maps4fs 1.6.91__py3-none-any.whl → 1.7.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of maps4fs might be problematic. Click here for more details.

@@ -7,7 +7,7 @@ import math
7
7
  import os
8
8
  import shutil
9
9
 
10
- import numpy as np
10
+ import requests
11
11
 
12
12
  from maps4fs.generator.dtm.dtm import DTMProvider, DTMProviderSettings
13
13
 
@@ -15,9 +15,6 @@ from maps4fs.generator.dtm.dtm import DTMProvider, DTMProviderSettings
15
15
  class SRTM30ProviderSettings(DTMProviderSettings):
16
16
  """Settings for SRTM 30m provider."""
17
17
 
18
- easy_mode: bool = True
19
- power_factor: int = 0
20
-
21
18
 
22
19
  class SRTM30Provider(DTMProvider):
23
20
  """Provider of Shuttle Radar Topography Mission (SRTM) 30m data."""
@@ -32,22 +29,6 @@ class SRTM30Provider(DTMProvider):
32
29
 
33
30
  _author = "[iwatkot](https://github.com/iwatkot)"
34
31
 
35
- _instructions = (
36
- "ℹ️ If you don't know how to work with DEM data, it is recommended to use the "
37
- "**Easy mode** option. It will automatically change the values in the image, so the "
38
- "terrain will be visible in the Giants Editor. If you're an experienced modder, it's "
39
- "recommended to disable this option and work with the DEM data in a usual way. \n"
40
- "ℹ️ If the terrain height difference in the real world is bigger than 255 meters, "
41
- "the [Height scale](https://github.com/iwatkot/maps4fs/blob/main/docs/dem.md#height-scale)"
42
- " parameter in the **map.i3d** file will be changed automatically. \n"
43
- "⚡ If the **Easy mode** option is disabled, you will probably get completely flat "
44
- "terrain, unless you adjust the DEM Multiplier Setting or the Height scale parameter in "
45
- "the Giants Editor. \n"
46
- "💡 You can use the **Power factor** setting to make the difference between heights "
47
- "bigger. Be extremely careful with this setting, and use only low values, otherwise your "
48
- "terrain may be completely broken. \n"
49
- )
50
-
51
32
  _settings = SRTM30ProviderSettings
52
33
 
53
34
  def __init__(self, *args, **kwargs):
@@ -58,169 +39,86 @@ class SRTM30Provider(DTMProvider):
58
39
  os.makedirs(self.gz_directory, exist_ok=True)
59
40
  self.data_info: dict[str, int | str | float] | None = None # type: ignore
60
41
 
61
- def get_tile_parameters(self, *args, **kwargs) -> dict[str, str]:
62
- """Returns latitude band and tile name for SRTM tile from coordinates.
42
+ def download_tiles(self):
43
+ """Download SRTM tiles."""
44
+ north, south, east, west = self.get_bbox()
63
45
 
64
- Arguments:
65
- lat (float): Latitude.
66
- lon (float): Longitude.
46
+ tiles = []
47
+ # Look at each corner of the bbox in case the bbox spans across multiple tiles
48
+ for pair in [(north, east), (south, west), (south, east), (north, west)]:
49
+ tile_parameters = self.get_tile_parameters(*pair)
50
+ tile_name = tile_parameters["tile_name"]
51
+ decompressed_tile_path = os.path.join(self.hgt_directory, f"{tile_name}.hgt")
67
52
 
68
- Returns:
69
- dict: Tile parameters.
70
- """
71
- lat, lon = args
53
+ if not os.path.isfile(decompressed_tile_path):
54
+ compressed_tile_path = os.path.join(self.gz_directory, f"{tile_name}.hgt.gz")
55
+ if not self.get_or_download_tile(compressed_tile_path, **tile_parameters):
56
+ raise FileNotFoundError(f"Tile {tile_name} not found.")
72
57
 
73
- tile_latitude = math.floor(lat)
74
- tile_longitude = math.floor(lon)
58
+ with gzip.open(compressed_tile_path, "rb") as f_in:
59
+ with open(decompressed_tile_path, "wb") as f_out:
60
+ shutil.copyfileobj(f_in, f_out)
61
+ tiles.append(decompressed_tile_path)
75
62
 
76
- latitude_band = f"N{abs(tile_latitude):02d}" if lat >= 0 else f"S{abs(tile_latitude):02d}"
77
- if lon < 0:
78
- tile_name = f"{latitude_band}W{abs(tile_longitude):03d}"
79
- else:
80
- tile_name = f"{latitude_band}E{abs(tile_longitude):03d}"
63
+ return tiles
81
64
 
82
- self.logger.debug(
83
- "Detected tile name: %s for coordinates: lat %s, lon %s.", tile_name, lat, lon
84
- )
85
- return {"latitude_band": latitude_band, "tile_name": tile_name}
65
+ # region provider specific helpers
66
+ def download_tile(self, output_path: str, **kwargs) -> bool:
67
+ """Download a tile from the provider.
86
68
 
87
- def get_numpy(self) -> np.ndarray:
88
- """Get numpy array of the tile.
69
+ Arguments:
70
+ output_path (str): Path to save the downloaded tile.
89
71
 
90
72
  Returns:
91
- np.ndarray: Numpy array of the tile.
92
- """
93
- tile_parameters = self.get_tile_parameters(*self.coordinates)
94
- tile_name = tile_parameters["tile_name"]
95
- decompressed_tile_path = os.path.join(self.hgt_directory, f"{tile_name}.hgt")
96
-
97
- if not os.path.isfile(decompressed_tile_path):
98
- compressed_tile_path = os.path.join(self.gz_directory, f"{tile_name}.hgt.gz")
99
- if not self.get_or_download_tile(compressed_tile_path, **tile_parameters):
100
- raise FileNotFoundError(f"Tile {tile_name} not found.")
101
-
102
- with gzip.open(compressed_tile_path, "rb") as f_in:
103
- with open(decompressed_tile_path, "wb") as f_out:
104
- shutil.copyfileobj(f_in, f_out)
105
-
106
- data = self.extract_roi(decompressed_tile_path)
107
-
108
- self.data_info = {}
109
- self.add_numpy_params(data, "original")
110
-
111
- data = self.signed_to_unsigned(data)
112
- self.add_numpy_params(data, "grounded")
113
-
114
- original_deviation = int(self.data_info["original_deviation"])
115
- in_game_maximum_height = 65535 // 255
116
- if original_deviation > in_game_maximum_height:
117
- suggested_height_scale_multiplier = (
118
- original_deviation / in_game_maximum_height # type: ignore
119
- )
120
- suggested_height_scale_value = int(255 * suggested_height_scale_multiplier)
121
- else:
122
- suggested_height_scale_multiplier = 1
123
- suggested_height_scale_value = 255
124
-
125
- self.data_info["suggested_height_scale_multiplier"] = suggested_height_scale_multiplier
126
- self.data_info["suggested_height_scale_value"] = suggested_height_scale_value
127
-
128
- self.map.shared_settings.height_scale_multiplier = ( # type: ignore
129
- suggested_height_scale_multiplier
130
- )
131
- self.map.shared_settings.height_scale_value = suggested_height_scale_value # type: ignore
132
-
133
- if self.user_settings.easy_mode: # type: ignore
134
- try:
135
- data = self.normalize_dem(data)
136
- self.add_numpy_params(data, "normalized")
137
-
138
- normalized_deviation = self.data_info["normalized_deviation"]
139
- z_scaling_factor = normalized_deviation / original_deviation # type: ignore
140
- self.data_info["z_scaling_factor"] = z_scaling_factor
141
-
142
- self.map.shared_settings.mesh_z_scaling_factor = z_scaling_factor # type: ignore
143
- self.map.shared_settings.change_height_scale = True # type: ignore
144
-
145
- except Exception as e: # pylint: disable=W0718
146
- self.logger.error(
147
- "Failed to normalize DEM data. Error: %s. Using original data.", e
148
- )
149
-
150
- return data
151
-
152
- def add_numpy_params(
153
- self,
154
- data: np.ndarray,
155
- prefix: str,
156
- ) -> None:
157
- """Add numpy array parameters to the data_info dictionary.
158
-
159
- Arguments:
160
- data (np.ndarray): Numpy array of the tile.
161
- prefix (str): Prefix for the parameters.
73
+ bool: True if the tile was downloaded successfully, False otherwise.
162
74
  """
163
- self.data_info[f"{prefix}_minimum_height"] = int(data.min()) # type: ignore
164
- self.data_info[f"{prefix}_maximum_height"] = int(data.max()) # type: ignore
165
- self.data_info[f"{prefix}_deviation"] = int(data.max() - data.min()) # type: ignore
166
- self.data_info[f"{prefix}_unique_values"] = int(np.unique(data).size) # type: ignore
167
-
168
- def signed_to_unsigned(self, data: np.ndarray, add_one: bool = True) -> np.ndarray:
169
- """Convert signed 16-bit integer to unsigned 16-bit integer.
75
+ url = self.formatted_url(**kwargs)
76
+ response = requests.get(url, stream=True, timeout=10)
77
+ if response.status_code == 200:
78
+ with open(output_path, "wb") as file:
79
+ for chunk in response.iter_content(chunk_size=1024):
80
+ file.write(chunk)
81
+ return True
82
+ return False
83
+
84
+ def get_or_download_tile(self, output_path: str, **kwargs) -> str | None:
85
+ """Get or download a tile from the provider.
170
86
 
171
87
  Arguments:
172
- data (np.ndarray): DEM data from SRTM file after cropping.
88
+ output_path (str): Path to save the downloaded tile.
173
89
 
174
90
  Returns:
175
- np.ndarray: Unsigned DEM data.
91
+ str: Path to the downloaded tile or None if the tile not exists and was
92
+ not downloaded.
176
93
  """
177
- data = data - data.min()
178
- if add_one:
179
- data = data + 1
180
- return data.astype(np.uint16)
94
+ if not os.path.exists(output_path):
95
+ if not self.download_tile(output_path, **kwargs):
96
+ return None
97
+ return output_path
181
98
 
182
- def normalize_dem(self, data: np.ndarray) -> np.ndarray:
183
- """Normalize DEM data to 16-bit unsigned integer using max height from settings.
99
+ def get_tile_parameters(self, *args) -> dict[str, str]:
100
+ """Returns latitude band and tile name for SRTM tile from coordinates.
184
101
 
185
102
  Arguments:
186
- data (np.ndarray): DEM data from SRTM file after cropping.
103
+ lat (float): Latitude.
104
+ lon (float): Longitude.
187
105
 
188
106
  Returns:
189
- np.ndarray: Normalized DEM data.
107
+ dict: Tile parameters.
190
108
  """
191
- maximum_height = int(data.max())
192
- minimum_height = int(data.min())
193
- deviation = maximum_height - minimum_height
194
- self.logger.debug(
195
- "Maximum height: %s. Minimum height: %s. Deviation: %s.",
196
- maximum_height,
197
- minimum_height,
198
- deviation,
199
- )
200
- self.logger.debug("Number of unique values in original DEM data: %s.", np.unique(data).size)
109
+ lat, lon = args
201
110
 
202
- adjusted_maximum_height = maximum_height * 255
203
- adjusted_maximum_height = min(adjusted_maximum_height, 65535)
204
- scaling_factor = adjusted_maximum_height / maximum_height
205
- self.logger.debug(
206
- "Adjusted maximum height: %s. Scaling factor: %s.",
207
- adjusted_maximum_height,
208
- scaling_factor,
209
- )
111
+ tile_latitude = math.floor(lat)
112
+ tile_longitude = math.floor(lon)
210
113
 
211
- if self.user_settings.power_factor: # type: ignore
212
- power_factor = 1 + self.user_settings.power_factor / 10 # type: ignore
213
- self.logger.debug(
214
- "Applying power factor: %s to the DEM data.",
215
- power_factor,
216
- )
217
- data = np.power(data, power_factor).astype(np.uint16)
114
+ latitude_band = f"N{abs(tile_latitude):02d}" if lat >= 0 else f"S{abs(tile_latitude):02d}"
115
+ if lon < 0:
116
+ tile_name = f"{latitude_band}W{abs(tile_longitude):03d}"
117
+ else:
118
+ tile_name = f"{latitude_band}E{abs(tile_longitude):03d}"
218
119
 
219
- normalized_data = np.round(data * scaling_factor).astype(np.uint16)
220
120
  self.logger.debug(
221
- "Normalized data maximum height: %s. Minimum height: %s. Number of unique values: %s.",
222
- normalized_data.max(),
223
- normalized_data.min(),
224
- np.unique(normalized_data).size,
121
+ "Detected tile name: %s for coordinates: lat %s, lon %s.", tile_name, lat, lon
225
122
  )
226
- return normalized_data
123
+ return {"latitude_band": latitude_band, "tile_name": tile_name}
124
+ # endregion
@@ -5,12 +5,7 @@ from datetime import datetime
5
5
  from zipfile import ZipFile
6
6
 
7
7
  import numpy as np
8
- import rasterio
9
8
  import requests
10
- from rasterio.enums import Resampling
11
- from rasterio.merge import merge
12
- from rasterio.warp import calculate_default_transform, reproject
13
- from rasterio.windows import from_bounds
14
9
 
15
10
  from maps4fs.generator.dtm.dtm import DTMProvider, DTMProviderSettings
16
11
 
@@ -18,7 +13,6 @@ from maps4fs.generator.dtm.dtm import DTMProvider, DTMProviderSettings
18
13
  class USGSProviderSettings(DTMProviderSettings):
19
14
  """Settings for the USGS provider."""
20
15
 
21
- max_local_elevation: int = 255
22
16
  dataset: tuple | str = (
23
17
  'Digital Elevation Model (DEM) 1 meter',
24
18
  'Alaska IFSAR 5 meter DEM',
@@ -43,17 +37,18 @@ class USGSProvider(DTMProvider):
43
37
  _author = "[ZenJakey](https://github.com/ZenJakey)"
44
38
  _contributors = "[kbrandwijk](https://github.com/kbrandwijk)"
45
39
  _is_community = True
46
- _instructions = (
47
- "ℹ️ Set the max local elevation to approx the local max elevation for your area in"
48
- " meters. This will allow you to use heightScale 255 in GE with minimal tweaking."
49
- " Setting this value too low can cause a flat map!"
50
- )
40
+ _instructions = None
51
41
 
52
42
  _url = (
53
43
  "https://tnmaccess.nationalmap.gov/api/v1/products?prodFormats=GeoTIFF,IMG"
54
44
 
55
45
  )
56
46
 
47
+ def download_tiles(self):
48
+ download_urls = self.get_download_urls()
49
+ all_tif_files = self.download_tif_files(download_urls)
50
+ return all_tif_files
51
+
57
52
  def __init__(self, *args, **kwargs):
58
53
  super().__init__(*args, **kwargs)
59
54
  timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
@@ -138,214 +133,3 @@ class USGSProvider(DTMProvider):
138
133
  tif_files.append(file_path)
139
134
 
140
135
  return tif_files
141
-
142
- def merge_geotiff(self, input_files: list[str], output_file: str) -> None:
143
- """Merge multiple GeoTIFF files into a single GeoTIFF file.
144
-
145
- Arguments:
146
- input_files (list): List of input GeoTIFF files to merge.
147
- output_file (str): Path to save the merged GeoTIFF file.
148
- """
149
- # Open all input GeoTIFF files as datasets
150
- self.logger.debug("Merging tiff files...")
151
- datasets = [rasterio.open(file) for file in input_files]
152
-
153
- # Merge datasets
154
- mosaic, out_transform = merge(datasets, nodata=0)
155
-
156
- # Get metadata from the first file and update it for the output
157
- out_meta = datasets[0].meta.copy()
158
- out_meta.update(
159
- {
160
- "driver": "GTiff",
161
- "height": mosaic.shape[1],
162
- "width": mosaic.shape[2],
163
- "transform": out_transform,
164
- "count": mosaic.shape[0], # Number of bands
165
- }
166
- )
167
-
168
- # Write merged GeoTIFF to the output file
169
- with rasterio.open(output_file, "w", **out_meta) as dest:
170
- dest.write(mosaic)
171
-
172
- self.logger.debug("GeoTIFF images merged successfully into %s", output_file)
173
-
174
- def reproject_geotiff(self, input_tiff: str, output_tiff: str, target_crs: str) -> None:
175
- """Reproject a GeoTIFF file to a new coordinate reference system (CRS).
176
-
177
- Arguments:
178
- input_tiff (str): Path to the input GeoTIFF file.
179
- output_tiff (str): Path to save the reprojected GeoTIFF file.
180
- target_crs (str): Target CRS (e.g., EPSG:4326 for CRS:84).
181
- """
182
- # Open the source GeoTIFF
183
- self.logger.debug("Reprojecting GeoTIFF to %s CRS...", target_crs)
184
- with rasterio.open(input_tiff) as src:
185
- # Get the transform, width, and height of the target CRS
186
- transform, width, height = calculate_default_transform(
187
- src.crs, target_crs, src.width, src.height, *src.bounds
188
- )
189
-
190
- # Update the metadata for the target GeoTIFF
191
- kwargs = src.meta.copy()
192
- kwargs.update(
193
- {"crs": target_crs, "transform": transform, "width": width, "height": height}
194
- )
195
-
196
- # Open the destination GeoTIFF file and reproject
197
- with rasterio.open(output_tiff, "w", **kwargs) as dst:
198
- for i in range(1, src.count + 1): # Iterate over all raster bands
199
- reproject(
200
- source=rasterio.band(src, i),
201
- destination=rasterio.band(dst, i),
202
- src_transform=src.transform,
203
- src_crs=src.crs,
204
- dst_transform=transform,
205
- dst_crs=target_crs,
206
- resampling=Resampling.nearest, # Choose resampling method
207
- )
208
- self.logger.debug("Reprojected GeoTIFF saved to %s", output_tiff)
209
-
210
- def extract_roi(self, input_tiff: str) -> np.ndarray: # pylint: disable=W0237
211
- """
212
- Crop a GeoTIFF based on given geographic bounding box and save to a new file.
213
-
214
- Arguments:
215
- input_tiff (str): Path to the input GeoTIFF file.
216
-
217
- Returns:
218
- np.ndarray: Numpy array of the cropped GeoTIFF.
219
- """
220
- self.logger.debug("Extracting ROI...")
221
- # Open the input GeoTIFF
222
- with rasterio.open(input_tiff) as src:
223
-
224
- # Create a rasterio window from the bounding box
225
- (north, south, east, west) = self.get_bbox()
226
- window = from_bounds(west, south, east, north, transform=src.transform)
227
-
228
- data = src.read(1, window=window)
229
- self.logger.debug("Extracted ROI")
230
- return data
231
-
232
- # pylint: disable=R0914, R0917, R0913
233
- def convert_geotiff_to_geotiff(
234
- self,
235
- input_tiff: str,
236
- output_tiff: str,
237
- min_height: float,
238
- max_height: float,
239
- target_crs: str,
240
- ) -> None:
241
- """
242
- Convert a GeoTIFF to a scaled GeoTIFF with UInt16 values using a specific coordinate
243
- system and output size.
244
-
245
- Arguments:
246
- input_tiff (str): Path to the input GeoTIFF file.
247
- output_tiff (str): Path to save the output GeoTIFF file.
248
- min_height (float): Minimum terrain height (input range).
249
- max_height (float): Maximum terrain height (input range).
250
- target_crs (str): Target CRS (e.g., EPSG:4326 for CRS:84).
251
- """
252
- # Open the input GeoTIFF file
253
- self.logger.debug("Converting to uint16")
254
- with rasterio.open(input_tiff) as src:
255
- # Ensure the input CRS matches the target CRS (reprojection may be required)
256
- if str(src.crs) != str(target_crs):
257
- raise ValueError(
258
- f"The GeoTIFF CRS is {src.crs}, but the target CRS is {target_crs}. "
259
- "Reprojection may be required."
260
- )
261
-
262
- # Read the data from the first band
263
- data = src.read(1) # Assuming the input GeoTIFF has only a single band
264
-
265
- # Identify the input file's NoData value
266
- input_nodata = src.nodata
267
- if input_nodata is None:
268
- input_nodata = -999999.0 # Default fallback if no NoData value is defined
269
- nodata_value = 0
270
- # Replace NoData values (e.g., -999999.0) with the new NoData value
271
- # (e.g., 65535 for UInt16)
272
- data[data == input_nodata] = nodata_value
273
-
274
- # Scale the data to the 0–65535 range (UInt16), avoiding NoData areas
275
- scaled_data = np.clip(
276
- (data - min_height) * (65535 / (max_height - min_height)), 0, 65535
277
- ).astype(np.uint16)
278
- scaled_data[data == nodata_value] = (
279
- nodata_value # Preserve NoData value in the scaled array
280
- )
281
-
282
- # Compute the proper transform to ensure consistency
283
- # Get the original transform, width, and height
284
- transform = src.transform
285
- width = src.width
286
- height = src.height
287
- left, bottom, right, top = src.bounds
288
-
289
- # Adjust the transform matrix to make sure bounds and transform align correctly
290
- transform = rasterio.transform.from_bounds(left, bottom, right, top, width, height)
291
-
292
- # Prepare metadata for the output GeoTIFF
293
- metadata = src.meta.copy()
294
- metadata.update(
295
- {
296
- "dtype": rasterio.uint16, # Update dtype for uint16
297
- "crs": target_crs, # Update CRS if needed
298
- "nodata": nodata_value, # Set the new NoData value
299
- "transform": transform, # Use the updated, consistent transform
300
- }
301
- )
302
-
303
- # Write the scaled data to the output GeoTIFF
304
- with rasterio.open(output_tiff, "w", **metadata) as dst:
305
- dst.write(scaled_data, 1) # Write the first band
306
-
307
- self.logger.debug(
308
- "GeoTIFF successfully converted and saved to %s, with nodata value: %s.",
309
- output_tiff,
310
- nodata_value,
311
- )
312
-
313
- def generate_data(self) -> np.ndarray:
314
- """Generate data from the USGS 1m provider.
315
-
316
- Returns:
317
- np.ndarray: Numpy array of the data.
318
- """
319
- download_urls = self.get_download_urls()
320
- all_tif_files = self.download_tif_files(download_urls)
321
- self.merge_geotiff(all_tif_files, os.path.join(self.output_path, "merged.tif"))
322
- self.reproject_geotiff(
323
- os.path.join(self.output_path, "merged.tif"),
324
- os.path.join(self.output_path, "reprojected.tif"),
325
- "EPSG:4326",
326
- )
327
- self.convert_geotiff_to_geotiff(
328
- os.path.join(self.output_path, "reprojected.tif"),
329
- os.path.join(self.output_path, "translated.tif"),
330
- min_height=0,
331
- max_height=self.user_settings.max_local_elevation, # type: ignore
332
- target_crs="EPSG:4326",
333
- )
334
- return self.extract_roi(os.path.join(self.output_path, "translated.tif"))
335
-
336
- def get_numpy(self) -> np.ndarray:
337
- """Get numpy array of the tile.
338
-
339
- Returns:
340
- np.ndarray: Numpy array of the tile.
341
- """
342
- if not self.user_settings:
343
- raise ValueError("user_settings is 'none'")
344
- if self.user_settings.max_local_elevation <= 0: # type: ignore
345
- raise ValueError(
346
- "Entered 'max_local_elevation' value is unable to be used. "
347
- "Use a value greater than 0."
348
- )
349
- if not self._data:
350
- self._data = self.generate_data()
351
- return self._data
@@ -183,5 +183,5 @@ class SatelliteSettings(SettingsModel):
183
183
  """
184
184
 
185
185
  download_images: bool = False
186
- satellite_margin: int = 100
186
+ satellite_margin: int = 0
187
187
  zoom_level: int = 14