massgen 0.1.4__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of massgen might be problematic. Click here for more details.
- massgen/__init__.py +1 -1
- massgen/backend/base_with_custom_tool_and_mcp.py +453 -23
- massgen/backend/capabilities.py +39 -0
- massgen/backend/chat_completions.py +111 -197
- massgen/backend/claude.py +210 -181
- massgen/backend/gemini.py +1015 -1559
- massgen/backend/grok.py +3 -2
- massgen/backend/response.py +160 -220
- massgen/chat_agent.py +340 -20
- massgen/cli.py +399 -25
- massgen/config_builder.py +20 -54
- massgen/config_validator.py +931 -0
- massgen/configs/README.md +95 -10
- massgen/configs/memory/gpt5mini_gemini_baseline_research_to_implementation.yaml +94 -0
- massgen/configs/memory/gpt5mini_gemini_context_window_management.yaml +187 -0
- massgen/configs/memory/gpt5mini_gemini_research_to_implementation.yaml +127 -0
- massgen/configs/memory/gpt5mini_high_reasoning_gemini.yaml +107 -0
- massgen/configs/memory/single_agent_compression_test.yaml +64 -0
- massgen/configs/tools/custom_tools/claude_code_custom_tool_with_mcp_example.yaml +1 -0
- massgen/configs/tools/custom_tools/claude_custom_tool_example_no_path.yaml +1 -1
- massgen/configs/tools/custom_tools/claude_custom_tool_with_mcp_example.yaml +1 -0
- massgen/configs/tools/custom_tools/computer_use_browser_example.yaml +1 -1
- massgen/configs/tools/custom_tools/computer_use_docker_example.yaml +1 -1
- massgen/configs/tools/custom_tools/gemini_custom_tool_with_mcp_example.yaml +1 -0
- massgen/configs/tools/custom_tools/gpt5_nano_custom_tool_with_mcp_example.yaml +1 -0
- massgen/configs/tools/custom_tools/gpt_oss_custom_tool_with_mcp_example.yaml +1 -0
- massgen/configs/tools/custom_tools/grok3_mini_custom_tool_with_mcp_example.yaml +1 -0
- massgen/configs/tools/custom_tools/interop/ag2_and_langgraph_lesson_planner.yaml +65 -0
- massgen/configs/tools/custom_tools/interop/ag2_and_openai_assistant_lesson_planner.yaml +65 -0
- massgen/configs/tools/custom_tools/interop/ag2_lesson_planner_example.yaml +48 -0
- massgen/configs/tools/custom_tools/interop/agentscope_lesson_planner_example.yaml +48 -0
- massgen/configs/tools/custom_tools/interop/langgraph_lesson_planner_example.yaml +49 -0
- massgen/configs/tools/custom_tools/interop/openai_assistant_lesson_planner_example.yaml +50 -0
- massgen/configs/tools/custom_tools/interop/smolagent_lesson_planner_example.yaml +49 -0
- massgen/configs/tools/custom_tools/qwen_api_custom_tool_with_mcp_example.yaml +1 -0
- massgen/configs/tools/custom_tools/two_models_with_tools_example.yaml +44 -0
- massgen/formatter/_gemini_formatter.py +61 -15
- massgen/memory/README.md +277 -0
- massgen/memory/__init__.py +26 -0
- massgen/memory/_base.py +193 -0
- massgen/memory/_compression.py +237 -0
- massgen/memory/_context_monitor.py +211 -0
- massgen/memory/_conversation.py +255 -0
- massgen/memory/_fact_extraction_prompts.py +333 -0
- massgen/memory/_mem0_adapters.py +257 -0
- massgen/memory/_persistent.py +687 -0
- massgen/memory/docker-compose.qdrant.yml +36 -0
- massgen/memory/docs/DESIGN.md +388 -0
- massgen/memory/docs/QUICKSTART.md +409 -0
- massgen/memory/docs/SUMMARY.md +319 -0
- massgen/memory/docs/agent_use_memory.md +408 -0
- massgen/memory/docs/orchestrator_use_memory.md +586 -0
- massgen/memory/examples.py +237 -0
- massgen/orchestrator.py +207 -7
- massgen/tests/memory/test_agent_compression.py +174 -0
- massgen/tests/memory/test_context_window_management.py +286 -0
- massgen/tests/memory/test_force_compression.py +154 -0
- massgen/tests/memory/test_simple_compression.py +147 -0
- massgen/tests/test_ag2_lesson_planner.py +223 -0
- massgen/tests/test_agent_memory.py +534 -0
- massgen/tests/test_config_validator.py +1156 -0
- massgen/tests/test_conversation_memory.py +382 -0
- massgen/tests/test_langgraph_lesson_planner.py +223 -0
- massgen/tests/test_orchestrator_memory.py +620 -0
- massgen/tests/test_persistent_memory.py +435 -0
- massgen/token_manager/token_manager.py +6 -0
- massgen/tool/__init__.py +2 -9
- massgen/tool/_decorators.py +52 -0
- massgen/tool/_extraframework_agents/ag2_lesson_planner_tool.py +251 -0
- massgen/tool/_extraframework_agents/agentscope_lesson_planner_tool.py +303 -0
- massgen/tool/_extraframework_agents/langgraph_lesson_planner_tool.py +275 -0
- massgen/tool/_extraframework_agents/openai_assistant_lesson_planner_tool.py +247 -0
- massgen/tool/_extraframework_agents/smolagent_lesson_planner_tool.py +180 -0
- massgen/tool/_manager.py +102 -16
- massgen/tool/_registered_tool.py +3 -0
- massgen/tool/_result.py +3 -0
- {massgen-0.1.4.dist-info → massgen-0.1.6.dist-info}/METADATA +138 -77
- {massgen-0.1.4.dist-info → massgen-0.1.6.dist-info}/RECORD +82 -37
- massgen/backend/gemini_mcp_manager.py +0 -545
- massgen/backend/gemini_trackers.py +0 -344
- {massgen-0.1.4.dist-info → massgen-0.1.6.dist-info}/WHEEL +0 -0
- {massgen-0.1.4.dist-info → massgen-0.1.6.dist-info}/entry_points.txt +0 -0
- {massgen-0.1.4.dist-info → massgen-0.1.6.dist-info}/licenses/LICENSE +0 -0
- {massgen-0.1.4.dist-info → massgen-0.1.6.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,174 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Test Context Compression at Agent Level
|
|
5
|
+
|
|
6
|
+
This script tests compression with a SingleAgent directly (not through orchestrator).
|
|
7
|
+
It creates many messages to trigger compression and verifies it works.
|
|
8
|
+
|
|
9
|
+
Usage:
|
|
10
|
+
uv run python massgen/configs/memory/test_agent_compression.py
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
import asyncio
|
|
14
|
+
import os
|
|
15
|
+
import sys
|
|
16
|
+
from pathlib import Path
|
|
17
|
+
|
|
18
|
+
sys.path.insert(0, str(Path(__file__).parent.parent.parent.parent))
|
|
19
|
+
|
|
20
|
+
from dotenv import load_dotenv # noqa: E402
|
|
21
|
+
|
|
22
|
+
from massgen.backend.chat_completions import ChatCompletionsBackend # noqa: E402
|
|
23
|
+
from massgen.chat_agent import SingleAgent # noqa: E402
|
|
24
|
+
from massgen.memory import ConversationMemory, PersistentMemory # noqa: E402
|
|
25
|
+
from massgen.memory._context_monitor import ContextWindowMonitor # noqa: E402
|
|
26
|
+
|
|
27
|
+
load_dotenv()
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
async def main():
|
|
31
|
+
"""Test compression with a single agent."""
|
|
32
|
+
print("=" * 80)
|
|
33
|
+
print("Testing Context Compression at Agent Level")
|
|
34
|
+
print("=" * 80 + "\n")
|
|
35
|
+
|
|
36
|
+
# Check API key
|
|
37
|
+
if not os.getenv("OPENAI_API_KEY"):
|
|
38
|
+
print("❌ Error: OPENAI_API_KEY not set")
|
|
39
|
+
return
|
|
40
|
+
|
|
41
|
+
# Configuration
|
|
42
|
+
model_name = "gpt-4o-mini"
|
|
43
|
+
provider = "openai"
|
|
44
|
+
trigger_threshold = 0.05 # Trigger at 5% for quick testing
|
|
45
|
+
target_ratio = 0.02 # Keep only 2% after compression
|
|
46
|
+
|
|
47
|
+
print("Configuration:")
|
|
48
|
+
print(f" Model: {model_name}")
|
|
49
|
+
print(f" Trigger: {trigger_threshold*100:.0f}%")
|
|
50
|
+
print(f" Target: {target_ratio*100:.0f}%\n")
|
|
51
|
+
|
|
52
|
+
# 1. Create backend
|
|
53
|
+
backend = ChatCompletionsBackend(
|
|
54
|
+
type=provider,
|
|
55
|
+
model=model_name,
|
|
56
|
+
api_key=os.getenv("OPENAI_API_KEY"),
|
|
57
|
+
)
|
|
58
|
+
|
|
59
|
+
# 2. Create memories
|
|
60
|
+
conversation_memory = ConversationMemory()
|
|
61
|
+
|
|
62
|
+
embedding_backend = ChatCompletionsBackend(
|
|
63
|
+
type="openai",
|
|
64
|
+
model="text-embedding-3-small",
|
|
65
|
+
api_key=os.getenv("OPENAI_API_KEY"),
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
persistent_memory = PersistentMemory(
|
|
69
|
+
agent_name="test_compression_agent",
|
|
70
|
+
session_name="test_session",
|
|
71
|
+
llm_backend=backend,
|
|
72
|
+
embedding_backend=embedding_backend,
|
|
73
|
+
on_disk=False, # In-memory for testing
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
print("✅ Memories created")
|
|
77
|
+
|
|
78
|
+
# 3. Create context monitor
|
|
79
|
+
monitor = ContextWindowMonitor(
|
|
80
|
+
model_name=model_name,
|
|
81
|
+
provider=provider,
|
|
82
|
+
trigger_threshold=trigger_threshold,
|
|
83
|
+
target_ratio=target_ratio,
|
|
84
|
+
enabled=True,
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
print(f"✅ Monitor created (window: {monitor.context_window:,} tokens)")
|
|
88
|
+
print(f" Will warn at: {int(monitor.context_window * trigger_threshold):,} tokens\n")
|
|
89
|
+
|
|
90
|
+
# 4. Create agent with monitor
|
|
91
|
+
agent = SingleAgent(
|
|
92
|
+
backend=backend,
|
|
93
|
+
agent_id="test_agent",
|
|
94
|
+
system_message="You are a helpful assistant. Provide detailed, thorough responses.",
|
|
95
|
+
conversation_memory=conversation_memory,
|
|
96
|
+
persistent_memory=persistent_memory,
|
|
97
|
+
context_monitor=monitor,
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
# Verify compressor was created
|
|
101
|
+
if agent.context_compressor:
|
|
102
|
+
print("✅ Context compressor created!\n")
|
|
103
|
+
else:
|
|
104
|
+
print("❌ Context compressor NOT created!\n")
|
|
105
|
+
return
|
|
106
|
+
|
|
107
|
+
# 5. Simulate multiple turns to fill context
|
|
108
|
+
print("=" * 80)
|
|
109
|
+
print("Simulating conversation to trigger compression...")
|
|
110
|
+
print("=" * 80 + "\n")
|
|
111
|
+
|
|
112
|
+
# Create several turns with verbose responses
|
|
113
|
+
prompts = [
|
|
114
|
+
"Explain how Python's garbage collection works in detail.",
|
|
115
|
+
"Now explain Python's Global Interpreter Lock (GIL) in detail.",
|
|
116
|
+
"Explain Python's asyncio event loop architecture in detail.",
|
|
117
|
+
"Explain Python's descriptor protocol in detail.",
|
|
118
|
+
"Explain Python's metaclasses and how they work in detail.",
|
|
119
|
+
]
|
|
120
|
+
|
|
121
|
+
for i, prompt in enumerate(prompts, 1):
|
|
122
|
+
print(f"\n--- Turn {i} ---")
|
|
123
|
+
print(f"User: {prompt[:60]}...")
|
|
124
|
+
|
|
125
|
+
# Check context before turn
|
|
126
|
+
current_messages = await conversation_memory.get_messages()
|
|
127
|
+
print(f"Messages before turn: {len(current_messages)}")
|
|
128
|
+
|
|
129
|
+
response_text = ""
|
|
130
|
+
async for chunk in agent.chat([{"role": "user", "content": prompt}]):
|
|
131
|
+
if chunk.type == "content" and chunk.content:
|
|
132
|
+
response_text += chunk.content
|
|
133
|
+
|
|
134
|
+
print(f"Response: {len(response_text)} chars")
|
|
135
|
+
|
|
136
|
+
# Check context after turn
|
|
137
|
+
current_messages = await conversation_memory.get_messages()
|
|
138
|
+
print(f"Messages after turn: {len(current_messages)}")
|
|
139
|
+
|
|
140
|
+
# Small delay between turns
|
|
141
|
+
await asyncio.sleep(0.5)
|
|
142
|
+
|
|
143
|
+
# 6. Show final statistics
|
|
144
|
+
print("\n" + "=" * 80)
|
|
145
|
+
print("Final Statistics")
|
|
146
|
+
print("=" * 80)
|
|
147
|
+
|
|
148
|
+
stats = monitor.get_stats()
|
|
149
|
+
print("\n📊 Monitor Stats:")
|
|
150
|
+
print(f" Total turns: {stats['turn_count']}")
|
|
151
|
+
print(f" Total tokens: {stats['total_tokens']:,}")
|
|
152
|
+
print(f" Peak usage: {stats['peak_usage_percent']*100:.1f}%")
|
|
153
|
+
|
|
154
|
+
if agent.context_compressor:
|
|
155
|
+
comp_stats = agent.context_compressor.get_stats()
|
|
156
|
+
print("\n📦 Compression Stats:")
|
|
157
|
+
print(f" Total compressions: {comp_stats['total_compressions']}")
|
|
158
|
+
print(f" Messages removed: {comp_stats['total_messages_removed']}")
|
|
159
|
+
print(f" Tokens removed: {comp_stats['total_tokens_removed']:,}")
|
|
160
|
+
|
|
161
|
+
final_messages = await conversation_memory.get_messages()
|
|
162
|
+
print("\n💾 Final Memory State:")
|
|
163
|
+
print(f" Messages in conversation_memory: {len(final_messages)}")
|
|
164
|
+
|
|
165
|
+
print("\n" + "=" * 80)
|
|
166
|
+
if agent.context_compressor and comp_stats["total_compressions"] > 0:
|
|
167
|
+
print("✅ SUCCESS: Compression worked!")
|
|
168
|
+
else:
|
|
169
|
+
print("⚠️ No compression occurred (context may not have reached threshold)")
|
|
170
|
+
print("=" * 80 + "\n")
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
if __name__ == "__main__":
|
|
174
|
+
asyncio.run(main())
|
|
@@ -0,0 +1,286 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Test script for Context Window Management with Memory.
|
|
5
|
+
|
|
6
|
+
This script demonstrates how to configure and test the context window
|
|
7
|
+
management feature with persistent memory integration.
|
|
8
|
+
|
|
9
|
+
Usage:
|
|
10
|
+
python massgen/configs/tools/memory/test_context_window_management.py
|
|
11
|
+
|
|
12
|
+
# Or specify a custom config:
|
|
13
|
+
python massgen/configs/tools/memory/test_context_window_management.py --config path/to/config.yaml
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
import asyncio
|
|
17
|
+
import os
|
|
18
|
+
import sys
|
|
19
|
+
from pathlib import Path
|
|
20
|
+
|
|
21
|
+
# Add parent directory to path for imports
|
|
22
|
+
sys.path.insert(0, str(Path(__file__).parent.parent.parent.parent))
|
|
23
|
+
|
|
24
|
+
import yaml # noqa: E402
|
|
25
|
+
from dotenv import load_dotenv # noqa: E402
|
|
26
|
+
|
|
27
|
+
from massgen.backend.chat_completions import ChatCompletionsBackend # noqa: E402
|
|
28
|
+
from massgen.chat_agent import SingleAgent # noqa: E402
|
|
29
|
+
from massgen.memory import ConversationMemory, PersistentMemory # noqa: E402
|
|
30
|
+
|
|
31
|
+
# Load environment variables from .env file
|
|
32
|
+
load_dotenv()
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def load_config(config_path: str = None) -> dict:
|
|
36
|
+
"""Load configuration from YAML file."""
|
|
37
|
+
if config_path is None:
|
|
38
|
+
# Default to the config in same directory
|
|
39
|
+
config_path = Path(__file__).parent / "gpt5mini_gemini_context_window_management.yaml"
|
|
40
|
+
|
|
41
|
+
with open(config_path, "r") as f:
|
|
42
|
+
return yaml.safe_load(f)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
async def test_with_persistent_memory(config: dict):
|
|
46
|
+
"""Test context compression with persistent memory enabled."""
|
|
47
|
+
# Check if memory is enabled in config
|
|
48
|
+
memory_config = config.get("memory", {})
|
|
49
|
+
if not memory_config.get("enabled", True):
|
|
50
|
+
print("\n⚠️ Skipping: memory.enabled is false in config")
|
|
51
|
+
return
|
|
52
|
+
|
|
53
|
+
persistent_enabled = memory_config.get("persistent_memory", {}).get("enabled", True)
|
|
54
|
+
if not persistent_enabled:
|
|
55
|
+
print("\n⚠️ Skipping: memory.persistent_memory.enabled is false in config")
|
|
56
|
+
return
|
|
57
|
+
|
|
58
|
+
print("\n" + "=" * 70)
|
|
59
|
+
print("TEST 1: Context Window Management WITH Persistent Memory")
|
|
60
|
+
print("=" * 70 + "\n")
|
|
61
|
+
|
|
62
|
+
# Get memory settings from config
|
|
63
|
+
persistent_config = memory_config.get("persistent_memory", {})
|
|
64
|
+
agent_name = persistent_config.get("agent_name", "storyteller_agent")
|
|
65
|
+
session_name = persistent_config.get("session_name", "test_session")
|
|
66
|
+
on_disk = persistent_config.get("on_disk", True)
|
|
67
|
+
|
|
68
|
+
# Create LLM backend for both agent and memory
|
|
69
|
+
llm_backend = ChatCompletionsBackend(
|
|
70
|
+
type="openai",
|
|
71
|
+
model="gpt-4o-mini", # Use smaller model for faster testing
|
|
72
|
+
api_key=os.getenv("OPENAI_API_KEY"),
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
# Create embedding backend for persistent memory
|
|
76
|
+
embedding_backend = ChatCompletionsBackend(
|
|
77
|
+
type="openai",
|
|
78
|
+
model="text-embedding-3-small",
|
|
79
|
+
api_key=os.getenv("OPENAI_API_KEY"),
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
# Initialize memory systems
|
|
83
|
+
conversation_memory = ConversationMemory()
|
|
84
|
+
persistent_memory = PersistentMemory(
|
|
85
|
+
agent_name=agent_name,
|
|
86
|
+
session_name=session_name,
|
|
87
|
+
llm_backend=llm_backend,
|
|
88
|
+
embedding_backend=embedding_backend,
|
|
89
|
+
on_disk=on_disk,
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
# Create agent with memory
|
|
93
|
+
agent = SingleAgent(
|
|
94
|
+
backend=llm_backend,
|
|
95
|
+
agent_id="storyteller",
|
|
96
|
+
system_message="You are a creative storyteller. Create detailed, " "immersive narratives with rich descriptions.",
|
|
97
|
+
conversation_memory=conversation_memory,
|
|
98
|
+
persistent_memory=persistent_memory,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
print("✅ Agent initialized with memory")
|
|
102
|
+
print(" - ConversationMemory: Active")
|
|
103
|
+
print(f" - PersistentMemory: Active (agent={agent_name}, session={session_name}, on_disk={on_disk})")
|
|
104
|
+
print(" - Model context window: 128,000 tokens")
|
|
105
|
+
print(" - Compression triggers at: 96,000 tokens (75%)")
|
|
106
|
+
print(" - Target after compression: 51,200 tokens (40%)\n")
|
|
107
|
+
|
|
108
|
+
# Simulate a conversation that will fill context
|
|
109
|
+
# Each turn will add significant tokens
|
|
110
|
+
story_prompts = [
|
|
111
|
+
"Tell me the beginning of a space exploration story. Include details about the ship, crew, and their mission. (Make it 400+ words)",
|
|
112
|
+
"What happens when they encounter their first alien planet? Describe it in vivid detail.",
|
|
113
|
+
"Describe a tense first contact situation with aliens. What do they look like? How do they communicate?",
|
|
114
|
+
"The mission takes an unexpected turn. What crisis occurs and how does the crew respond?",
|
|
115
|
+
"Show me a dramatic action sequence involving the ship's technology and the alien environment.",
|
|
116
|
+
"Reveal a plot twist about one of the crew members or the mission itself.",
|
|
117
|
+
"Continue the story with escalating tension and more discoveries.",
|
|
118
|
+
"How do cultural differences between humans and aliens create conflicts?",
|
|
119
|
+
"Describe a major decision point for the crew captain. What are the stakes?",
|
|
120
|
+
"Bring the story to a climactic moment with high drama.",
|
|
121
|
+
]
|
|
122
|
+
|
|
123
|
+
turn = 0
|
|
124
|
+
for prompt in story_prompts:
|
|
125
|
+
turn += 1
|
|
126
|
+
print(f"\n--- Turn {turn} ---")
|
|
127
|
+
print(f"User: {prompt}\n")
|
|
128
|
+
|
|
129
|
+
response_text = ""
|
|
130
|
+
async for chunk in agent.chat([{"role": "user", "content": prompt}]):
|
|
131
|
+
if chunk.type == "content" and chunk.content:
|
|
132
|
+
response_text += chunk.content
|
|
133
|
+
|
|
134
|
+
print(f"Agent: {response_text[:200]}...")
|
|
135
|
+
print(f" [{len(response_text)} chars in response]")
|
|
136
|
+
|
|
137
|
+
# Check if compression occurred by examining conversation size
|
|
138
|
+
if conversation_memory:
|
|
139
|
+
size = await conversation_memory.size()
|
|
140
|
+
print(f" [Conversation memory: {size} messages]\n")
|
|
141
|
+
|
|
142
|
+
print("\n✅ Test completed!")
|
|
143
|
+
print(" Check the output above for compression logs:")
|
|
144
|
+
print(" - Look for: '📊 Context usage: ...'")
|
|
145
|
+
print(" - Look for: '📦 Compressed N messages into long-term memory'")
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
async def test_without_persistent_memory(config: dict):
|
|
149
|
+
"""Test context compression without persistent memory (warning case)."""
|
|
150
|
+
# Check if we should run this test
|
|
151
|
+
memory_config = config.get("memory", {})
|
|
152
|
+
persistent_enabled = memory_config.get("persistent_memory", {}).get("enabled", True)
|
|
153
|
+
|
|
154
|
+
if persistent_enabled:
|
|
155
|
+
# Skip if persistent memory is enabled - we already tested that scenario
|
|
156
|
+
print("\n⚠️ Skipping Test 2: persistent memory is enabled in config")
|
|
157
|
+
print(" To test without persistent memory, set memory.persistent_memory.enabled: false")
|
|
158
|
+
return
|
|
159
|
+
|
|
160
|
+
print("\n" + "=" * 70)
|
|
161
|
+
print("TEST 2: Context Window Management WITHOUT Persistent Memory")
|
|
162
|
+
print("=" * 70 + "\n")
|
|
163
|
+
|
|
164
|
+
# Create LLM backend
|
|
165
|
+
llm_backend = ChatCompletionsBackend(
|
|
166
|
+
type="openai",
|
|
167
|
+
model="gpt-4o-mini",
|
|
168
|
+
api_key=os.getenv("OPENAI_API_KEY"),
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
# Only conversation memory, NO persistent memory
|
|
172
|
+
conversation_memory = ConversationMemory()
|
|
173
|
+
|
|
174
|
+
# Create agent without persistent memory
|
|
175
|
+
agent = SingleAgent(
|
|
176
|
+
backend=llm_backend,
|
|
177
|
+
agent_id="storyteller_no_persist",
|
|
178
|
+
system_message="You are a creative storyteller.",
|
|
179
|
+
conversation_memory=conversation_memory,
|
|
180
|
+
persistent_memory=None, # No persistent memory!
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
print("⚠️ Agent initialized WITHOUT persistent memory")
|
|
184
|
+
print(" - ConversationMemory: Active")
|
|
185
|
+
print(" - PersistentMemory: NONE")
|
|
186
|
+
print(" - This will trigger warning messages when context fills\n")
|
|
187
|
+
|
|
188
|
+
# Shorter test - just trigger compression
|
|
189
|
+
story_prompts = [
|
|
190
|
+
"Tell me a 500-word science fiction story about time travel.",
|
|
191
|
+
"Continue the story with 500 more words about paradoxes.",
|
|
192
|
+
"Add another 500 words with a plot twist.",
|
|
193
|
+
"Continue with 500 words about the resolution.",
|
|
194
|
+
"Write a 500-word epilogue.",
|
|
195
|
+
]
|
|
196
|
+
|
|
197
|
+
turn = 0
|
|
198
|
+
for prompt in story_prompts:
|
|
199
|
+
turn += 1
|
|
200
|
+
print(f"\n--- Turn {turn} ---")
|
|
201
|
+
print(f"User: {prompt}\n")
|
|
202
|
+
|
|
203
|
+
response_text = ""
|
|
204
|
+
async for chunk in agent.chat([{"role": "user", "content": prompt}]):
|
|
205
|
+
if chunk.type == "content" and chunk.content:
|
|
206
|
+
response_text += chunk.content
|
|
207
|
+
|
|
208
|
+
print(f"Agent: {response_text[:150]}...")
|
|
209
|
+
|
|
210
|
+
print("\n✅ Test completed!")
|
|
211
|
+
print(" Check the output above for warning messages:")
|
|
212
|
+
print(" - Look for: '⚠️ Warning: Dropping N messages'")
|
|
213
|
+
print(" - Look for: 'No persistent memory configured'")
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
async def main(config_path: str = None):
|
|
217
|
+
"""Run all tests."""
|
|
218
|
+
print("\n" + "=" * 70)
|
|
219
|
+
print("Context Window Management Test Suite")
|
|
220
|
+
print("=" * 70)
|
|
221
|
+
|
|
222
|
+
# Load configuration
|
|
223
|
+
config = load_config(config_path)
|
|
224
|
+
|
|
225
|
+
# Show memory configuration
|
|
226
|
+
memory_config = config.get("memory", {})
|
|
227
|
+
print("\n📋 Memory Configuration (from YAML):")
|
|
228
|
+
print(f" - Enabled: {memory_config.get('enabled', True)}")
|
|
229
|
+
print(f" - Conversation Memory: {memory_config.get('conversation_memory', {}).get('enabled', True)}")
|
|
230
|
+
print(f" - Persistent Memory: {memory_config.get('persistent_memory', {}).get('enabled', True)}")
|
|
231
|
+
|
|
232
|
+
if memory_config.get("persistent_memory", {}).get("enabled", True):
|
|
233
|
+
pm_config = memory_config.get("persistent_memory", {})
|
|
234
|
+
print(f" - Agent Name: {pm_config.get('agent_name', 'N/A')}")
|
|
235
|
+
print(f" - Session Name: {pm_config.get('session_name', 'N/A')}")
|
|
236
|
+
print(f" - On Disk: {pm_config.get('on_disk', True)}")
|
|
237
|
+
|
|
238
|
+
compression_config = memory_config.get("compression", {})
|
|
239
|
+
print(f" - Compression Trigger: {compression_config.get('trigger_threshold', 0.75)*100}%")
|
|
240
|
+
print(f" - Target After Compression: {compression_config.get('target_ratio', 0.40)*100}%\n")
|
|
241
|
+
|
|
242
|
+
# Check for API key
|
|
243
|
+
if not os.getenv("OPENAI_API_KEY"):
|
|
244
|
+
print("\n❌ Error: OPENAI_API_KEY environment variable not set")
|
|
245
|
+
print(" Please set your OpenAI API key:")
|
|
246
|
+
print(" export OPENAI_API_KEY='your-key-here'")
|
|
247
|
+
return
|
|
248
|
+
|
|
249
|
+
try:
|
|
250
|
+
# Test 1: With persistent memory (if enabled)
|
|
251
|
+
await test_with_persistent_memory(config)
|
|
252
|
+
|
|
253
|
+
# Wait between tests
|
|
254
|
+
print("\n" + "-" * 70)
|
|
255
|
+
print("Waiting 5 seconds before next test...")
|
|
256
|
+
print("-" * 70)
|
|
257
|
+
await asyncio.sleep(5)
|
|
258
|
+
|
|
259
|
+
# Test 2: Without persistent memory (if disabled in config)
|
|
260
|
+
await test_without_persistent_memory(config)
|
|
261
|
+
|
|
262
|
+
except KeyboardInterrupt:
|
|
263
|
+
print("\n\n⚠️ Test interrupted by user")
|
|
264
|
+
except Exception as e:
|
|
265
|
+
print(f"\n\n❌ Test failed with error: {e}")
|
|
266
|
+
import traceback
|
|
267
|
+
|
|
268
|
+
traceback.print_exc()
|
|
269
|
+
|
|
270
|
+
print("\n" + "=" * 70)
|
|
271
|
+
print("All tests completed!")
|
|
272
|
+
print("=" * 70 + "\n")
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
if __name__ == "__main__":
|
|
276
|
+
import argparse
|
|
277
|
+
|
|
278
|
+
parser = argparse.ArgumentParser(description="Test context window management with memory")
|
|
279
|
+
parser.add_argument(
|
|
280
|
+
"--config",
|
|
281
|
+
type=str,
|
|
282
|
+
help="Path to YAML config file (default: gpt5mini_gemini_context_window_management.yaml)",
|
|
283
|
+
)
|
|
284
|
+
args = parser.parse_args()
|
|
285
|
+
|
|
286
|
+
asyncio.run(main(args.config))
|
|
@@ -0,0 +1,154 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
"""
|
|
4
|
+
Force Compression Test
|
|
5
|
+
|
|
6
|
+
Directly tests compression by manually adding many messages to trigger it.
|
|
7
|
+
Bypasses LLM calls for faster testing.
|
|
8
|
+
|
|
9
|
+
Usage:
|
|
10
|
+
uv run python massgen/configs/memory/test_force_compression.py
|
|
11
|
+
"""
|
|
12
|
+
|
|
13
|
+
import asyncio
|
|
14
|
+
import sys
|
|
15
|
+
from pathlib import Path
|
|
16
|
+
|
|
17
|
+
sys.path.insert(0, str(Path(__file__).parent.parent.parent.parent))
|
|
18
|
+
|
|
19
|
+
from massgen.memory import ContextCompressor, ConversationMemory # noqa: E402
|
|
20
|
+
from massgen.memory._context_monitor import ContextWindowMonitor # noqa: E402
|
|
21
|
+
from massgen.token_manager.token_manager import TokenCostCalculator # noqa: E402
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
async def main():
|
|
25
|
+
"""Test compression by manually creating a large conversation."""
|
|
26
|
+
print("=" * 80)
|
|
27
|
+
print("Force Compression Test")
|
|
28
|
+
print("=" * 80 + "\n")
|
|
29
|
+
|
|
30
|
+
# Create components
|
|
31
|
+
calculator = TokenCostCalculator()
|
|
32
|
+
conversation_memory = ConversationMemory()
|
|
33
|
+
|
|
34
|
+
# Create monitor with low threshold
|
|
35
|
+
monitor = ContextWindowMonitor(
|
|
36
|
+
model_name="gpt-4o-mini",
|
|
37
|
+
provider="openai",
|
|
38
|
+
trigger_threshold=0.10, # 10% = 12,800 tokens
|
|
39
|
+
target_ratio=0.05, # 5% = 6,400 tokens
|
|
40
|
+
enabled=True,
|
|
41
|
+
)
|
|
42
|
+
|
|
43
|
+
# Create compressor (no persistent memory for this test)
|
|
44
|
+
compressor = ContextCompressor(
|
|
45
|
+
token_calculator=calculator,
|
|
46
|
+
conversation_memory=conversation_memory,
|
|
47
|
+
persistent_memory=None, # Test without it first
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
print("Configuration:")
|
|
51
|
+
print(f" Context window: {monitor.context_window:,} tokens")
|
|
52
|
+
print(f" Trigger at: {int(monitor.context_window * monitor.trigger_threshold):,} tokens ({monitor.trigger_threshold*100:.0f}%)")
|
|
53
|
+
print(f" Target after: {int(monitor.context_window * monitor.target_ratio):,} tokens ({monitor.target_ratio*100:.0f}%)\n")
|
|
54
|
+
|
|
55
|
+
# Manually create a large conversation
|
|
56
|
+
print("Creating large conversation...")
|
|
57
|
+
|
|
58
|
+
messages = [
|
|
59
|
+
{"role": "system", "content": "You are a helpful assistant."},
|
|
60
|
+
]
|
|
61
|
+
|
|
62
|
+
# Add many long messages to exceed threshold
|
|
63
|
+
long_content = "This is a detailed explanation about Python programming. " * 200 # ~2000 tokens per message
|
|
64
|
+
|
|
65
|
+
for i in range(10):
|
|
66
|
+
messages.append({"role": "user", "content": f"Question {i}: {long_content}"})
|
|
67
|
+
messages.append({"role": "assistant", "content": f"Answer {i}: {long_content}"})
|
|
68
|
+
|
|
69
|
+
# Add to conversation memory
|
|
70
|
+
await conversation_memory.add(messages)
|
|
71
|
+
|
|
72
|
+
message_count = len(messages)
|
|
73
|
+
total_tokens = calculator.estimate_tokens(messages)
|
|
74
|
+
|
|
75
|
+
print("✅ Created conversation:")
|
|
76
|
+
print(f" Messages: {message_count}")
|
|
77
|
+
print(f" Estimated tokens: {total_tokens:,}\n")
|
|
78
|
+
|
|
79
|
+
# Check if we should compress
|
|
80
|
+
usage_info = monitor.log_context_usage(messages, turn_number=1)
|
|
81
|
+
|
|
82
|
+
print("\n📊 Context Analysis:")
|
|
83
|
+
print(f" Current: {usage_info['current_tokens']:,} / {usage_info['max_tokens']:,} tokens")
|
|
84
|
+
print(f" Usage: {usage_info['usage_percent']*100:.1f}%")
|
|
85
|
+
print(f" Should compress: {usage_info['should_compress']}\n")
|
|
86
|
+
|
|
87
|
+
if not usage_info["should_compress"]:
|
|
88
|
+
print("⚠️ Not over threshold yet, adding more messages...\n")
|
|
89
|
+
# Add more messages
|
|
90
|
+
for i in range(10, 20):
|
|
91
|
+
messages.append({"role": "user", "content": f"Question {i}: {long_content}"})
|
|
92
|
+
messages.append({"role": "assistant", "content": f"Answer {i}: {long_content}"})
|
|
93
|
+
|
|
94
|
+
await conversation_memory.add(messages[21:]) # Add new messages
|
|
95
|
+
total_tokens = calculator.estimate_tokens(messages)
|
|
96
|
+
usage_info = monitor.log_context_usage(messages, turn_number=2)
|
|
97
|
+
|
|
98
|
+
print("\n📊 After adding more:")
|
|
99
|
+
print(f" Messages: {len(messages)}")
|
|
100
|
+
print(f" Current: {usage_info['current_tokens']:,} tokens")
|
|
101
|
+
print(f" Usage: {usage_info['usage_percent']*100:.1f}%")
|
|
102
|
+
print(f" Should compress: {usage_info['should_compress']}\n")
|
|
103
|
+
|
|
104
|
+
# Trigger compression
|
|
105
|
+
print("=" * 80)
|
|
106
|
+
print("Triggering Compression...")
|
|
107
|
+
print("=" * 80 + "\n")
|
|
108
|
+
|
|
109
|
+
compression_stats = await compressor.compress_if_needed(
|
|
110
|
+
messages=messages,
|
|
111
|
+
current_tokens=usage_info["current_tokens"],
|
|
112
|
+
target_tokens=usage_info["target_tokens"],
|
|
113
|
+
should_compress=True, # Force it
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
# Show results
|
|
117
|
+
print("\n" + "=" * 80)
|
|
118
|
+
print("Compression Results")
|
|
119
|
+
print("=" * 80 + "\n")
|
|
120
|
+
|
|
121
|
+
if compression_stats:
|
|
122
|
+
print("✅ COMPRESSION OCCURRED!")
|
|
123
|
+
print("\n📦 Stats:")
|
|
124
|
+
print(f" Messages removed: {compression_stats.messages_removed}")
|
|
125
|
+
print(f" Tokens removed: {compression_stats.tokens_removed:,}")
|
|
126
|
+
print(f" Messages kept: {compression_stats.messages_kept}")
|
|
127
|
+
print(f" Tokens kept: {compression_stats.tokens_kept:,}")
|
|
128
|
+
|
|
129
|
+
# Verify conversation memory was updated
|
|
130
|
+
final_messages = await conversation_memory.get_messages()
|
|
131
|
+
print("\n💾 Conversation Memory After Compression:")
|
|
132
|
+
print(f" Messages remaining: {len(final_messages)}")
|
|
133
|
+
print(f" Expected: {compression_stats.messages_kept}")
|
|
134
|
+
|
|
135
|
+
if len(final_messages) == compression_stats.messages_kept:
|
|
136
|
+
print("\n✅ SUCCESS: Conversation memory correctly updated!")
|
|
137
|
+
else:
|
|
138
|
+
print("\n❌ ERROR: Message count mismatch!")
|
|
139
|
+
|
|
140
|
+
# Show compressor overall stats
|
|
141
|
+
comp_stats = compressor.get_stats()
|
|
142
|
+
print("\n📊 Compressor Total Stats:")
|
|
143
|
+
print(f" Total compressions: {comp_stats['total_compressions']}")
|
|
144
|
+
print(f" Total messages removed: {comp_stats['total_messages_removed']}")
|
|
145
|
+
print(f" Total tokens removed: {comp_stats['total_tokens_removed']:,}")
|
|
146
|
+
|
|
147
|
+
else:
|
|
148
|
+
print("❌ No compression occurred")
|
|
149
|
+
|
|
150
|
+
print("\n" + "=" * 80 + "\n")
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
if __name__ == "__main__":
|
|
154
|
+
asyncio.run(main())
|