marsilea 0.4.2__py3-none-any.whl → 0.4.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,168 @@
1
+ Metadata-Version: 2.3
2
+ Name: marsilea
3
+ Version: 0.4.4
4
+ Dynamic: Summary
5
+ Project-URL: Home, https://github.com/Marsilea-viz/marsilea
6
+ Author: Zhihang Zheng
7
+ Author-email: Mr-Milk <yzheng@cemm.at>
8
+ License: The MIT License (MIT)
9
+
10
+ Copyright (c) 2024 Mr-Milk
11
+
12
+ Permission is hereby granted, free of charge, to any person obtaining a copy
13
+ of this software and associated documentation files (the "Software"), to deal
14
+ in the Software without restriction, including without limitation the rights
15
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
16
+ copies of the Software, and to permit persons to whom the Software is
17
+ furnished to do so, subject to the following conditions:
18
+
19
+ The above copyright notice and this permission notice shall be included in
20
+ all copies or substantial portions of the Software.
21
+
22
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
25
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
27
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28
+ THE SOFTWARE.
29
+ License-File: LICENSE
30
+ Classifier: Framework :: Matplotlib
31
+ Classifier: License :: OSI Approved :: MIT License
32
+ Classifier: Programming Language :: Python :: 3
33
+ Requires-Python: >=3.8
34
+ Requires-Dist: legendkit
35
+ Requires-Dist: matplotlib>=3.6
36
+ Requires-Dist: numpy
37
+ Requires-Dist: pandas
38
+ Requires-Dist: platformdirs
39
+ Requires-Dist: scipy
40
+ Requires-Dist: seaborn
41
+ Provides-Extra: dev
42
+ Requires-Dist: icecream; extra == 'dev'
43
+ Requires-Dist: mpl-fontkit; extra == 'dev'
44
+ Requires-Dist: numpydoc; extra == 'dev'
45
+ Requires-Dist: pydata-sphinx-theme; extra == 'dev'
46
+ Requires-Dist: pytest; extra == 'dev'
47
+ Requires-Dist: python-hmr; extra == 'dev'
48
+ Requires-Dist: ruff; extra == 'dev'
49
+ Requires-Dist: scikit-learn; extra == 'dev'
50
+ Requires-Dist: sphinx; extra == 'dev'
51
+ Requires-Dist: sphinx-copybutton; extra == 'dev'
52
+ Requires-Dist: sphinx-design; extra == 'dev'
53
+ Requires-Dist: sphinx-gallery; extra == 'dev'
54
+ Description-Content-Type: text/markdown
55
+
56
+ <p align="center">
57
+ <picture align="center">
58
+ <source media="(prefers-color-scheme: dark)" srcset="https://github.com/Marsilea-viz/marsilea/raw/main/img/banner-dark.jpg">
59
+ <source media="(prefers-color-scheme: light)" srcset="https://github.com/Marsilea-viz/marsilea/raw/main/img/banner-blue.jpg">
60
+ <img alt="Shows a bar chart with benchmark results." src="https://github.com/Marsilea-viz/marsilea/raw/main/img/banner-dark.jpg" width="400">
61
+ </picture>
62
+ </p>
63
+
64
+ [![Documentation Status](https://img.shields.io/readthedocs/marsilea?color=57B77E&logo=readthedocs&logoColor=white&style=flat-square)](https://marsilea.readthedocs.io/en/stable)
65
+ ![pypi version](https://img.shields.io/pypi/v/marsilea?color=0098FF&logo=python&logoColor=white&style=flat-square)
66
+ ![PyPI - License](https://img.shields.io/pypi/l/marsilea?color=FFD43B&style=flat-square)
67
+
68
+ # Marsilea: Declarative creation of composable visualization!
69
+
70
+ ---
71
+
72
+ ## Documentation
73
+
74
+ You can read the documentation on Read the Docs.
75
+
76
+ [Read Documentation](https://marsilea.readthedocs.io/)
77
+
78
+ ## Installation
79
+
80
+ ```shell
81
+ pip install marsilea
82
+ ```
83
+
84
+ ## What is Composable Visualization?
85
+
86
+ <p align="center">
87
+ <picture align="center">
88
+ <img alt="Shows a bar chart with benchmark results." src="https://github.com/Marsilea-viz/marsilea/raw/main/img/showcase.gif" width="300">
89
+ </picture>
90
+ </p>
91
+
92
+ When we do visualization, we often need to combine multiple plots to show different aspects of the data.
93
+ For example, we may need to create a heatmap to show the expression of genes in different cells,
94
+ and then create a bar chart to show the expression of genes in different cell types.
95
+ A visualization contains multiple plots is called a composable visualization.
96
+ In Marsilea, we employ a declarative approach for user to create composable visualization incrementally.
97
+
98
+ ## Examples
99
+
100
+ <table>
101
+ <thead>
102
+ <tr>
103
+ <th>
104
+ <a href="https://marsilea.readthedocs.io/en/latest/examples/Gallery/plot_tiobe_index.html">
105
+ Bar Chart With Image
106
+ </a>
107
+ </th>
108
+ <th>
109
+ <a href="https://marsilea.readthedocs.io/en/latest/examples/Gallery/plot_oil_well.html">
110
+ Stacked Bar
111
+ </a>
112
+ </th>
113
+ <th>
114
+ <a href="https://marsilea.readthedocs.io/en/latest/examples/Gallery/plot_arc_diagram.html">
115
+ Arc Diagram
116
+ </a>
117
+ </th>
118
+ </tr>
119
+ </thead>
120
+ <tbody>
121
+ <tr>
122
+ <td>
123
+ <img src="https://marsilea.readthedocs.io/en/latest/_images/sphx_glr_plot_tiobe_index_001_2_00x.png" height="300px">
124
+ </td>
125
+ <td>
126
+ <img src="https://marsilea.readthedocs.io/en/latest/_images/sphx_glr_plot_oil_well_001_2_00x.png" height="300px">
127
+ </td>
128
+ <td>
129
+ <img src="https://marsilea.readthedocs.io/en/latest/_images/sphx_glr_plot_arc_diagram_001_2_00x.png" width="300px">
130
+ </td>
131
+ </tr>
132
+ </tbody>
133
+ </table>
134
+
135
+ <table>
136
+ <thead>
137
+ <tr>
138
+ <th>
139
+ <a href="https://marsilea.readthedocs.io/en/latest/examples/Gallery/plot_pbmc3k.html">
140
+ Heatmap
141
+ </a>
142
+ </th>
143
+ <th>
144
+ <a href="https://marsilea.readthedocs.io/en/latest/examples/Gallery/plot_oncoprint.html">
145
+ Oncoprint
146
+ </a>
147
+ </th>
148
+ <th>
149
+ <a href="https://marsilea.readthedocs.io/en/latest/examples/Gallery/plot_upset.html">
150
+ Upsetplot
151
+ </a>
152
+ </th>
153
+ </tr>
154
+ </thead>
155
+ <tbody>
156
+ <tr>
157
+ <td>
158
+ <img src="https://marsilea.readthedocs.io/en/latest/_images/sphx_glr_plot_pbmc3k_001_2_00x.png" width="300px">
159
+ </td>
160
+ <td>
161
+ <img src="https://marsilea.readthedocs.io/en/latest/_images/sphx_glr_plot_oncoprint_005_2_00x.png" width="300px">
162
+ </td>
163
+ <td>
164
+ <img src="https://marsilea.readthedocs.io/en/latest/_images/sphx_glr_plot_upset_001_2_00x.png" width="300px">
165
+ </td>
166
+ </tr>
167
+ </tbody>
168
+ </table>
@@ -0,0 +1,30 @@
1
+ marsilea/__init__.py,sha256=N_-2Ce1mWmyFqjfe6217db2yfJ5eZfGWxJjEP8krBX0,541
2
+ marsilea/_api.py,sha256=tymWZHfjhx8-0NNd9762znfdIu36NrARRweEIr5L1mA,283
3
+ marsilea/_deform.py,sha256=QRz4OGXMsQzbiIkC3ASzZayMPhHhoFsEK38oBzSeQG8,14440
4
+ marsilea/base.py,sha256=aj15043lJURGR83T3q8Y8UUpeVHHLsi8T9VLol6KB1I,47552
5
+ marsilea/dataset.py,sha256=a0mXjPu9_tRGHofnnQaTryFpxftkfqldq_ZLXMSBf7A,4410
6
+ marsilea/dendrogram.py,sha256=Ung43zseybZKzTEvH5P_ge3WGfsr7i7qsX7YEVDlC74,15590
7
+ marsilea/exceptions.py,sha256=wN5ElUZxuaJKSnnwWdkNx6P-Oc16dzSuaRPbRKWIBEM,1046
8
+ marsilea/heatmap.py,sha256=UhRcBFhx1JKrtndZPvQCDaiMt8Pb314PT1BtL-JndCY,4208
9
+ marsilea/layers.py,sha256=puXLlGGpEqAzaTqadpgpsYmIDPH33WyyHIuysRSqFZQ,12163
10
+ marsilea/layout.py,sha256=X8MGPlAbbr7dcZiqW4pI7sEb8U3jVaiS7t1DKOqMYLI,27758
11
+ marsilea/upset.py,sha256=U1Rsmo1WpCAV9z3LBlE2L4T0nAW9ols8Z36fXzmXycw,30388
12
+ marsilea/utils.py,sha256=y_KYs4ToiuKEsiBdmcIVtmxMXFpD4wKiJ0k7iBa11z8,2854
13
+ marsilea/plotter/__init__.py,sha256=vtusGk_3B5QKw0k3EMV219FT1U8ZeJse6nMOB_wmQHA,768
14
+ marsilea/plotter/_seaborn.py,sha256=svo1YNenW_EBOKpR-w5suYhCJoL99VrEGzL7Q8-7sX0,8330
15
+ marsilea/plotter/_utils.py,sha256=Efhdk-TrrAanhbXRiEVWThMYvZ4vVHZMVYMs5X3JvIM,710
16
+ marsilea/plotter/arc.py,sha256=44BKVGvDc_OpghfgEvaiVCovZe7_OwZiM20iepaRMFw,8139
17
+ marsilea/plotter/area.py,sha256=zjjAhvgKHYe9rqzcseqZqhwfpgvzm0w2FRJ_vr9Fxm4,2650
18
+ marsilea/plotter/bar.py,sha256=tXM5iR4cTkTrt55ff-aWoh7lxupKtA5vJ9Yn9hr7RkA,12067
19
+ marsilea/plotter/base.py,sha256=TbnZDjm161RF5OlK4TCfhCFR9lM96MJUrvAk_xTk_kQ,20657
20
+ marsilea/plotter/bio.py,sha256=34tucmxs4LM3TFZoGsrjnXTolyrzYaHVEiRe4dzDH68,5040
21
+ marsilea/plotter/images.py,sha256=gb0xIQhUch3rNAt3FfvuUoamSGEynoBBBky2eE754ec,9560
22
+ marsilea/plotter/mesh.py,sha256=eUMXX9PNHJXf9O4wpcRgO6uEFKlpft1LwshHgMuojp8,24176
23
+ marsilea/plotter/text.py,sha256=6S4mnAxLJLMkduKiyor03lPd86oTOJ5TojVREA9oU6s,37466
24
+ oncoprinter/__init__.py,sha256=efshcAD1h9s-NVJj4HLU9-hXc_LtTeIrNYqLHl-sm_g,106
25
+ oncoprinter/core.py,sha256=5KPnKW5ivlxPp14uJd0OtfTv-pXV2UEym8EbII2VCcw,11846
26
+ oncoprinter/preset.py,sha256=mBk2tFCqoTj_1ZZKRYuv4j2I3NTBa6Swc9wjzbmxRVw,8238
27
+ marsilea-0.4.4.dist-info/METADATA,sha256=jA6MqUk97yh7Gapgbgij-DGr_W7260WAY8l_IZJrE6c,6576
28
+ marsilea-0.4.4.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
29
+ marsilea-0.4.4.dist-info/licenses/LICENSE,sha256=2TLD8FnLJqXzg8YBRs7W3VZBwfWfp4ArDfBl-rn96Qc,1074
30
+ marsilea-0.4.4.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: flit 3.9.0
2
+ Generator: hatchling 1.25.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -0,0 +1,4 @@
1
+ """Draw oncoprint in Python"""
2
+
3
+ from .core import OncoPrint
4
+ from .preset import Rect, FracRect, FrameRect
oncoprinter/core.py ADDED
@@ -0,0 +1,360 @@
1
+ import warnings
2
+ from collections import Counter
3
+ from copy import deepcopy
4
+ from dataclasses import dataclass
5
+ from itertools import count
6
+ from typing import Any
7
+
8
+ import numpy as np
9
+ import pandas as pd
10
+ from marsilea import ClusterBoard
11
+ from marsilea.layers import LayersMesh, FrameRect, Piece
12
+ from marsilea.plotter import Labels, StackBar, Numbers, ColorMesh
13
+ from marsilea.utils import get_canvas_size_by_data
14
+
15
+ from .preset import SHAPE_BANK, MATCH_POOL, Alteration
16
+
17
+
18
+ def guess_alteration(event: str):
19
+ for alt, rule in MATCH_POOL.items():
20
+ if rule.is_match(event):
21
+ return alt
22
+ return Alteration.OTHER
23
+
24
+
25
+ @dataclass(repr=False)
26
+ class LayerData:
27
+ matrix: np.ndarray
28
+ piece: Piece
29
+ color: Any
30
+ event: Any
31
+
32
+ def __repr__(self):
33
+ return f"{self.piece.label} ({self.color})"
34
+
35
+
36
+ class GenomicData:
37
+ """Handle class for genomics data
38
+
39
+ Parameters
40
+ ----------
41
+ data : pd.DataFrame
42
+ Each column is:
43
+ 1) Sample ID
44
+ 2) Track name
45
+ 3) Alteration
46
+ samples_order : list, optional
47
+ The order of samples, by default None
48
+ tracks_order : list, optional
49
+ The order of tracks, by default None
50
+ custom_pieces : dict, optional
51
+ Custom pieces for each alteration, by default None
52
+
53
+ """
54
+
55
+ def __repr__(self):
56
+ ntrack, nsample = self.shape
57
+ return (
58
+ f"{ntrack} Tracks, {nsample} Samples with "
59
+ f"{len(self.events)} Alterations"
60
+ )
61
+
62
+ def __init__(
63
+ self,
64
+ data,
65
+ samples_order=None,
66
+ tracks_order=None,
67
+ custom_pieces=None,
68
+ ):
69
+ self.data = data.copy()
70
+ self.data.columns = ["sample", "track", "event"]
71
+
72
+ if samples_order is None:
73
+ samples_order = self.data["sample"].unique()
74
+
75
+ self.samples = samples_order
76
+ self._patients_ix = dict(zip(samples_order, count(0, 1)))
77
+
78
+ if tracks_order is None:
79
+ tracks_order = self.data["track"].unique()
80
+ self.tracks = tracks_order
81
+ self._tracks_ix = dict(zip(tracks_order, count(0, 1)))
82
+
83
+ self._shape = (len(self.tracks), len(self.samples))
84
+
85
+ if custom_pieces is None:
86
+ custom_pieces = {}
87
+ self.custom_pieces = custom_pieces
88
+
89
+ self._process_alterations()
90
+
91
+ layers = {}
92
+ for e in self.events:
93
+ layers[e] = np.zeros(self._shape, dtype=bool)
94
+
95
+ for _, row in self.data.iterrows():
96
+ patient, track, event = row
97
+ row_ix = self._tracks_ix[track]
98
+ col_ix = self._patients_ix[patient]
99
+ layers[event][row_ix, col_ix] = True
100
+
101
+ self.layers = layers
102
+
103
+ def _process_alterations(self):
104
+ events_alt = dict()
105
+ custom_events = list(self.custom_pieces.keys())
106
+ raw_events = self.data["event"].unique()
107
+
108
+ unknown_alterations = []
109
+ for e in raw_events:
110
+ alt = guess_alteration(e)
111
+ if alt == Alteration.OTHER:
112
+ alt = e
113
+ if e not in custom_events:
114
+ unknown_alterations.append(e)
115
+ events_alt[e] = alt
116
+ self.data["event"] = [events_alt[e] for e in self.data["event"]]
117
+ self.events = self.data["event"].unique()
118
+ if len(unknown_alterations) > 0:
119
+ msg = (
120
+ f"Found unknown alterations: {unknown_alterations}, "
121
+ f"please specify a piece for this alteration."
122
+ )
123
+ warnings.warn(msg)
124
+
125
+ @property
126
+ def shape(self):
127
+ return self._shape
128
+
129
+ def get_layers_data(self, background_color="#BEBEBE"):
130
+ # explicitly make copy
131
+ bg_pieces = deepcopy(SHAPE_BANK[Alteration.BACKGROUND])
132
+ bg_pieces.background_color = background_color
133
+
134
+ # Add background layer
135
+ layers_data = [
136
+ LayerData(
137
+ np.ones(self._shape), bg_pieces, background_color, Alteration.BACKGROUND
138
+ )
139
+ ]
140
+ for alt in self.events:
141
+ layer = self.layers[alt]
142
+ if not isinstance(alt, Alteration):
143
+ piece = self.custom_pieces.get(alt)
144
+ if piece is None:
145
+ # The default style for OTHER
146
+ piece = FrameRect(color="pink", label=alt)
147
+ else:
148
+ piece = deepcopy(piece)
149
+ else:
150
+ piece = deepcopy(SHAPE_BANK[alt])
151
+ color = piece.color
152
+ piece.background_color = background_color
153
+
154
+ layers_data.append(LayerData(layer, piece, color, alt))
155
+
156
+ return layers_data
157
+
158
+ def get_track_mutation_rate(self):
159
+ gb = self.data.groupby("track", sort=False, observed=True)
160
+ ts = {}
161
+ for track, df in gb:
162
+ ts[track] = len(df["sample"].unique())
163
+ counts = np.array([ts[t] for t in self.tracks])
164
+ return counts / len(self.samples)
165
+
166
+ def get_track_mutation_types(self):
167
+ gb = self.data.groupby("track", sort=False, observed=True)
168
+ cs = {}
169
+ for track, df in gb:
170
+ cs[track] = Counter(df["event"])
171
+ return pd.DataFrame(cs).fillna(0.0)
172
+
173
+ def get_sample_mutation_types(self):
174
+ gb = self.data.groupby("sample", sort=False, observed=True)
175
+ cs = {}
176
+ for track, df in gb:
177
+ cs[track] = Counter(df["event"])
178
+ return pd.DataFrame(cs).fillna(0.0)
179
+
180
+
181
+ class OncoPrint(ClusterBoard):
182
+ """OncoPrint plot
183
+
184
+ The oncoprint plot is a visualization for genomics data in cancer research.
185
+ It's first introduced by the cBioPortal project.
186
+ See https://www.cbioportal.org/oncoprinter for more details.
187
+
188
+ To use this class, import from oncoprinter
189
+
190
+ >>> from oncoprinter import OncoPrint
191
+
192
+ Parameters
193
+ ----------
194
+ genomic_data : pd.DataFrame
195
+ Genomics data, each column is:
196
+ 1) Sample ID
197
+ 2) Track name
198
+ 3) Alteration
199
+
200
+ patients_order : list, optional
201
+ The order of samples, by default None
202
+ tracks_order : list, optional
203
+ The order of tracks, by default None
204
+ pieces : dict, optional
205
+ Custom pieces for each alteration, by default None
206
+ See :class:`Piece <marsilea.layers.Piece>` for details
207
+ background_color : str, optional, default: "#BEBEBE"
208
+ The background color
209
+ shrink : tuple, optional, default: (0.8, 0.8)
210
+ The shrink ratio for each layer
211
+ width, height : float, optional
212
+ The size in inches to define the size of main canvas
213
+ aspect : float, optional, default: 2.5
214
+ The aspect ratio of the main canvas
215
+ legend_kws : dict, optional
216
+ The options for legend, by default None
217
+ See :class:`cat_legend <legendkit.cat_legend>` for details
218
+ name : str, optional
219
+ The name of this OncoPrint
220
+ add_tracks_names : str, optional, default: "left"
221
+ The position to add tracks names
222
+ If None, will not add tracks names
223
+ add_samples_names : str, optional, default: "bottom"
224
+ The position to add samples names
225
+ If None, will not add samples names
226
+ add_mut_perc : str, optional, default: "right"
227
+ The position to add mutation percentage
228
+ If None, will not add mutation percentage
229
+ add_tracks_counts : str, optional, default: "right"
230
+ The position to add tracks mutation counts
231
+ If None, will not add tracks mutation counts
232
+ add_mut_counts : str, optional, default: "top"
233
+ The position to add mutation counts
234
+ If None, will not add mutation counts
235
+ add_tracks_counts_size : float, optional, default: 0.2
236
+ The size of tracks mutation counts
237
+ add_tracks_counts_pad : float, optional, default: 0
238
+ The padding of tracks mutation counts
239
+ add_mut_counts_size : float, optional, default: 0.2
240
+ The size of mutation counts
241
+ add_mut_counts_pad : float, optional, default: 0.1
242
+ The padding of mutation counts
243
+
244
+ """
245
+
246
+ def __init__(
247
+ self,
248
+ genomic_data=None,
249
+ patients_order=None,
250
+ tracks_order=None,
251
+ pieces=None,
252
+ background_color="#BEBEBE",
253
+ shrink=(0.8, 0.8),
254
+ width=None,
255
+ height=None,
256
+ aspect=2.5,
257
+ legend_kws=None,
258
+ name=None,
259
+ add_tracks_names="left",
260
+ add_samples_names="bottom",
261
+ add_mut_perc="right",
262
+ add_tracks_counts="right",
263
+ add_mut_counts="top",
264
+ add_tracks_counts_size=0.2,
265
+ add_tracks_counts_pad=0,
266
+ add_mut_counts_size=0.2,
267
+ add_mut_counts_pad=0.1,
268
+ ):
269
+ data = GenomicData(
270
+ genomic_data,
271
+ samples_order=patients_order,
272
+ tracks_order=tracks_order,
273
+ custom_pieces=pieces,
274
+ )
275
+ self.genomic_data = data
276
+ width, height = get_canvas_size_by_data(
277
+ data.shape, width=width, height=height, scale=0.2, aspect=aspect
278
+ )
279
+
280
+ self.canvas = super().__init__(
281
+ name=name, cluster_data=np.zeros(data.shape), width=width, height=height
282
+ )
283
+
284
+ legend_options = dict(title="Alterations", handleheight=aspect, handlelength=1)
285
+ legend_kws = {} if legend_kws is None else legend_kws
286
+ legend_options.update(legend_kws)
287
+
288
+ layers, pieces, colors_mapper = [], [], {}
289
+ for layer in data.get_layers_data(background_color):
290
+ layers.append(layer.matrix)
291
+ pieces.append(layer.piece)
292
+ colors_mapper[layer.event] = layer.color
293
+ mesh = LayersMesh(
294
+ layers=layers, pieces=pieces, shrink=shrink, legend_kws=legend_options
295
+ )
296
+ self.add_layer(mesh)
297
+
298
+ if add_tracks_names:
299
+ self.add_plot(add_tracks_names, Labels(data.tracks))
300
+
301
+ # Add other statistics
302
+ track_mut_rate = data.get_track_mutation_rate()
303
+ # Convert to percentage string
304
+ if add_mut_perc:
305
+ rates = [_format_percentage(t) for t in track_mut_rate]
306
+ self.add_plot(add_mut_perc, Labels(rates))
307
+ if add_samples_names:
308
+ self.add_plot(add_samples_names, Labels(data.samples))
309
+
310
+ if add_tracks_counts:
311
+ track_counter = data.get_track_mutation_types()
312
+ colors = [colors_mapper[e] for e in track_counter.index]
313
+ track_bar = StackBar(track_counter, colors=colors, show_value=False)
314
+ self.add_plot(
315
+ add_tracks_counts,
316
+ track_bar,
317
+ legend=False,
318
+ size=add_tracks_counts_size,
319
+ pad=add_tracks_counts_pad,
320
+ )
321
+
322
+ if add_mut_counts:
323
+ patients_counter = data.get_sample_mutation_types()
324
+ colors = [colors_mapper[e] for e in patients_counter.index]
325
+ patients_bar = StackBar(patients_counter, colors=colors, show_value=False)
326
+ self.add_plot(
327
+ add_mut_counts,
328
+ patients_bar,
329
+ legend=False,
330
+ size=add_mut_counts_size,
331
+ pad=add_mut_counts_pad,
332
+ )
333
+ self.add_legends()
334
+
335
+ clinical_plots = {
336
+ "bar": Numbers,
337
+ "stack_bar": StackBar,
338
+ }
339
+
340
+ def add_clinical_data(self, data, plot="bar", size=None, pad=0.1, **kwargs):
341
+ data = data.loc[self.samples_order]
342
+ plotter = self.clinical_plots[plot]
343
+ self.add_bottom(plotter(data, **kwargs), size=size, pad=pad)
344
+
345
+ def add_heatmap_data(self, data, size=0.2, pad=0.1, **kwargs):
346
+ data = data.loc[self.samples_order]
347
+ options = {"cmap": "Blues", "label_loc": "left", **kwargs}
348
+ self.add_bottom(ColorMesh(data, **options), size=size, pad=pad)
349
+
350
+ @property
351
+ def samples_order(self):
352
+ return self.genomic_data.samples
353
+
354
+ @property
355
+ def tracks_order(self):
356
+ return self.genomic_data.tracks
357
+
358
+
359
+ def _format_percentage(t):
360
+ return f"{float(t) * 100:.2f}".rstrip("0").rstrip(".") + "%"