maplib 0.19.3__cp310-abi3-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,29 @@
1
+ from maplib.maplib import Model, Template, IRI, Triple, Variable
2
+
3
+
4
+ def add_triples(
5
+ source: Model, target: Model, source_graph: str = None, target_graph: str = None
6
+ ):
7
+ """(Zero) copy the triples from one Model into another.
8
+
9
+ :param source: The source model
10
+ :param target: The target model
11
+ :param source_graph: The named graph in the source model to copy from. None means default graph.
12
+ :param target_graph: The named graph in the target model to copy into. None means default graph.
13
+ """
14
+ for p in source.get_predicate_iris(source_graph):
15
+ subject = Variable("subject")
16
+ object = Variable("object")
17
+ template = Template(
18
+ iri=IRI("urn:maplib:tmp"),
19
+ parameters=[subject, object],
20
+ instances=[Triple(subject, p, object)],
21
+ )
22
+ sms = source.get_predicate(p, source_graph)
23
+ for sm in sms:
24
+ target.map(
25
+ template,
26
+ sm.mappings,
27
+ types=sm.rdf_types,
28
+ graph=target_graph,
29
+ )
maplib/maplib.pyd ADDED
Binary file
maplib/py.typed ADDED
File without changes
@@ -0,0 +1 @@
1
+ from .generate import generate_templates
@@ -0,0 +1,234 @@
1
+ from typing import Dict, Optional
2
+ from .ordering import topological_sort
3
+ import polars as pl
4
+
5
+ from maplib import Model, Variable, RDFType, Parameter, Triple, IRI, Template
6
+
7
+
8
+ def generate_templates(m: Model, graph: Optional[str]) -> Dict[str, Template]:
9
+ """Generate templates for instantiating the classes in an ontology
10
+
11
+ :param m: The model where the ontology is stored. We mainly rely on rdfs:subClassOf, rdfs:range and rdfs:domain.
12
+ :param graph: The named graph where the ontology is stored.
13
+
14
+ :return A dictionary of templates for instantiating the classes in the ontology, where the keys are the class URIs.
15
+
16
+ Usage example - note that it is important to add the templates to the Model you want to populate.
17
+ >>> from maplib import Model, create_templates
18
+ >>>
19
+ >>> m_ont = Model()
20
+ >>> m_ont.read("my_ontology.ttl")
21
+ >>> templates = generate_templates(m_ont)
22
+ >>> m = Model()
23
+ >>> for t in templates.values():
24
+ >>> m.add_template(t)
25
+ >>> m.map("https://example.net/MyClass", df)
26
+ """
27
+
28
+ properties = get_properties(m, graph=graph)
29
+ properties_by_domain = {}
30
+ properties_by_range = {}
31
+ for r in properties.iter_rows(named=True):
32
+ dom = r["domain"]
33
+ if dom in properties_by_domain:
34
+ properties_by_domain[dom].append(r)
35
+ else:
36
+ properties_by_domain[dom] = [r]
37
+
38
+ ran = r["range"]
39
+ if ran in properties_by_range:
40
+ properties_by_range[ran].append(r)
41
+ else:
42
+ properties_by_range[ran] = [r]
43
+
44
+ subclasses = get_subclasses(m, graph=graph)
45
+
46
+ subclass_of = {}
47
+ for r in (
48
+ subclasses.group_by("child")
49
+ .agg(pl.col("parent").alias("parents"))
50
+ .iter_rows(named=True)
51
+ ):
52
+ subclass_of[r["child"]] = r["parents"]
53
+
54
+ class_ordering = topological_sort(subclasses)
55
+
56
+ templates_without_typing = generate_templates_without_typing(
57
+ properties_by_domain, properties_by_range, class_ordering, subclass_of
58
+ )
59
+ templates_with_typing = generate_templates_with_typing(templates_without_typing)
60
+ templates = {}
61
+ for t, template in templates_without_typing.items():
62
+
63
+ templates[t + "_notype"] = template
64
+ for t, template in templates_with_typing.items():
65
+ templates[t] = template
66
+
67
+ return templates
68
+
69
+
70
+ def get_properties(m: Model, graph: Optional[str]) -> pl.DataFrame:
71
+ properties = m.query(
72
+ """
73
+ PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
74
+ PREFIX owl: <http://www.w3.org/2002/07/owl#>
75
+
76
+ SELECT ?property ?property_type ?domain ?range WHERE {
77
+ ?property a ?property_type .
78
+ ?property rdfs:domain ?domain .
79
+ ?property rdfs:range ?range .
80
+ FILTER(ISIRI(?domain) && ISIRI(?range))
81
+ }
82
+ """,
83
+ native_dataframe=True,
84
+ graph=graph,
85
+ )
86
+ pl.Config.set_fmt_str_lengths(100)
87
+ properties_by_subclass_restriction = m.query(
88
+ """
89
+ PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
90
+ PREFIX owl: <http://www.w3.org/2002/07/owl#>
91
+
92
+ SELECT ?property ?property_type ?domain WHERE {
93
+ ?domain rdfs:subClassOf ?restr .
94
+ ?restr a owl:Restriction .
95
+ ?restr owl:onProperty ?property .
96
+ #?property a ?property_type .
97
+ }
98
+ """,
99
+ native_dataframe=True,
100
+ graph=graph,
101
+ )
102
+ properties_by_subclass_restriction = (
103
+ properties_by_subclass_restriction.with_columns(
104
+ pl.lit("http://www.w3.org/2000/01/rdf-schema#ObjectType").alias(
105
+ "property_type"
106
+ ),
107
+ pl.lit(None).cast(pl.String).alias("range"),
108
+ )
109
+ )
110
+ if properties.height == 0:
111
+ return properties_by_subclass_restriction
112
+ elif properties_by_subclass_restriction.height == 0:
113
+ return properties
114
+ else:
115
+ return properties.vstack(properties_by_subclass_restriction)
116
+
117
+ def get_subclasses(m: Model, graph: Optional[str]) -> pl.DataFrame:
118
+ subclasses = m.query(
119
+ """
120
+ PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
121
+ SELECT ?child ?parent WHERE {
122
+ ?child rdfs:subClassOf ?parent .
123
+ FILTER(ISIRI(?child) && ISIRI(?parent))
124
+ }
125
+ """,
126
+ native_dataframe=True,
127
+ graph=graph,
128
+ )
129
+ return subclasses
130
+
131
+
132
+ def uri_to_variable(uri: str) -> Variable:
133
+ split = uri.split("/")
134
+ name = split[-1].split("#")[-1]
135
+ cleaned_name = name.replace("-", "_").replace(".", "_")
136
+ return Variable(cleaned_name)
137
+
138
+
139
+ def generate_templates_without_typing(
140
+ properties_by_domain,
141
+ properties_by_range,
142
+ class_ordering,
143
+ subclass_of: Dict[str, str],
144
+ ) -> Dict[str, Template]:
145
+ templates = {}
146
+ i = 0
147
+ subj = get_subj_var()
148
+
149
+ for c in class_ordering:
150
+ i += 1
151
+
152
+ parameters = []
153
+ instances = []
154
+ existing_preds = set()
155
+ existing_varnames = set()
156
+
157
+ # Check dupe!!
158
+ subj_parameter = Parameter(
159
+ variable=subj, optional=False, rdf_type=RDFType.IRI
160
+ )
161
+ parameters.append(subj_parameter)
162
+ if c in properties_by_domain:
163
+ for p in properties_by_domain[c]:
164
+ if p["property"] in existing_preds:
165
+ # print("dupe: ", str(p))
166
+ continue
167
+ existing_preds.add(p["property"])
168
+ v = uri_to_variable(p["property"])
169
+ existing_varnames.add(v.name)
170
+ if p["property_type"] == "http://www.w3.org/2002/07/owl#ObjectProperty":
171
+ t = RDFType.IRI
172
+ elif p["range"]:
173
+ t = RDFType.Literal(p["range"])
174
+ else:
175
+ t = None
176
+ param = Parameter(variable=v, optional=True, rdf_type=t)
177
+ parameters.append(param)
178
+ predicate = IRI(p["property"])
179
+ triple = Triple(subj, predicate, v)
180
+ instances.append(triple)
181
+ if c in properties_by_range:
182
+ for p in properties_by_range[c]:
183
+ if p["property"] in existing_preds:
184
+ # print("dupe: ", str(p))
185
+ continue
186
+ existing_preds.add(p["property"])
187
+ v = uri_to_variable(p["property"])
188
+ existing_varnames.add(v.name)
189
+ t = RDFType.IRI
190
+ param = Parameter(variable=v, optional=True, rdf_type=t)
191
+ parameters.append(param)
192
+ predicate = IRI(p["property"])
193
+ triple = Triple(v, predicate, subj)
194
+ instances.append(triple)
195
+ c_tpl_iri = c + "_notype"
196
+ if c in subclass_of:
197
+ for sc in subclass_of[c]:
198
+ if sc in templates:
199
+ sct = templates[sc]
200
+ variables = []
201
+ for p in sct.parameters:
202
+ if p.variable.name not in existing_varnames:
203
+ variables.append(p.variable)
204
+ if p.variable.name != "id":
205
+ parameters.append(p)
206
+ else:
207
+ variables.append(None)
208
+ # print(f"Duplicate variable: {str(p.variable.name)}")
209
+ instances.append(sct.instance(variables))
210
+
211
+ tpl = Template(IRI(c_tpl_iri), parameters=parameters, instances=instances)
212
+ templates[c] = tpl
213
+ return templates
214
+
215
+
216
+ def generate_templates_with_typing(
217
+ templates: Dict[str, Template],
218
+ ) -> Dict[str, Template]:
219
+ subj = get_subj_var()
220
+ with_type_templates = {}
221
+ for t, template in templates.items():
222
+ instances = template.instances
223
+ instances.append(
224
+ Triple(subj, IRI("http://www.w3.org/1999/02/22-rdf-syntax-ns#type"), IRI(t))
225
+ )
226
+ new_template = Template(
227
+ iri=IRI(t), parameters=template.parameters, instances=instances
228
+ )
229
+ with_type_templates[t] = new_template
230
+ return with_type_templates
231
+
232
+
233
+ def get_subj_var() -> Variable:
234
+ return Variable("id")
@@ -0,0 +1,40 @@
1
+ import polars as pl
2
+ from typing import List
3
+
4
+
5
+ def topological_sort(subclasses: pl.DataFrame) -> List[str]:
6
+ in_degree_df = subclasses.group_by("child").agg([pl.col("parent").count()])
7
+ in_degree_dict = {}
8
+ for d in in_degree_df.iter_rows(named=True):
9
+ in_degree_dict[d["child"]] = d["parent"]
10
+
11
+ out_edges_df = subclasses.group_by("parent").agg([pl.col("child")])
12
+ out_edges_dict = {}
13
+ for d in out_edges_df.iter_rows(named=True):
14
+ out_edges_dict[d["parent"]] = d["child"]
15
+
16
+ sorting = []
17
+
18
+ # First, we can add those parents who have no parents.
19
+ for p in subclasses.select("parent").unique().iter_rows(named=True):
20
+ if p["parent"] not in in_degree_dict:
21
+ sorting.append(p["parent"])
22
+ for out_edge in out_edges_dict[p["parent"]]:
23
+ in_degree_dict[out_edge] = in_degree_dict[out_edge] - 1
24
+
25
+ # Next, a topological sort defines ordering.
26
+ while len(in_degree_dict) > 0:
27
+ found_p = None
28
+ for p, i in in_degree_dict.items():
29
+ if i == 0:
30
+ found_p = p
31
+ break
32
+ if found_p is None:
33
+ assert False, "Error in the algorithm.. "
34
+
35
+ sorting.append(found_p)
36
+ in_degree_dict.pop(found_p)
37
+ if found_p in out_edges_dict:
38
+ for out_edge in out_edges_dict[found_p]:
39
+ in_degree_dict[out_edge] = in_degree_dict[out_edge] - 1
40
+ return sorting
@@ -0,0 +1,207 @@
1
+ Metadata-Version: 2.4
2
+ Name: maplib
3
+ Version: 0.19.3
4
+ Classifier: Development Status :: 4 - Beta
5
+ Classifier: License :: OSI Approved :: Apache Software License
6
+ Classifier: Programming Language :: Python :: 3 :: Only
7
+ Classifier: Programming Language :: Python :: 3.9
8
+ Classifier: Programming Language :: Python :: 3.10
9
+ Classifier: Programming Language :: Python :: 3.11
10
+ Classifier: Programming Language :: Rust
11
+ Classifier: Topic :: Database :: Database Engines/Servers
12
+ Classifier: Topic :: Scientific/Engineering
13
+ Requires-Dist: polars>=0.20.13
14
+ Requires-Dist: pyarrow>=7.0.0
15
+ Requires-Dist: fastapi[standard]>=0.115
16
+ License-File: LICENSE
17
+ Summary: Dataframe-based interactive knowledge graph construction
18
+ Keywords: rdf,graph,dataframe,sparql,ottr
19
+ Author-email: Magnus Bakken <magnus@data-treehouse.com>
20
+ Requires-Python: >=3.9
21
+ Description-Content-Type: text/markdown; charset=UTF-8; variant=GFM
22
+ Project-URL: Homepage, https://github.com/DataTreehouse/maplib
23
+ Project-URL: Documentation, https://datatreehouse.github.io/maplib/maplib/maplib.html
24
+ Project-URL: Repository, https://github.com/DataTreehouse/maplib
25
+ Project-URL: Changelog, https://github.com/DataTreehouse/maplib/releases
26
+
27
+ ## maplib: High-performance RDF knowledge graph construction, SHACL validation and SPARQL-based enrichment in Python
28
+ maplib is a knowledge graph construction library for building RDF knowledge graphs using template expansion ([OTTR](https://ottr.xyz/) Templates). Maplib features SPARQL- and SHACL-engines that are available as the graph is being constructed, allowing enrichment and validation. It can construct and validate knowledge graphs with millions of nodes in seconds.
29
+
30
+ maplib allows you to leverage your existing skills with Pandas or Polars to extract and wrangle data from existing databases and spreadsheets, before applying simple templates to them to build a knowledge graph.
31
+
32
+ Template expansion is typically zero-copy and nearly instantaneous, and the built-in SPARQL and SHACL engines means you can query, inspect, enrich and validate the knowledge graph immediately.
33
+
34
+ maplib is written in Rust, it is built on [Apache Arrow](https://arrow.apache.org/) using [Pola.rs](https://www.pola.rs/) and uses libraries from [Oxigraph](https://github.com/oxigraph/oxigraph) for handling linked data as well as parsing SPARQL queries.
35
+
36
+ ## Installing
37
+ The package is published on [PyPi](https://pypi.org/project/maplib/) and the API documented [here](https://datatreehouse.github.io/maplib/maplib.html):
38
+ ```shell
39
+ pip install maplib
40
+ ```
41
+ Please send us a message, e.g. on LinkedIn (search for Data Treehouse) or on our [webpage](https://www.data-treehouse.com/contact-8) if you want to try out SHACL.
42
+
43
+ ## Model
44
+ We can easily map DataFrames to RDF-graphs using the Python library. Below is a reproduction of the example in the paper [1]. Assume that we have a DataFrame given by:
45
+
46
+ ```python
47
+ import polars as pl
48
+ pl.Config.set_fmt_str_lengths(150)
49
+
50
+ pi = "https://github.com/DataTreehouse/maplib/pizza#"
51
+ df = pl.DataFrame({
52
+ "p":[pi + "Hawaiian", pi + "Grandiosa"],
53
+ "c":[pi + "CAN", pi + "NOR"],
54
+ "ings": [[pi + "Pineapple", pi + "Ham"],
55
+ [pi + "Pepper", pi + "Meat"]]
56
+ })
57
+ print(df)
58
+ ```
59
+ That is, our DataFrame is:
60
+
61
+ | p | c | ings |
62
+ |-------------------------------|--------------------------------|------------------------------------------|
63
+ | str | str | list[str] |
64
+ | "https://.../pizza#Hawaiian" | "https://.../maplib/pizza#CAN" | [".../pizza#Pineapple", ".../pizza#Ham"] |
65
+ | "https://.../pizza#Grandiosa" | "https://.../maplib/pizza#NOR" | [".../pizza#Pepper", ".../pizza#Meat"] |
66
+
67
+ Then we can define a OTTR template, and create our knowledge graph by expanding this template with our DataFrame as input:
68
+ ```python
69
+ from maplib import Model, Prefix, Template, Argument, Parameter, Variable, RDFType, Triple, a
70
+ pi = Prefix(pi)
71
+
72
+ p_var = Variable("p")
73
+ c_var = Variable("c")
74
+ ings_var = Variable("ings")
75
+
76
+ template = Template(
77
+ iri= pi.suf("PizzaTemplate"),
78
+ parameters= [
79
+ Parameter(variable=p_var, rdf_type=RDFType.IRI()),
80
+ Parameter(variable=c_var, rdf_type=RDFType.IRI()),
81
+ Parameter(variable=ings_var, rdf_type=RDFType.Nested(RDFType.IRI()))
82
+ ],
83
+ instances= [
84
+ Triple(p_var, a, pi.suf("Pizza")),
85
+ Triple(p_var, pi.suf("fromCountry"), c_var),
86
+ Triple(
87
+ p_var,
88
+ pi.suf("hasIngredient"),
89
+ Argument(term=ings_var, list_expand=True),
90
+ list_expander="cross")
91
+ ]
92
+ )
93
+
94
+ m = Model()
95
+ m.map(template, df)
96
+ hpizzas = """
97
+ PREFIX pi:<https://github.com/DataTreehouse/maplib/pizza#>
98
+ CONSTRUCT { ?p a pi:HeterodoxPizza }
99
+ WHERE {
100
+ ?p a pi:Pizza .
101
+ ?p pi:hasIngredient pi:Pineapple .
102
+ }"""
103
+ m.insert(hpizzas)
104
+ return m
105
+ ```
106
+
107
+ We can immediately query the mapped knowledge graph:
108
+
109
+ ```python
110
+ m.query("""
111
+ PREFIX pi:<https://github.com/DataTreehouse/maplib/pizza#>
112
+ SELECT ?p ?i WHERE {
113
+ ?p a pi:Pizza .
114
+ ?p pi:hasIngredient ?i .
115
+ }
116
+ """)
117
+ ```
118
+
119
+ The query gives the following result (a DataFrame):
120
+
121
+ | p | i |
122
+ |---------------------------------|---------------------------------------|
123
+ | str | str |
124
+ | "<https://.../pizza#Grandiosa>" | "<https://.../pizza#Meat>" |
125
+ | "<https://.../pizza#Grandiosa>" | "<https://.../pizza#Pepper>" |
126
+ | "<https://.../pizza#Hawaiian>" | "<https://.../pizza#Pineapple>" |
127
+ | "<https://.../pizza#Hawaiian>" | "<https://.../pizza#Ham>" |
128
+
129
+ Next, we are able to perform a construct query, which creates new triples but does not insert them.
130
+
131
+ ```python
132
+ hpizzas = """
133
+ PREFIX pi:<https://github.com/DataTreehouse/maplib/pizza#>
134
+ CONSTRUCT { ?p a pi:UnorthodoxPizza }
135
+ WHERE {
136
+ ?p a pi:Pizza .
137
+ ?p pi:hasIngredient pi:Pineapple .
138
+ }"""
139
+ res = m.query(hpizzas)
140
+ res[0]
141
+ ```
142
+
143
+ The resulting triples are given below:
144
+
145
+ | subject | verb | object |
146
+ |--------------------------------|--------------------------------------|---------------------------------------|
147
+ | str | str | str |
148
+ | "<https://.../pizza#Hawaiian>" | "<http://.../22-rdf-syntax-ns#type>" | "<https://.../pizza#UnorthodoxPizza>" |
149
+
150
+ If we are happy with the output of this construct-query, we can insert it in the model state. Afterwards we check that the triple is added with a query.
151
+
152
+ ```python
153
+ m.insert(hpizzas)
154
+ m.query("""
155
+ PREFIX pi:<https://github.com/DataTreehouse/maplib/pizza#>
156
+
157
+ SELECT ?p WHERE {
158
+ ?p a pi:UnorthodoxPizza
159
+ }
160
+ """)
161
+ ```
162
+
163
+ Indeed, we have added the triple:
164
+
165
+ | p |
166
+ |------------------------------------------------------------|
167
+ | str |
168
+ | "<https://github.com/DataTreehouse/maplib/pizza#Hawaiian>" |
169
+
170
+ ## API
171
+ The [API](https://datatreehouse.github.io/maplib/maplib.html) is simple, and contains only one class and a few methods for:
172
+ - expanding templates
173
+ - querying with SPARQL
174
+ - validating with SHACL
175
+ - importing triples (Turtle, RDF/XML, NTriples)
176
+ - writing triples (Turtle, RDF/XML, NTriples)
177
+ - creating a new Model object (sprout) based on queries over the current Model object.
178
+
179
+ The API is documented [HERE](https://datatreehouse.github.io/maplib/maplib.html)
180
+
181
+ ## Roadmap of features and optimizations
182
+ Spring 2025
183
+ - Datalog reasoning support ✅
184
+ - Reduced memory footprint ✅
185
+ - Further SPARQL optimizations
186
+ - JSON-LD support
187
+
188
+ Fall 2025
189
+ - SHACL rules support
190
+ - Improved TTL serialization (prettier and faster)
191
+ +++
192
+
193
+ Roadmap is subject to changes,particularly user and customer requests.
194
+
195
+ ## References
196
+ There is an associated paper [1] with associated benchmarks showing superior performance and scalability that can be found [here](https://ieeexplore.ieee.org/document/10106242). OTTR is described in [2].
197
+
198
+ [1] M. Bakken, "maplib: Interactive, literal RDF model model for industry," in IEEE Access, doi: 10.1109/ACCESS.2023.3269093.
199
+
200
+ [2] M. G. Skjæveland, D. P. Lupp, L. H. Karlsen, and J. W. Klüwer, “Ottr: Formal templates for pattern-based ontology engineering.” in WOP (Book),
201
+ 2021, pp. 349–377.
202
+
203
+ ## Licensing
204
+ All code produced since August 1st. 2023 is copyrighted to [Data Treehouse AS](https://www.data-treehouse.com/) with an Apache 2.0 license unless otherwise noted.
205
+
206
+ All code which was produced before August 1st. 2023 copyrighted to [Prediktor AS](https://www.prediktor.com/) with an Apache 2.0 license unless otherwise noted, and has been financed by [The Research Council of Norway](https://www.forskningsradet.no/en/) (grant no. 316656) and [Prediktor AS](https://www.prediktor.com/) as part of a PhD Degree. The code at this state is archived in the repository at [https://github.com/magbak/maplib](https://github.com/magbak/maplib).
207
+
@@ -0,0 +1,13 @@
1
+ maplib-0.19.3.dist-info/METADATA,sha256=mwSXi6090Hcuo4h8zNTWVUyIWKtceG7cJNCIIOFeMNU,9258
2
+ maplib-0.19.3.dist-info/WHEEL,sha256=MF1HCxdpioEZC6lqltB_WBzy4tzMPetoB2hZW2ZWEzg,95
3
+ maplib-0.19.3.dist-info/licenses/LICENSE,sha256=8f_rikNX2RHmVhT1CFq1M2itL6kTpawNjNTHUFCB870,11661
4
+ maplib/.gitignore,sha256=88KgwL2QsVFk7EKzNn65u6Z-5ibwf9RPU6J68KuZotY,6
5
+ maplib/__init__.py,sha256=XolwCUgnC2mTW9Z1YvmHdicsV-Z4r3RHr03KwWflMUE,1789
6
+ maplib/__init__.pyi,sha256=DOgWoWRUtgGt0VZA3Z0NIQ_rmpP8Pj3NEwMvU3yxlN8,34745
7
+ maplib/adding_triples.py,sha256=BSQQQs4-XgpGLax9UXC-GKZ2fu6BidvtgsBlRJJqxek,1084
8
+ maplib/maplib.pyd,sha256=nDXa2taPxl1VCk1zXNl9dCHZdIvS0okGmlrwQY8OS3M,97077760
9
+ maplib/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
+ maplib/template_generator/__init__.py,sha256=9w78SbwEDZY2moDzpiy0axVxIy5qWouoPqIFfLvKXKQ,42
11
+ maplib/template_generator/generate.py,sha256=TjurFj-RyGziryFi0tcXWIqK6LGaaJRk09oSyvITlVg,8314
12
+ maplib/template_generator/ordering.py,sha256=0yvKst8bp0df8cpiCEVljb0WOcvxD9y_XdOpg8SogtU,1468
13
+ maplib-0.19.3.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: maturin (1.9.4)
3
+ Root-Is-Purelib: false
4
+ Tag: cp310-abi3-win_amd64