masster 0.2.5__py3-none-any.whl → 0.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of masster might be problematic. Click here for more details.

Files changed (55) hide show
  1. masster/__init__.py +27 -27
  2. masster/_version.py +17 -17
  3. masster/chromatogram.py +497 -503
  4. masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.featureXML +199787 -0
  5. masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.sample5 +0 -0
  6. masster/logger.py +318 -244
  7. masster/sample/__init__.py +9 -9
  8. masster/sample/defaults/__init__.py +15 -15
  9. masster/sample/defaults/find_adducts_def.py +325 -325
  10. masster/sample/defaults/find_features_def.py +366 -366
  11. masster/sample/defaults/find_ms2_def.py +285 -285
  12. masster/sample/defaults/get_spectrum_def.py +314 -318
  13. masster/sample/defaults/sample_def.py +374 -378
  14. masster/sample/h5.py +1321 -1297
  15. masster/sample/helpers.py +833 -364
  16. masster/sample/lib.py +762 -0
  17. masster/sample/load.py +1220 -1187
  18. masster/sample/parameters.py +131 -131
  19. masster/sample/plot.py +1685 -1622
  20. masster/sample/processing.py +1402 -1416
  21. masster/sample/quant.py +209 -0
  22. masster/sample/sample.py +393 -387
  23. masster/sample/sample5_schema.json +181 -181
  24. masster/sample/save.py +737 -736
  25. masster/sample/sciex.py +1213 -0
  26. masster/spectrum.py +1287 -1319
  27. masster/study/__init__.py +9 -9
  28. masster/study/defaults/__init__.py +21 -19
  29. masster/study/defaults/align_def.py +267 -267
  30. masster/study/defaults/export_def.py +41 -40
  31. masster/study/defaults/fill_chrom_def.py +264 -264
  32. masster/study/defaults/fill_def.py +260 -0
  33. masster/study/defaults/find_consensus_def.py +256 -256
  34. masster/study/defaults/find_ms2_def.py +163 -163
  35. masster/study/defaults/integrate_chrom_def.py +225 -225
  36. masster/study/defaults/integrate_def.py +221 -0
  37. masster/study/defaults/merge_def.py +256 -0
  38. masster/study/defaults/study_def.py +272 -269
  39. masster/study/export.py +674 -287
  40. masster/study/h5.py +1406 -886
  41. masster/study/helpers.py +1713 -433
  42. masster/study/helpers_optimized.py +317 -0
  43. masster/study/load.py +1231 -1078
  44. masster/study/parameters.py +99 -99
  45. masster/study/plot.py +632 -645
  46. masster/study/processing.py +1057 -1046
  47. masster/study/save.py +161 -134
  48. masster/study/study.py +612 -522
  49. masster/study/study5_schema.json +253 -241
  50. {masster-0.2.5.dist-info → masster-0.3.1.dist-info}/METADATA +15 -10
  51. masster-0.3.1.dist-info/RECORD +59 -0
  52. {masster-0.2.5.dist-info → masster-0.3.1.dist-info}/licenses/LICENSE +661 -661
  53. masster-0.2.5.dist-info/RECORD +0 -50
  54. {masster-0.2.5.dist-info → masster-0.3.1.dist-info}/WHEEL +0 -0
  55. {masster-0.2.5.dist-info → masster-0.3.1.dist-info}/entry_points.txt +0 -0
@@ -1,241 +1,253 @@
1
- {
2
- "consensus_df": {
3
- "columns": {
4
- "consensus_uid": {
5
- "dtype": "pl.Int64"
6
- },
7
- "consensus_id": {
8
- "dtype": "pl.Utf8"
9
- },
10
- "quality": {
11
- "dtype": "pl.Float64"
12
- },
13
- "number_samples": {
14
- "dtype": "pl.Int64"
15
- },
16
- "rt": {
17
- "dtype": "pl.Float64"
18
- },
19
- "mz": {
20
- "dtype": "pl.Float64"
21
- },
22
- "rt_min": {
23
- "dtype": "pl.Float64"
24
- },
25
- "rt_max": {
26
- "dtype": "pl.Float64"
27
- },
28
- "rt_mean": {
29
- "dtype": "pl.Float64"
30
- },
31
- "rt_start_mean": {
32
- "dtype": "pl.Float64"
33
- },
34
- "rt_end_mean": {
35
- "dtype": "pl.Float64"
36
- },
37
- "rt_delta_mean": {
38
- "dtype": "pl.Float64"
39
- },
40
- "mz_min": {
41
- "dtype": "pl.Float64"
42
- },
43
- "mz_max": {
44
- "dtype": "pl.Float64"
45
- },
46
- "mz_mean": {
47
- "dtype": "pl.Float64"
48
- },
49
- "mz_start_mean": {
50
- "dtype": "pl.Float64"
51
- },
52
- "mz_end_mean": {
53
- "dtype": "pl.Float64"
54
- },
55
- "inty_mean": {
56
- "dtype": "pl.Float64"
57
- },
58
- "bl": {
59
- "dtype": "pl.Float64"
60
- },
61
- "chrom_coherence_mean": {
62
- "dtype": "pl.Float64"
63
- },
64
- "chrom_prominence_mean": {
65
- "dtype": "pl.Float64"
66
- },
67
- "chrom_prominence_scaled_mean": {
68
- "dtype": "pl.Float64"
69
- },
70
- "chrom_height_scaled_mean": {
71
- "dtype": "pl.Float64"
72
- },
73
- "iso_mean": {
74
- "dtype": "pl.Float64"
75
- },
76
- "charge_mean": {
77
- "dtype": "pl.Float64"
78
- },
79
- "number_ms2": {
80
- "dtype": "pl.Int64"
81
- }
82
- }
83
- },
84
- "consensus_mapping_df": {
85
- "columns": {
86
- "consensus_uid": {
87
- "dtype": "pl.Int64"
88
- },
89
- "feature_uid": {
90
- "dtype": "pl.Int64"
91
- },
92
- "sample_uid": {
93
- "dtype": "pl.Int64"
94
- }
95
- }
96
- },
97
- "consensus_ms2": {
98
- "columns": {
99
- "consensus_uid": {
100
- "dtype": "pl.Int64"
101
- },
102
- "energy": {
103
- "dtype": "pl.Float64"
104
- },
105
- "feature_uid": {
106
- "dtype": "pl.Int64"
107
- },
108
- "number_frags": {
109
- "dtype": "pl.Int64"
110
- },
111
- "prec_coherence": {
112
- "dtype": "pl.Float64"
113
- },
114
- "prec_inty": {
115
- "dtype": "pl.Float64"
116
- },
117
- "prec_prominence_scaled": {
118
- "dtype": "pl.Float64"
119
- },
120
- "sample_uid": {
121
- "dtype": "pl.Int64"
122
- },
123
- "scan_id": {
124
- "dtype": "pl.Int64"
125
- },
126
- "spec": {
127
- "dtype": "pl.Object"
128
- }
129
- }
130
- },
131
- "features_df": {
132
- "columns": {
133
- "feature_uid": {
134
- "dtype": "pl.Int64"
135
- },
136
- "feature_id": {
137
- "dtype": "pl.Utf8"
138
- },
139
- "sample_uid": {
140
- "dtype": "pl.Int32"
141
- },
142
- "mz": {
143
- "dtype": "pl.Float64"
144
- },
145
- "rt": {
146
- "dtype": "pl.Float64"
147
- },
148
- "rt_original": {
149
- "dtype": "pl.Float64"
150
- },
151
- "rt_start": {
152
- "dtype": "pl.Float64"
153
- },
154
- "rt_end": {
155
- "dtype": "pl.Float64"
156
- },
157
- "rt_delta": {
158
- "dtype": "pl.Float64"
159
- },
160
- "mz_start": {
161
- "dtype": "pl.Float64"
162
- },
163
- "mz_end": {
164
- "dtype": "pl.Float64"
165
- },
166
- "inty": {
167
- "dtype": "pl.Float64"
168
- },
169
- "quality": {
170
- "dtype": "pl.Float64"
171
- },
172
- "charge": {
173
- "dtype": "pl.Int32"
174
- },
175
- "iso": {
176
- "dtype": "pl.Int64"
177
- },
178
- "iso_of": {
179
- "dtype": "pl.Int64"
180
- },
181
- "adduct": {
182
- "dtype": "pl.Utf8"
183
- },
184
- "adduct_mass": {
185
- "dtype": "pl.Float64"
186
- },
187
- "adduct_group": {
188
- "dtype": "pl.Int64"
189
- },
190
- "chrom": {
191
- "dtype": "pl.Object"
192
- },
193
- "filled": {
194
- "dtype": "pl.Boolean"
195
- },
196
- "chrom_area": {
197
- "dtype": "pl.Float64"
198
- },
199
- "chrom_coherence": {
200
- "dtype": "pl.Float64"
201
- },
202
- "chrom_prominence": {
203
- "dtype": "pl.Float64"
204
- },
205
- "chrom_prominence_scaled": {
206
- "dtype": "pl.Float64"
207
- },
208
- "chrom_height_scaled": {
209
- "dtype": "pl.Float64"
210
- },
211
- "ms2_scans": {
212
- "dtype": "pl.Object"
213
- },
214
- "ms2_specs": {
215
- "dtype": "pl.Object"
216
- }
217
- }
218
- },
219
- "samples_df": {
220
- "columns": {
221
- "map_id": {
222
- "dtype": "pl.Utf8"
223
- },
224
- "sample_name": {
225
- "dtype": "pl.Utf8"
226
- },
227
- "sample_path": {
228
- "dtype": "pl.Utf8"
229
- },
230
- "sample_type": {
231
- "dtype": "pl.Utf8"
232
- },
233
- "sample_uid": {
234
- "dtype": "pl.Int64"
235
- },
236
- "size": {
237
- "dtype": "pl.Int64"
238
- }
239
- }
240
- }
241
- }
1
+ {
2
+ "consensus_df": {
3
+ "columns": {
4
+ "consensus_uid": {
5
+ "dtype": "pl.Int64"
6
+ },
7
+ "consensus_id": {
8
+ "dtype": "pl.Utf8"
9
+ },
10
+ "quality": {
11
+ "dtype": "pl.Float64"
12
+ },
13
+ "number_samples": {
14
+ "dtype": "pl.Int64"
15
+ },
16
+ "rt": {
17
+ "dtype": "pl.Float64"
18
+ },
19
+ "mz": {
20
+ "dtype": "pl.Float64"
21
+ },
22
+ "rt_min": {
23
+ "dtype": "pl.Float64"
24
+ },
25
+ "rt_max": {
26
+ "dtype": "pl.Float64"
27
+ },
28
+ "rt_mean": {
29
+ "dtype": "pl.Float64"
30
+ },
31
+ "rt_start_mean": {
32
+ "dtype": "pl.Float64"
33
+ },
34
+ "rt_end_mean": {
35
+ "dtype": "pl.Float64"
36
+ },
37
+ "rt_delta_mean": {
38
+ "dtype": "pl.Float64"
39
+ },
40
+ "mz_min": {
41
+ "dtype": "pl.Float64"
42
+ },
43
+ "mz_max": {
44
+ "dtype": "pl.Float64"
45
+ },
46
+ "mz_mean": {
47
+ "dtype": "pl.Float64"
48
+ },
49
+ "mz_start_mean": {
50
+ "dtype": "pl.Float64"
51
+ },
52
+ "mz_end_mean": {
53
+ "dtype": "pl.Float64"
54
+ },
55
+ "inty_mean": {
56
+ "dtype": "pl.Float64"
57
+ },
58
+ "bl": {
59
+ "dtype": "pl.Float64"
60
+ },
61
+ "chrom_coherence_mean": {
62
+ "dtype": "pl.Float64"
63
+ },
64
+ "chrom_prominence_mean": {
65
+ "dtype": "pl.Float64"
66
+ },
67
+ "chrom_prominence_scaled_mean": {
68
+ "dtype": "pl.Float64"
69
+ },
70
+ "chrom_height_scaled_mean": {
71
+ "dtype": "pl.Float64"
72
+ },
73
+ "iso_mean": {
74
+ "dtype": "pl.Float64"
75
+ },
76
+ "charge_mean": {
77
+ "dtype": "pl.Float64"
78
+ },
79
+ "number_ms2": {
80
+ "dtype": "pl.Int64"
81
+ },
82
+ "adducts": {
83
+ "dtype": "pl.Object"
84
+ }
85
+ }
86
+ },
87
+ "consensus_mapping_df": {
88
+ "columns": {
89
+ "consensus_uid": {
90
+ "dtype": "pl.Int64"
91
+ },
92
+ "feature_uid": {
93
+ "dtype": "pl.Int64"
94
+ },
95
+ "sample_uid": {
96
+ "dtype": "pl.Int64"
97
+ }
98
+ }
99
+ },
100
+ "consensus_ms2": {
101
+ "columns": {
102
+ "consensus_uid": {
103
+ "dtype": "pl.Int64"
104
+ },
105
+ "energy": {
106
+ "dtype": "pl.Float64"
107
+ },
108
+ "feature_uid": {
109
+ "dtype": "pl.Int64"
110
+ },
111
+ "number_frags": {
112
+ "dtype": "pl.Int64"
113
+ },
114
+ "prec_coherence": {
115
+ "dtype": "pl.Float64"
116
+ },
117
+ "prec_inty": {
118
+ "dtype": "pl.Float64"
119
+ },
120
+ "prec_prominence_scaled": {
121
+ "dtype": "pl.Float64"
122
+ },
123
+ "sample_uid": {
124
+ "dtype": "pl.Int64"
125
+ },
126
+ "scan_id": {
127
+ "dtype": "pl.Int64"
128
+ },
129
+ "spec": {
130
+ "dtype": "pl.Object"
131
+ }
132
+ }
133
+ },
134
+ "features_df": {
135
+ "columns": {
136
+ "feature_uid": {
137
+ "dtype": "pl.Int64"
138
+ },
139
+ "sample_uid": {
140
+ "dtype": "pl.Int32"
141
+ },
142
+ "feature_id": {
143
+ "dtype": "pl.Utf8"
144
+ },
145
+ "mz": {
146
+ "dtype": "pl.Float64"
147
+ },
148
+ "rt": {
149
+ "dtype": "pl.Float64"
150
+ },
151
+ "rt_original": {
152
+ "dtype": "pl.Float64"
153
+ },
154
+ "rt_start": {
155
+ "dtype": "pl.Float64"
156
+ },
157
+ "rt_end": {
158
+ "dtype": "pl.Float64"
159
+ },
160
+ "rt_delta": {
161
+ "dtype": "pl.Float64"
162
+ },
163
+ "mz_start": {
164
+ "dtype": "pl.Float64"
165
+ },
166
+ "mz_end": {
167
+ "dtype": "pl.Float64"
168
+ },
169
+ "inty": {
170
+ "dtype": "pl.Float64"
171
+ },
172
+ "quality": {
173
+ "dtype": "pl.Float64"
174
+ },
175
+ "charge": {
176
+ "dtype": "pl.Int32"
177
+ },
178
+ "iso": {
179
+ "dtype": "pl.Int64"
180
+ },
181
+ "iso_of": {
182
+ "dtype": "pl.Int64"
183
+ },
184
+ "adduct_group": {
185
+ "dtype": "pl.Int64"
186
+ },
187
+ "adduct": {
188
+ "dtype": "pl.Utf8"
189
+ },
190
+ "adduct_mass": {
191
+ "dtype": "pl.Float64"
192
+ },
193
+ "filled": {
194
+ "dtype": "pl.Boolean"
195
+ },
196
+ "chrom_area": {
197
+ "dtype": "pl.Float64"
198
+ },
199
+ "chrom": {
200
+ "dtype": "pl.Object"
201
+ },
202
+ "chrom_coherence": {
203
+ "dtype": "pl.Float64"
204
+ },
205
+ "chrom_prominence": {
206
+ "dtype": "pl.Float64"
207
+ },
208
+ "chrom_prominence_scaled": {
209
+ "dtype": "pl.Float64"
210
+ },
211
+ "chrom_height_scaled": {
212
+ "dtype": "pl.Float64"
213
+ },
214
+ "ms2_scans": {
215
+ "dtype": "pl.Object"
216
+ },
217
+ "ms2_specs": {
218
+ "dtype": "pl.Object"
219
+ }
220
+ }
221
+ },
222
+ "samples_df": {
223
+ "columns": {
224
+ "map_id": {
225
+ "dtype": "pl.Utf8"
226
+ },
227
+ "sample_name": {
228
+ "dtype": "pl.Utf8"
229
+ },
230
+ "sample_path": {
231
+ "dtype": "pl.Utf8"
232
+ },
233
+ "file_source": {
234
+ "dtype": "pl.Utf8"
235
+ },
236
+ "sample_type": {
237
+ "dtype": "pl.Utf8"
238
+ },
239
+ "sample_uid": {
240
+ "dtype": "pl.Int64"
241
+ },
242
+ "size": {
243
+ "dtype": "pl.Int64"
244
+ },
245
+ "ms1": {
246
+ "dtype": "pl.Int64"
247
+ },
248
+ "ms2": {
249
+ "dtype": "pl.Int64"
250
+ }
251
+ }
252
+ }
253
+ }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: masster
3
- Version: 0.2.5
3
+ Version: 0.3.1
4
4
  Summary: Mass spectrometry data analysis package
5
5
  Project-URL: homepage, https://github.com/zamboni-lab/masster
6
6
  Project-URL: repository, https://github.com/zamboni-lab/masster
@@ -676,6 +676,7 @@ Classifier: Operating System :: OS Independent
676
676
  Classifier: Programming Language :: Python :: 3
677
677
  Classifier: Programming Language :: Python :: 3.11
678
678
  Classifier: Programming Language :: Python :: 3.12
679
+ Classifier: Programming Language :: Python :: 3.13
679
680
  Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
680
681
  Classifier: Topic :: Scientific/Engineering :: Chemistry
681
682
  Requires-Python: >=3.11
@@ -732,9 +733,10 @@ Description-Content-Type: text/markdown
732
733
 
733
734
  **MASSter** is a comprehensive Python package for mass spectrometry data analysis, designed for metabolomics and LC-MS data processing. It provides tools for feature detection, alignment, consensus building, and interactive visualization of mass spectrometry datasets. It is designed to deal with DDA, and hides functionalities for DIA and ZTScan DIA data.
734
735
 
735
- Most core processing functions are derived from OpenMS. We use the same nomenclature and refer to their documentation for an explanation of the parameters. To a large extent, however, you should be able to use the defaults (=no parameters) when calling processing steps.
736
+ This is a poorly documented, stable branch of the development codebase in use in the Zamboni lab.
737
+
738
+ Some of the core processing functions are derived from OpenMS. We use the same nomenclature and refer to their documentation for an explanation of the parameters. To a large extent, however, you should be able to use the defaults (=no parameters) when calling processing steps.
736
739
 
737
- This is a poorly documented, stable branch of the development codebase in use in the Zamboni lab. Novel functionalities will be added based on need and requests.
738
740
 
739
741
  ## Installation
740
742
 
@@ -751,23 +753,26 @@ import masster
751
753
  study = masster.Study(default_folder=r'D:\...\mylcms')
752
754
 
753
755
  # Load data from folder with raw data, here: WIFF
754
- study.add_folder(r'D:\...\...\...\*.wiff')
756
+ study.add(r'D:\...\...\...\*.wiff')
755
757
 
756
- # Align maps
758
+ # Perform retention time correction
757
759
  study.align(rt_max_diff=2.0)
760
+ study.plot_alignment()
758
761
 
759
762
  # Find consensus features
760
- study.find_consensus(min_samples=3)
763
+ study.merge(min_samples=3)
764
+ study.plot_consensus_2d()
761
765
 
762
766
  # Retrieve missing data for quantification
763
- study.fill_chrom(abs_)
767
+ study.fill()
764
768
 
765
769
  # Integrate according to consensus metadata
766
- study.integrate_chrom()
770
+ study.integrate()
767
771
 
768
- # link MS2 across the whole study and export them
769
- study.find_ms2()
772
+ # export results
770
773
  study.export_mgf()
774
+ study.export_mztab()
775
+ study.export_consensus()
771
776
 
772
777
  # Save the study to .study5
773
778
  study.save()
@@ -0,0 +1,59 @@
1
+ masster/__init__.py,sha256=G7hbKO8F_o1wFwQlvO25M8JYGka_YSAVU2_O__2rjlI,697
2
+ masster/_version.py,sha256=ioQa4W_2pWdKSoU7hw7Pn6WMBm3nMuuLKfSR4f8171A,256
3
+ masster/chromatogram.py,sha256=NgPr1uLGJHjRu6PWZZGOrS3pCl7sye1yQCJjlRi9ZSY,19305
4
+ masster/logger.py,sha256=iJGDtqR0nzW4cMb_fPOwoytpgrpnlSkuH5MIhgK90Xk,14733
5
+ masster/spectrum.py,sha256=LuDa7qP_JInctzkmxC9c5468opHOholy321KpUgyW2U,47550
6
+ masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.featureXML,sha256=033IjCWBaYVymnPhVHneytilC-XIa6T-6wkeBB0BXvc,10980374
7
+ masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.mzML,sha256=3RS_crLN-aoPSacMYaQ45sxszmp_EcQElrg8tiuAQyA,39741920
8
+ masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.sample5,sha256=T3LxClfe3Uaqx4Rb7lY57e2uWpuJHzPy-VEl3cy4b7k,11109448
9
+ masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.timeseries.data,sha256=01vC6m__Qqm2rLvlTMZoeKIKowFvovBTUnrNl8Uav3E,24576
10
+ masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.wiff,sha256=go5N9gAM1rn4PZAVaoCmdteY9f7YGEM9gyPdSmkQ8PE,1447936
11
+ masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.wiff.scan,sha256=ahi1Y3UhAj9Bj4Q2MlbgPekNdkJvMOoMXVOoR6CeIxc,13881220
12
+ masster/data/examples/2025_01_14_VW_7600_LpMx_DBS_CID_2min_TOP15_030msecMS1_005msecReac_CE35_DBS-ON_3.wiff2,sha256=TFB0HW4Agkig6yht7FtgjUdbXax8jjKaHpSZSvuU5vs,3252224
13
+ masster/sample/__init__.py,sha256=HL0m1ept0PMAYUCQtDDnkdOS12IFl6oLAq4TZQz83uY,170
14
+ masster/sample/h5.py,sha256=aGj3vJsM08wiWFKryRCn5ROKBSRX85vE0Z-jiPSqLjI,63817
15
+ masster/sample/helpers.py,sha256=OEgvR3bptA-tEqHAFVPjWpbagKXAU1h0bePPi9ttHa4,34842
16
+ masster/sample/lib.py,sha256=9r2XlF_BaJ4WNAsQo8hElieRLwsAv0yrbYq4DJ0iVOM,33496
17
+ masster/sample/load.py,sha256=y-KUJ2nCFX_06FHPUOh-CzRRvaTx14xNcXoL19bU8qY,47562
18
+ masster/sample/parameters.py,sha256=Gg2KcuNbV_wZ_Wwv93QlM5J19ji0oSIvZLPV1NoBmq0,4456
19
+ masster/sample/plot.py,sha256=wd-4OosFT8MoO0fM8PSMskZK_yg8i8vfbiTieAzgrv4,62831
20
+ masster/sample/processing.py,sha256=NjNLt47Fy0UF3Xs35NBhADg57qTC6Lfa4Xz8Y30v83A,58250
21
+ masster/sample/quant.py,sha256=tHNjvUFTdehKR31BXBZnVsBxMD9XJHgaltITOjr71uE,7562
22
+ masster/sample/sample.py,sha256=UlyA7cZtV_IMO8PRaYaUqf8cfAGfavVVfNDo0g_6OJw,16185
23
+ masster/sample/sample5_schema.json,sha256=3SPFQZH4SooLYUt_lW-PCOE9rHnl56Vhc2XG-r1nyEQ,3586
24
+ masster/sample/save.py,sha256=o9eFSqqr7KYwvCD3gOJt_nZ4h3pkflWqs0n0oSLM-sU,31970
25
+ masster/sample/sciex.py,sha256=q6PdcjCtV2PWnJiXuvfISu09zjkaTR_fvHvWN9OvOcM,46870
26
+ masster/sample/defaults/__init__.py,sha256=A09AOP44cxD_oYohyt7XFUho0zndRcrzVD4DUaGnKH4,447
27
+ masster/sample/defaults/find_adducts_def.py,sha256=6CcGRlz4VeosoBT_W0bkR1Kjj11Rq3QvuuOnkizIZyk,11630
28
+ masster/sample/defaults/find_features_def.py,sha256=d9LQsS7QEj2SIvhz_N55Zk80V2MOI5HlB4EylGDgG_4,13878
29
+ masster/sample/defaults/find_ms2_def.py,sha256=KTELMAnioGLYbhzAwOgK14TZqboPEvzeBN0HC-v0Z5A,9872
30
+ masster/sample/defaults/get_spectrum_def.py,sha256=o62p31PhGd-LiIkTOzKQhwPtnO2AtQDHcPu-O-YoQPs,11460
31
+ masster/sample/defaults/sample_def.py,sha256=t8vrb8MoBBsFQcRzlaT0-q0hAssOxWO7vhCAJU3_THs,14068
32
+ masster/study/__init__.py,sha256=Zspv6U8jFqjkHGYdNdDy1rfUnCSolCzUdgSSg98PRgE,166
33
+ masster/study/export.py,sha256=bm3e6AEwkXqBO6Pwd-2pWhxOmzQTFlOSauXFnaiSJDI,29019
34
+ masster/study/h5.py,sha256=EcpyYfMknDzzdA6XTyMU_ppY92_DsPSPYGE0kpVN7T8,66429
35
+ masster/study/helpers.py,sha256=SeW17rA3BIM2I2Whiye6wegRRSCabIpQoCsjOCafjKw,74888
36
+ masster/study/helpers_optimized.py,sha256=EgOgPaL3c2LA8jDhnlEHvzb7O9Um-vnMIcnNaoH90gA,13620
37
+ masster/study/load.py,sha256=TLxVhXu0HHb51lGggXitQLtfNxz2JJfKMkAXJbxhvhM,46880
38
+ masster/study/parameters.py,sha256=0elaF7YspTsB7qyajWAbRNL2VfKlGz5GJLifmO8IGkk,3276
39
+ masster/study/plot.py,sha256=hOG8bBT3mYV63FieEk-gYKtOyIXWppkTu21VeGbRnGk,21918
40
+ masster/study/processing.py,sha256=BQuSBO7O8iTlCjXenECyg0_PAsPF1NNiUllypuemPZI,46101
41
+ masster/study/save.py,sha256=bcRADWTvhTER9WRkT9zNU5mDUPQZkZB2cuJwpRsYmrM,6589
42
+ masster/study/study.py,sha256=5TZgG7tr7mzqHh1tm48V8SEcvRcWiFYG9iDqz0U9ACc,27073
43
+ masster/study/study5_schema.json,sha256=A_xDPzB97xt2EFeQsX9j8Ut7yC4_DS7BZ24ucotOXIw,5103
44
+ masster/study/defaults/__init__.py,sha256=m3Z5KXGqsTdh7GjYzZoENERt39yRg0ceVRV1DeCt1P0,610
45
+ masster/study/defaults/align_def.py,sha256=9aM7kY4_ecgG8QC6v57AASiRRkPxwG77r3-PlQ2BkHk,9139
46
+ masster/study/defaults/export_def.py,sha256=eXl3h4aoLX88XkHTpqahLd-QZ2gjUqrmjq8IJULXeWo,1203
47
+ masster/study/defaults/fill_chrom_def.py,sha256=C4rbpUgPnXWP70w_podPQFABiSll2wjHZdSN4J5V81s,8955
48
+ masster/study/defaults/fill_def.py,sha256=5B7-iNCngdwHPbf0146LzrqxKCi7_g5OC1XtkxvckeQ,8869
49
+ masster/study/defaults/find_consensus_def.py,sha256=uWB4NKCXDMQgNp4BaQUExkDofnXz0ZDffsxH1tvH2_Q,8599
50
+ masster/study/defaults/find_ms2_def.py,sha256=RL0DFG41wQ05U8UQKUGr3vzSl3mU0m0knQus8DpSoJE,5070
51
+ masster/study/defaults/integrate_chrom_def.py,sha256=Rih3-vat7fHGVfIvRitjNJJI3zLjGnLicZLnLmWlY7E,7332
52
+ masster/study/defaults/integrate_def.py,sha256=Vf4SAzdBfnsSZ3IRaF0qZvWu3gMDPHdgPfMYoPKeWv8,7246
53
+ masster/study/defaults/merge_def.py,sha256=EBsKE3hsAkTEzN9dpdRD5W3_suTKy_WZ_96rwS0uBuE,8572
54
+ masster/study/defaults/study_def.py,sha256=hj8bYtEPwzdowC95yfyoCFt6fZkQePLjpJtmpNz9Z5M,9533
55
+ masster-0.3.1.dist-info/METADATA,sha256=VLzNZSby0weoT9QUfjleppVOtuvt_GtZu6AfLRM9MSg,44356
56
+ masster-0.3.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
57
+ masster-0.3.1.dist-info/entry_points.txt,sha256=ZHguQ_vPmdbpqq2uGtmEOLJfgP-DQ1T0c07Lxh30wc8,58
58
+ masster-0.3.1.dist-info/licenses/LICENSE,sha256=bx5iLIKjgAdYQ7sISn7DsfHRKkoCUm1154sJJKhgqnU,35184
59
+ masster-0.3.1.dist-info/RECORD,,