.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of masster might be problematic. Click here for more details.
- masster/__init__.py +27 -27
- masster/_version.py +17 -17
- masster/chromatogram.py +497 -503
- masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.featureXML +199787 -0
- masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.sample5 +0 -0
- masster/logger.py +318 -244
- masster/sample/__init__.py +9 -9
- masster/sample/defaults/__init__.py +15 -15
- masster/sample/defaults/find_adducts_def.py +325 -325
- masster/sample/defaults/find_features_def.py +366 -366
- masster/sample/defaults/find_ms2_def.py +285 -285
- masster/sample/defaults/get_spectrum_def.py +314 -318
- masster/sample/defaults/sample_def.py +374 -378
- masster/sample/h5.py +1321 -1297
- masster/sample/helpers.py +833 -364
- masster/sample/lib.py +762 -0
- masster/sample/load.py +1220 -1187
- masster/sample/parameters.py +131 -131
- masster/sample/plot.py +1685 -1622
- masster/sample/processing.py +1402 -1416
- masster/sample/quant.py +209 -0
- masster/sample/sample.py +393 -387
- masster/sample/sample5_schema.json +181 -181
- masster/sample/save.py +737 -736
- masster/sample/sciex.py +1213 -0
- masster/spectrum.py +1287 -1319
- masster/study/__init__.py +9 -9
- masster/study/defaults/__init__.py +21 -19
- masster/study/defaults/align_def.py +267 -267
- masster/study/defaults/export_def.py +41 -40
- masster/study/defaults/fill_chrom_def.py +264 -264
- masster/study/defaults/fill_def.py +260 -0
- masster/study/defaults/find_consensus_def.py +256 -256
- masster/study/defaults/find_ms2_def.py +163 -163
- masster/study/defaults/integrate_chrom_def.py +225 -225
- masster/study/defaults/integrate_def.py +221 -0
- masster/study/defaults/merge_def.py +256 -0
- masster/study/defaults/study_def.py +272 -269
- masster/study/export.py +674 -287
- masster/study/h5.py +1406 -886
- masster/study/helpers.py +1713 -433
- masster/study/helpers_optimized.py +317 -0
- masster/study/load.py +1231 -1078
- masster/study/parameters.py +99 -99
- masster/study/plot.py +632 -645
- masster/study/processing.py +1057 -1046
- masster/study/save.py +161 -134
- masster/study/study.py +612 -522
- masster/study/study5_schema.json +253 -241
- {masster-0.2.5.dist-info → masster-0.3.1.dist-info}/METADATA +15 -10
- masster-0.3.1.dist-info/RECORD +59 -0
- {masster-0.2.5.dist-info → masster-0.3.1.dist-info}/licenses/LICENSE +661 -661
- masster-0.2.5.dist-info/RECORD +0 -50
- {masster-0.2.5.dist-info → masster-0.3.1.dist-info}/WHEEL +0 -0
- {masster-0.2.5.dist-info → masster-0.3.1.dist-info}/entry_points.txt +0 -0
masster/study/study5_schema.json
CHANGED
|
@@ -1,241 +1,253 @@
|
|
|
1
|
-
{
|
|
2
|
-
"consensus_df": {
|
|
3
|
-
"columns": {
|
|
4
|
-
"consensus_uid": {
|
|
5
|
-
"dtype": "pl.Int64"
|
|
6
|
-
},
|
|
7
|
-
"consensus_id": {
|
|
8
|
-
"dtype": "pl.Utf8"
|
|
9
|
-
},
|
|
10
|
-
"quality": {
|
|
11
|
-
"dtype": "pl.Float64"
|
|
12
|
-
},
|
|
13
|
-
"number_samples": {
|
|
14
|
-
"dtype": "pl.Int64"
|
|
15
|
-
},
|
|
16
|
-
"rt": {
|
|
17
|
-
"dtype": "pl.Float64"
|
|
18
|
-
},
|
|
19
|
-
"mz": {
|
|
20
|
-
"dtype": "pl.Float64"
|
|
21
|
-
},
|
|
22
|
-
"rt_min": {
|
|
23
|
-
"dtype": "pl.Float64"
|
|
24
|
-
},
|
|
25
|
-
"rt_max": {
|
|
26
|
-
"dtype": "pl.Float64"
|
|
27
|
-
},
|
|
28
|
-
"rt_mean": {
|
|
29
|
-
"dtype": "pl.Float64"
|
|
30
|
-
},
|
|
31
|
-
"rt_start_mean": {
|
|
32
|
-
"dtype": "pl.Float64"
|
|
33
|
-
},
|
|
34
|
-
"rt_end_mean": {
|
|
35
|
-
"dtype": "pl.Float64"
|
|
36
|
-
},
|
|
37
|
-
"rt_delta_mean": {
|
|
38
|
-
"dtype": "pl.Float64"
|
|
39
|
-
},
|
|
40
|
-
"mz_min": {
|
|
41
|
-
"dtype": "pl.Float64"
|
|
42
|
-
},
|
|
43
|
-
"mz_max": {
|
|
44
|
-
"dtype": "pl.Float64"
|
|
45
|
-
},
|
|
46
|
-
"mz_mean": {
|
|
47
|
-
"dtype": "pl.Float64"
|
|
48
|
-
},
|
|
49
|
-
"mz_start_mean": {
|
|
50
|
-
"dtype": "pl.Float64"
|
|
51
|
-
},
|
|
52
|
-
"mz_end_mean": {
|
|
53
|
-
"dtype": "pl.Float64"
|
|
54
|
-
},
|
|
55
|
-
"inty_mean": {
|
|
56
|
-
"dtype": "pl.Float64"
|
|
57
|
-
},
|
|
58
|
-
"bl": {
|
|
59
|
-
"dtype": "pl.Float64"
|
|
60
|
-
},
|
|
61
|
-
"chrom_coherence_mean": {
|
|
62
|
-
"dtype": "pl.Float64"
|
|
63
|
-
},
|
|
64
|
-
"chrom_prominence_mean": {
|
|
65
|
-
"dtype": "pl.Float64"
|
|
66
|
-
},
|
|
67
|
-
"chrom_prominence_scaled_mean": {
|
|
68
|
-
"dtype": "pl.Float64"
|
|
69
|
-
},
|
|
70
|
-
"chrom_height_scaled_mean": {
|
|
71
|
-
"dtype": "pl.Float64"
|
|
72
|
-
},
|
|
73
|
-
"iso_mean": {
|
|
74
|
-
"dtype": "pl.Float64"
|
|
75
|
-
},
|
|
76
|
-
"charge_mean": {
|
|
77
|
-
"dtype": "pl.Float64"
|
|
78
|
-
},
|
|
79
|
-
"number_ms2": {
|
|
80
|
-
"dtype": "pl.Int64"
|
|
81
|
-
}
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
"
|
|
90
|
-
"dtype": "pl.Int64"
|
|
91
|
-
},
|
|
92
|
-
"
|
|
93
|
-
"dtype": "pl.Int64"
|
|
94
|
-
}
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
"
|
|
103
|
-
"dtype": "pl.
|
|
104
|
-
},
|
|
105
|
-
"
|
|
106
|
-
"dtype": "pl.
|
|
107
|
-
},
|
|
108
|
-
"
|
|
109
|
-
"dtype": "pl.Int64"
|
|
110
|
-
},
|
|
111
|
-
"
|
|
112
|
-
"dtype": "pl.
|
|
113
|
-
},
|
|
114
|
-
"
|
|
115
|
-
"dtype": "pl.Float64"
|
|
116
|
-
},
|
|
117
|
-
"
|
|
118
|
-
"dtype": "pl.Float64"
|
|
119
|
-
},
|
|
120
|
-
"
|
|
121
|
-
"dtype": "pl.
|
|
122
|
-
},
|
|
123
|
-
"
|
|
124
|
-
"dtype": "pl.Int64"
|
|
125
|
-
},
|
|
126
|
-
"
|
|
127
|
-
"dtype": "pl.
|
|
128
|
-
}
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
"
|
|
137
|
-
"dtype": "pl.
|
|
138
|
-
},
|
|
139
|
-
"sample_uid": {
|
|
140
|
-
"dtype": "pl.Int32"
|
|
141
|
-
},
|
|
142
|
-
"
|
|
143
|
-
"dtype": "pl.
|
|
144
|
-
},
|
|
145
|
-
"
|
|
146
|
-
"dtype": "pl.Float64"
|
|
147
|
-
},
|
|
148
|
-
"
|
|
149
|
-
"dtype": "pl.Float64"
|
|
150
|
-
},
|
|
151
|
-
"
|
|
152
|
-
"dtype": "pl.Float64"
|
|
153
|
-
},
|
|
154
|
-
"
|
|
155
|
-
"dtype": "pl.Float64"
|
|
156
|
-
},
|
|
157
|
-
"
|
|
158
|
-
"dtype": "pl.Float64"
|
|
159
|
-
},
|
|
160
|
-
"
|
|
161
|
-
"dtype": "pl.Float64"
|
|
162
|
-
},
|
|
163
|
-
"
|
|
164
|
-
"dtype": "pl.Float64"
|
|
165
|
-
},
|
|
166
|
-
"
|
|
167
|
-
"dtype": "pl.Float64"
|
|
168
|
-
},
|
|
169
|
-
"
|
|
170
|
-
"dtype": "pl.Float64"
|
|
171
|
-
},
|
|
172
|
-
"
|
|
173
|
-
"dtype": "pl.
|
|
174
|
-
},
|
|
175
|
-
"
|
|
176
|
-
"dtype": "pl.
|
|
177
|
-
},
|
|
178
|
-
"
|
|
179
|
-
"dtype": "pl.Int64"
|
|
180
|
-
},
|
|
181
|
-
"
|
|
182
|
-
"dtype": "pl.
|
|
183
|
-
},
|
|
184
|
-
"
|
|
185
|
-
"dtype": "pl.
|
|
186
|
-
},
|
|
187
|
-
"
|
|
188
|
-
"dtype": "pl.
|
|
189
|
-
},
|
|
190
|
-
"
|
|
191
|
-
"dtype": "pl.
|
|
192
|
-
},
|
|
193
|
-
"filled": {
|
|
194
|
-
"dtype": "pl.Boolean"
|
|
195
|
-
},
|
|
196
|
-
"chrom_area": {
|
|
197
|
-
"dtype": "pl.Float64"
|
|
198
|
-
},
|
|
199
|
-
"
|
|
200
|
-
"dtype": "pl.
|
|
201
|
-
},
|
|
202
|
-
"
|
|
203
|
-
"dtype": "pl.Float64"
|
|
204
|
-
},
|
|
205
|
-
"
|
|
206
|
-
"dtype": "pl.Float64"
|
|
207
|
-
},
|
|
208
|
-
"
|
|
209
|
-
"dtype": "pl.Float64"
|
|
210
|
-
},
|
|
211
|
-
"
|
|
212
|
-
"dtype": "pl.
|
|
213
|
-
},
|
|
214
|
-
"
|
|
215
|
-
"dtype": "pl.Object"
|
|
216
|
-
}
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
"
|
|
225
|
-
"dtype": "pl.Utf8"
|
|
226
|
-
},
|
|
227
|
-
"
|
|
228
|
-
"dtype": "pl.Utf8"
|
|
229
|
-
},
|
|
230
|
-
"
|
|
231
|
-
"dtype": "pl.Utf8"
|
|
232
|
-
},
|
|
233
|
-
"
|
|
234
|
-
"dtype": "pl.
|
|
235
|
-
},
|
|
236
|
-
"
|
|
237
|
-
"dtype": "pl.
|
|
238
|
-
}
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
}
|
|
1
|
+
{
|
|
2
|
+
"consensus_df": {
|
|
3
|
+
"columns": {
|
|
4
|
+
"consensus_uid": {
|
|
5
|
+
"dtype": "pl.Int64"
|
|
6
|
+
},
|
|
7
|
+
"consensus_id": {
|
|
8
|
+
"dtype": "pl.Utf8"
|
|
9
|
+
},
|
|
10
|
+
"quality": {
|
|
11
|
+
"dtype": "pl.Float64"
|
|
12
|
+
},
|
|
13
|
+
"number_samples": {
|
|
14
|
+
"dtype": "pl.Int64"
|
|
15
|
+
},
|
|
16
|
+
"rt": {
|
|
17
|
+
"dtype": "pl.Float64"
|
|
18
|
+
},
|
|
19
|
+
"mz": {
|
|
20
|
+
"dtype": "pl.Float64"
|
|
21
|
+
},
|
|
22
|
+
"rt_min": {
|
|
23
|
+
"dtype": "pl.Float64"
|
|
24
|
+
},
|
|
25
|
+
"rt_max": {
|
|
26
|
+
"dtype": "pl.Float64"
|
|
27
|
+
},
|
|
28
|
+
"rt_mean": {
|
|
29
|
+
"dtype": "pl.Float64"
|
|
30
|
+
},
|
|
31
|
+
"rt_start_mean": {
|
|
32
|
+
"dtype": "pl.Float64"
|
|
33
|
+
},
|
|
34
|
+
"rt_end_mean": {
|
|
35
|
+
"dtype": "pl.Float64"
|
|
36
|
+
},
|
|
37
|
+
"rt_delta_mean": {
|
|
38
|
+
"dtype": "pl.Float64"
|
|
39
|
+
},
|
|
40
|
+
"mz_min": {
|
|
41
|
+
"dtype": "pl.Float64"
|
|
42
|
+
},
|
|
43
|
+
"mz_max": {
|
|
44
|
+
"dtype": "pl.Float64"
|
|
45
|
+
},
|
|
46
|
+
"mz_mean": {
|
|
47
|
+
"dtype": "pl.Float64"
|
|
48
|
+
},
|
|
49
|
+
"mz_start_mean": {
|
|
50
|
+
"dtype": "pl.Float64"
|
|
51
|
+
},
|
|
52
|
+
"mz_end_mean": {
|
|
53
|
+
"dtype": "pl.Float64"
|
|
54
|
+
},
|
|
55
|
+
"inty_mean": {
|
|
56
|
+
"dtype": "pl.Float64"
|
|
57
|
+
},
|
|
58
|
+
"bl": {
|
|
59
|
+
"dtype": "pl.Float64"
|
|
60
|
+
},
|
|
61
|
+
"chrom_coherence_mean": {
|
|
62
|
+
"dtype": "pl.Float64"
|
|
63
|
+
},
|
|
64
|
+
"chrom_prominence_mean": {
|
|
65
|
+
"dtype": "pl.Float64"
|
|
66
|
+
},
|
|
67
|
+
"chrom_prominence_scaled_mean": {
|
|
68
|
+
"dtype": "pl.Float64"
|
|
69
|
+
},
|
|
70
|
+
"chrom_height_scaled_mean": {
|
|
71
|
+
"dtype": "pl.Float64"
|
|
72
|
+
},
|
|
73
|
+
"iso_mean": {
|
|
74
|
+
"dtype": "pl.Float64"
|
|
75
|
+
},
|
|
76
|
+
"charge_mean": {
|
|
77
|
+
"dtype": "pl.Float64"
|
|
78
|
+
},
|
|
79
|
+
"number_ms2": {
|
|
80
|
+
"dtype": "pl.Int64"
|
|
81
|
+
},
|
|
82
|
+
"adducts": {
|
|
83
|
+
"dtype": "pl.Object"
|
|
84
|
+
}
|
|
85
|
+
}
|
|
86
|
+
},
|
|
87
|
+
"consensus_mapping_df": {
|
|
88
|
+
"columns": {
|
|
89
|
+
"consensus_uid": {
|
|
90
|
+
"dtype": "pl.Int64"
|
|
91
|
+
},
|
|
92
|
+
"feature_uid": {
|
|
93
|
+
"dtype": "pl.Int64"
|
|
94
|
+
},
|
|
95
|
+
"sample_uid": {
|
|
96
|
+
"dtype": "pl.Int64"
|
|
97
|
+
}
|
|
98
|
+
}
|
|
99
|
+
},
|
|
100
|
+
"consensus_ms2": {
|
|
101
|
+
"columns": {
|
|
102
|
+
"consensus_uid": {
|
|
103
|
+
"dtype": "pl.Int64"
|
|
104
|
+
},
|
|
105
|
+
"energy": {
|
|
106
|
+
"dtype": "pl.Float64"
|
|
107
|
+
},
|
|
108
|
+
"feature_uid": {
|
|
109
|
+
"dtype": "pl.Int64"
|
|
110
|
+
},
|
|
111
|
+
"number_frags": {
|
|
112
|
+
"dtype": "pl.Int64"
|
|
113
|
+
},
|
|
114
|
+
"prec_coherence": {
|
|
115
|
+
"dtype": "pl.Float64"
|
|
116
|
+
},
|
|
117
|
+
"prec_inty": {
|
|
118
|
+
"dtype": "pl.Float64"
|
|
119
|
+
},
|
|
120
|
+
"prec_prominence_scaled": {
|
|
121
|
+
"dtype": "pl.Float64"
|
|
122
|
+
},
|
|
123
|
+
"sample_uid": {
|
|
124
|
+
"dtype": "pl.Int64"
|
|
125
|
+
},
|
|
126
|
+
"scan_id": {
|
|
127
|
+
"dtype": "pl.Int64"
|
|
128
|
+
},
|
|
129
|
+
"spec": {
|
|
130
|
+
"dtype": "pl.Object"
|
|
131
|
+
}
|
|
132
|
+
}
|
|
133
|
+
},
|
|
134
|
+
"features_df": {
|
|
135
|
+
"columns": {
|
|
136
|
+
"feature_uid": {
|
|
137
|
+
"dtype": "pl.Int64"
|
|
138
|
+
},
|
|
139
|
+
"sample_uid": {
|
|
140
|
+
"dtype": "pl.Int32"
|
|
141
|
+
},
|
|
142
|
+
"feature_id": {
|
|
143
|
+
"dtype": "pl.Utf8"
|
|
144
|
+
},
|
|
145
|
+
"mz": {
|
|
146
|
+
"dtype": "pl.Float64"
|
|
147
|
+
},
|
|
148
|
+
"rt": {
|
|
149
|
+
"dtype": "pl.Float64"
|
|
150
|
+
},
|
|
151
|
+
"rt_original": {
|
|
152
|
+
"dtype": "pl.Float64"
|
|
153
|
+
},
|
|
154
|
+
"rt_start": {
|
|
155
|
+
"dtype": "pl.Float64"
|
|
156
|
+
},
|
|
157
|
+
"rt_end": {
|
|
158
|
+
"dtype": "pl.Float64"
|
|
159
|
+
},
|
|
160
|
+
"rt_delta": {
|
|
161
|
+
"dtype": "pl.Float64"
|
|
162
|
+
},
|
|
163
|
+
"mz_start": {
|
|
164
|
+
"dtype": "pl.Float64"
|
|
165
|
+
},
|
|
166
|
+
"mz_end": {
|
|
167
|
+
"dtype": "pl.Float64"
|
|
168
|
+
},
|
|
169
|
+
"inty": {
|
|
170
|
+
"dtype": "pl.Float64"
|
|
171
|
+
},
|
|
172
|
+
"quality": {
|
|
173
|
+
"dtype": "pl.Float64"
|
|
174
|
+
},
|
|
175
|
+
"charge": {
|
|
176
|
+
"dtype": "pl.Int32"
|
|
177
|
+
},
|
|
178
|
+
"iso": {
|
|
179
|
+
"dtype": "pl.Int64"
|
|
180
|
+
},
|
|
181
|
+
"iso_of": {
|
|
182
|
+
"dtype": "pl.Int64"
|
|
183
|
+
},
|
|
184
|
+
"adduct_group": {
|
|
185
|
+
"dtype": "pl.Int64"
|
|
186
|
+
},
|
|
187
|
+
"adduct": {
|
|
188
|
+
"dtype": "pl.Utf8"
|
|
189
|
+
},
|
|
190
|
+
"adduct_mass": {
|
|
191
|
+
"dtype": "pl.Float64"
|
|
192
|
+
},
|
|
193
|
+
"filled": {
|
|
194
|
+
"dtype": "pl.Boolean"
|
|
195
|
+
},
|
|
196
|
+
"chrom_area": {
|
|
197
|
+
"dtype": "pl.Float64"
|
|
198
|
+
},
|
|
199
|
+
"chrom": {
|
|
200
|
+
"dtype": "pl.Object"
|
|
201
|
+
},
|
|
202
|
+
"chrom_coherence": {
|
|
203
|
+
"dtype": "pl.Float64"
|
|
204
|
+
},
|
|
205
|
+
"chrom_prominence": {
|
|
206
|
+
"dtype": "pl.Float64"
|
|
207
|
+
},
|
|
208
|
+
"chrom_prominence_scaled": {
|
|
209
|
+
"dtype": "pl.Float64"
|
|
210
|
+
},
|
|
211
|
+
"chrom_height_scaled": {
|
|
212
|
+
"dtype": "pl.Float64"
|
|
213
|
+
},
|
|
214
|
+
"ms2_scans": {
|
|
215
|
+
"dtype": "pl.Object"
|
|
216
|
+
},
|
|
217
|
+
"ms2_specs": {
|
|
218
|
+
"dtype": "pl.Object"
|
|
219
|
+
}
|
|
220
|
+
}
|
|
221
|
+
},
|
|
222
|
+
"samples_df": {
|
|
223
|
+
"columns": {
|
|
224
|
+
"map_id": {
|
|
225
|
+
"dtype": "pl.Utf8"
|
|
226
|
+
},
|
|
227
|
+
"sample_name": {
|
|
228
|
+
"dtype": "pl.Utf8"
|
|
229
|
+
},
|
|
230
|
+
"sample_path": {
|
|
231
|
+
"dtype": "pl.Utf8"
|
|
232
|
+
},
|
|
233
|
+
"file_source": {
|
|
234
|
+
"dtype": "pl.Utf8"
|
|
235
|
+
},
|
|
236
|
+
"sample_type": {
|
|
237
|
+
"dtype": "pl.Utf8"
|
|
238
|
+
},
|
|
239
|
+
"sample_uid": {
|
|
240
|
+
"dtype": "pl.Int64"
|
|
241
|
+
},
|
|
242
|
+
"size": {
|
|
243
|
+
"dtype": "pl.Int64"
|
|
244
|
+
},
|
|
245
|
+
"ms1": {
|
|
246
|
+
"dtype": "pl.Int64"
|
|
247
|
+
},
|
|
248
|
+
"ms2": {
|
|
249
|
+
"dtype": "pl.Int64"
|
|
250
|
+
}
|
|
251
|
+
}
|
|
252
|
+
}
|
|
253
|
+
}
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: masster
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.3.1
|
|
4
4
|
Summary: Mass spectrometry data analysis package
|
|
5
5
|
Project-URL: homepage, https://github.com/zamboni-lab/masster
|
|
6
6
|
Project-URL: repository, https://github.com/zamboni-lab/masster
|
|
@@ -676,6 +676,7 @@ Classifier: Operating System :: OS Independent
|
|
|
676
676
|
Classifier: Programming Language :: Python :: 3
|
|
677
677
|
Classifier: Programming Language :: Python :: 3.11
|
|
678
678
|
Classifier: Programming Language :: Python :: 3.12
|
|
679
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
679
680
|
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
|
|
680
681
|
Classifier: Topic :: Scientific/Engineering :: Chemistry
|
|
681
682
|
Requires-Python: >=3.11
|
|
@@ -732,9 +733,10 @@ Description-Content-Type: text/markdown
|
|
|
732
733
|
|
|
733
734
|
**MASSter** is a comprehensive Python package for mass spectrometry data analysis, designed for metabolomics and LC-MS data processing. It provides tools for feature detection, alignment, consensus building, and interactive visualization of mass spectrometry datasets. It is designed to deal with DDA, and hides functionalities for DIA and ZTScan DIA data.
|
|
734
735
|
|
|
735
|
-
|
|
736
|
+
This is a poorly documented, stable branch of the development codebase in use in the Zamboni lab.
|
|
737
|
+
|
|
738
|
+
Some of the core processing functions are derived from OpenMS. We use the same nomenclature and refer to their documentation for an explanation of the parameters. To a large extent, however, you should be able to use the defaults (=no parameters) when calling processing steps.
|
|
736
739
|
|
|
737
|
-
This is a poorly documented, stable branch of the development codebase in use in the Zamboni lab. Novel functionalities will be added based on need and requests.
|
|
738
740
|
|
|
739
741
|
## Installation
|
|
740
742
|
|
|
@@ -751,23 +753,26 @@ import masster
|
|
|
751
753
|
study = masster.Study(default_folder=r'D:\...\mylcms')
|
|
752
754
|
|
|
753
755
|
# Load data from folder with raw data, here: WIFF
|
|
754
|
-
study.
|
|
756
|
+
study.add(r'D:\...\...\...\*.wiff')
|
|
755
757
|
|
|
756
|
-
#
|
|
758
|
+
# Perform retention time correction
|
|
757
759
|
study.align(rt_max_diff=2.0)
|
|
760
|
+
study.plot_alignment()
|
|
758
761
|
|
|
759
762
|
# Find consensus features
|
|
760
|
-
study.
|
|
763
|
+
study.merge(min_samples=3)
|
|
764
|
+
study.plot_consensus_2d()
|
|
761
765
|
|
|
762
766
|
# Retrieve missing data for quantification
|
|
763
|
-
study.
|
|
767
|
+
study.fill()
|
|
764
768
|
|
|
765
769
|
# Integrate according to consensus metadata
|
|
766
|
-
study.
|
|
770
|
+
study.integrate()
|
|
767
771
|
|
|
768
|
-
#
|
|
769
|
-
study.find_ms2()
|
|
772
|
+
# export results
|
|
770
773
|
study.export_mgf()
|
|
774
|
+
study.export_mztab()
|
|
775
|
+
study.export_consensus()
|
|
771
776
|
|
|
772
777
|
# Save the study to .study5
|
|
773
778
|
study.save()
|
|
@@ -0,0 +1,59 @@
|
|
|
1
|
+
masster/__init__.py,sha256=G7hbKO8F_o1wFwQlvO25M8JYGka_YSAVU2_O__2rjlI,697
|
|
2
|
+
masster/_version.py,sha256=ioQa4W_2pWdKSoU7hw7Pn6WMBm3nMuuLKfSR4f8171A,256
|
|
3
|
+
masster/chromatogram.py,sha256=NgPr1uLGJHjRu6PWZZGOrS3pCl7sye1yQCJjlRi9ZSY,19305
|
|
4
|
+
masster/logger.py,sha256=iJGDtqR0nzW4cMb_fPOwoytpgrpnlSkuH5MIhgK90Xk,14733
|
|
5
|
+
masster/spectrum.py,sha256=LuDa7qP_JInctzkmxC9c5468opHOholy321KpUgyW2U,47550
|
|
6
|
+
masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.featureXML,sha256=033IjCWBaYVymnPhVHneytilC-XIa6T-6wkeBB0BXvc,10980374
|
|
7
|
+
masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.mzML,sha256=3RS_crLN-aoPSacMYaQ45sxszmp_EcQElrg8tiuAQyA,39741920
|
|
8
|
+
masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.sample5,sha256=T3LxClfe3Uaqx4Rb7lY57e2uWpuJHzPy-VEl3cy4b7k,11109448
|
|
9
|
+
masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.timeseries.data,sha256=01vC6m__Qqm2rLvlTMZoeKIKowFvovBTUnrNl8Uav3E,24576
|
|
10
|
+
masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.wiff,sha256=go5N9gAM1rn4PZAVaoCmdteY9f7YGEM9gyPdSmkQ8PE,1447936
|
|
11
|
+
masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.wiff.scan,sha256=ahi1Y3UhAj9Bj4Q2MlbgPekNdkJvMOoMXVOoR6CeIxc,13881220
|
|
12
|
+
masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.wiff2,sha256=TFB0HW4Agkig6yht7FtgjUdbXax8jjKaHpSZSvuU5vs,3252224
|
|
13
|
+
masster/sample/__init__.py,sha256=HL0m1ept0PMAYUCQtDDnkdOS12IFl6oLAq4TZQz83uY,170
|
|
14
|
+
masster/sample/h5.py,sha256=aGj3vJsM08wiWFKryRCn5ROKBSRX85vE0Z-jiPSqLjI,63817
|
|
15
|
+
masster/sample/helpers.py,sha256=OEgvR3bptA-tEqHAFVPjWpbagKXAU1h0bePPi9ttHa4,34842
|
|
16
|
+
masster/sample/lib.py,sha256=9r2XlF_BaJ4WNAsQo8hElieRLwsAv0yrbYq4DJ0iVOM,33496
|
|
17
|
+
masster/sample/load.py,sha256=y-KUJ2nCFX_06FHPUOh-CzRRvaTx14xNcXoL19bU8qY,47562
|
|
18
|
+
masster/sample/parameters.py,sha256=Gg2KcuNbV_wZ_Wwv93QlM5J19ji0oSIvZLPV1NoBmq0,4456
|
|
19
|
+
masster/sample/plot.py,sha256=wd-4OosFT8MoO0fM8PSMskZK_yg8i8vfbiTieAzgrv4,62831
|
|
20
|
+
masster/sample/processing.py,sha256=NjNLt47Fy0UF3Xs35NBhADg57qTC6Lfa4Xz8Y30v83A,58250
|
|
21
|
+
masster/sample/quant.py,sha256=tHNjvUFTdehKR31BXBZnVsBxMD9XJHgaltITOjr71uE,7562
|
|
22
|
+
masster/sample/sample.py,sha256=UlyA7cZtV_IMO8PRaYaUqf8cfAGfavVVfNDo0g_6OJw,16185
|
|
23
|
+
masster/sample/sample5_schema.json,sha256=3SPFQZH4SooLYUt_lW-PCOE9rHnl56Vhc2XG-r1nyEQ,3586
|
|
24
|
+
masster/sample/save.py,sha256=o9eFSqqr7KYwvCD3gOJt_nZ4h3pkflWqs0n0oSLM-sU,31970
|
|
25
|
+
masster/sample/sciex.py,sha256=q6PdcjCtV2PWnJiXuvfISu09zjkaTR_fvHvWN9OvOcM,46870
|
|
26
|
+
masster/sample/defaults/__init__.py,sha256=A09AOP44cxD_oYohyt7XFUho0zndRcrzVD4DUaGnKH4,447
|
|
27
|
+
masster/sample/defaults/find_adducts_def.py,sha256=6CcGRlz4VeosoBT_W0bkR1Kjj11Rq3QvuuOnkizIZyk,11630
|
|
28
|
+
masster/sample/defaults/find_features_def.py,sha256=d9LQsS7QEj2SIvhz_N55Zk80V2MOI5HlB4EylGDgG_4,13878
|
|
29
|
+
masster/sample/defaults/find_ms2_def.py,sha256=KTELMAnioGLYbhzAwOgK14TZqboPEvzeBN0HC-v0Z5A,9872
|
|
30
|
+
masster/sample/defaults/get_spectrum_def.py,sha256=o62p31PhGd-LiIkTOzKQhwPtnO2AtQDHcPu-O-YoQPs,11460
|
|
31
|
+
masster/sample/defaults/sample_def.py,sha256=t8vrb8MoBBsFQcRzlaT0-q0hAssOxWO7vhCAJU3_THs,14068
|
|
32
|
+
masster/study/__init__.py,sha256=Zspv6U8jFqjkHGYdNdDy1rfUnCSolCzUdgSSg98PRgE,166
|
|
33
|
+
masster/study/export.py,sha256=bm3e6AEwkXqBO6Pwd-2pWhxOmzQTFlOSauXFnaiSJDI,29019
|
|
34
|
+
masster/study/h5.py,sha256=EcpyYfMknDzzdA6XTyMU_ppY92_DsPSPYGE0kpVN7T8,66429
|
|
35
|
+
masster/study/helpers.py,sha256=SeW17rA3BIM2I2Whiye6wegRRSCabIpQoCsjOCafjKw,74888
|
|
36
|
+
masster/study/helpers_optimized.py,sha256=EgOgPaL3c2LA8jDhnlEHvzb7O9Um-vnMIcnNaoH90gA,13620
|
|
37
|
+
masster/study/load.py,sha256=TLxVhXu0HHb51lGggXitQLtfNxz2JJfKMkAXJbxhvhM,46880
|
|
38
|
+
masster/study/parameters.py,sha256=0elaF7YspTsB7qyajWAbRNL2VfKlGz5GJLifmO8IGkk,3276
|
|
39
|
+
masster/study/plot.py,sha256=hOG8bBT3mYV63FieEk-gYKtOyIXWppkTu21VeGbRnGk,21918
|
|
40
|
+
masster/study/processing.py,sha256=BQuSBO7O8iTlCjXenECyg0_PAsPF1NNiUllypuemPZI,46101
|
|
41
|
+
masster/study/save.py,sha256=bcRADWTvhTER9WRkT9zNU5mDUPQZkZB2cuJwpRsYmrM,6589
|
|
42
|
+
masster/study/study.py,sha256=5TZgG7tr7mzqHh1tm48V8SEcvRcWiFYG9iDqz0U9ACc,27073
|
|
43
|
+
masster/study/study5_schema.json,sha256=A_xDPzB97xt2EFeQsX9j8Ut7yC4_DS7BZ24ucotOXIw,5103
|
|
44
|
+
masster/study/defaults/__init__.py,sha256=m3Z5KXGqsTdh7GjYzZoENERt39yRg0ceVRV1DeCt1P0,610
|
|
45
|
+
masster/study/defaults/align_def.py,sha256=9aM7kY4_ecgG8QC6v57AASiRRkPxwG77r3-PlQ2BkHk,9139
|
|
46
|
+
masster/study/defaults/export_def.py,sha256=eXl3h4aoLX88XkHTpqahLd-QZ2gjUqrmjq8IJULXeWo,1203
|
|
47
|
+
masster/study/defaults/fill_chrom_def.py,sha256=C4rbpUgPnXWP70w_podPQFABiSll2wjHZdSN4J5V81s,8955
|
|
48
|
+
masster/study/defaults/fill_def.py,sha256=5B7-iNCngdwHPbf0146LzrqxKCi7_g5OC1XtkxvckeQ,8869
|
|
49
|
+
masster/study/defaults/find_consensus_def.py,sha256=uWB4NKCXDMQgNp4BaQUExkDofnXz0ZDffsxH1tvH2_Q,8599
|
|
50
|
+
masster/study/defaults/find_ms2_def.py,sha256=RL0DFG41wQ05U8UQKUGr3vzSl3mU0m0knQus8DpSoJE,5070
|
|
51
|
+
masster/study/defaults/integrate_chrom_def.py,sha256=Rih3-vat7fHGVfIvRitjNJJI3zLjGnLicZLnLmWlY7E,7332
|
|
52
|
+
masster/study/defaults/integrate_def.py,sha256=Vf4SAzdBfnsSZ3IRaF0qZvWu3gMDPHdgPfMYoPKeWv8,7246
|
|
53
|
+
masster/study/defaults/merge_def.py,sha256=EBsKE3hsAkTEzN9dpdRD5W3_suTKy_WZ_96rwS0uBuE,8572
|
|
54
|
+
masster/study/defaults/study_def.py,sha256=hj8bYtEPwzdowC95yfyoCFt6fZkQePLjpJtmpNz9Z5M,9533
|
|
55
|
+
masster-0.3.1.dist-info/METADATA,sha256=VLzNZSby0weoT9QUfjleppVOtuvt_GtZu6AfLRM9MSg,44356
|
|
56
|
+
masster-0.3.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
57
|
+
masster-0.3.1.dist-info/entry_points.txt,sha256=ZHguQ_vPmdbpqq2uGtmEOLJfgP-DQ1T0c07Lxh30wc8,58
|
|
58
|
+
masster-0.3.1.dist-info/licenses/LICENSE,sha256=bx5iLIKjgAdYQ7sISn7DsfHRKkoCUm1154sJJKhgqnU,35184
|
|
59
|
+
masster-0.3.1.dist-info/RECORD,,
|