mapFolding 0.9.4__py3-none-any.whl → 0.10.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mapFolding/__init__.py +41 -7
- mapFolding/basecamp.py +100 -9
- mapFolding/beDRY.py +7 -15
- mapFolding/dataBaskets.py +12 -0
- mapFolding/datatypes.py +4 -4
- mapFolding/oeis.py +2 -7
- mapFolding/someAssemblyRequired/RecipeJob.py +97 -3
- mapFolding/someAssemblyRequired/Z0Z_makeSomeModules.py +143 -42
- mapFolding/someAssemblyRequired/__init__.py +38 -49
- mapFolding/someAssemblyRequired/_astTypes.py +117 -0
- mapFolding/someAssemblyRequired/_theTypes.py +12 -41
- mapFolding/someAssemblyRequired/_toolBe.py +524 -0
- mapFolding/someAssemblyRequired/_toolDOT.py +493 -0
- mapFolding/someAssemblyRequired/_toolGrab.py +653 -0
- mapFolding/someAssemblyRequired/_toolIfThis.py +193 -0
- mapFolding/someAssemblyRequired/_toolMake.py +339 -0
- mapFolding/someAssemblyRequired/_toolThen.py +63 -0
- mapFolding/someAssemblyRequired/_toolboxAST.py +3 -3
- mapFolding/someAssemblyRequired/_toolboxContainers.py +124 -29
- mapFolding/someAssemblyRequired/makeJobTheorem2Numba.py +274 -0
- mapFolding/someAssemblyRequired/synthesizeNumbaJob.py +12 -11
- mapFolding/someAssemblyRequired/toolboxNumba.py +4 -28
- mapFolding/someAssemblyRequired/transformationTools.py +46 -155
- mapFolding/syntheticModules/daoOfMapFolding.py +74 -0
- mapFolding/syntheticModules/dataPacking.py +1 -1
- mapFolding/syntheticModules/theorem2Numba.py +2 -8
- mapFolding/syntheticModules/theorem2Trimmed.py +43 -0
- mapFolding/toolFactory/astFactory.py +493 -0
- mapFolding/toolFactory/astFactory_annex.py +63 -0
- mapFolding/toolFactory/astFactory_docstrings.py +63 -0
- {mapfolding-0.9.4.dist-info → mapfolding-0.10.0.dist-info}/METADATA +2 -1
- mapfolding-0.10.0.dist-info/RECORD +66 -0
- {mapfolding-0.9.4.dist-info → mapfolding-0.10.0.dist-info}/WHEEL +1 -1
- tests/test_computations.py +1 -1
- mapFolding/Z0Z_flowControl.py +0 -117
- mapFolding/someAssemblyRequired/_tool_Make.py +0 -134
- mapFolding/someAssemblyRequired/_tool_Then.py +0 -157
- mapFolding/someAssemblyRequired/_toolboxAntecedents.py +0 -387
- mapfolding-0.9.4.dist-info/RECORD +0 -57
- {mapfolding-0.9.4.dist-info → mapfolding-0.10.0.dist-info}/entry_points.txt +0 -0
- {mapfolding-0.9.4.dist-info → mapfolding-0.10.0.dist-info}/licenses/LICENSE +0 -0
- {mapfolding-0.9.4.dist-info → mapfolding-0.10.0.dist-info}/top_level.txt +0 -0
|
@@ -19,9 +19,11 @@ specific optimizations and transformations.
|
|
|
19
19
|
"""
|
|
20
20
|
|
|
21
21
|
from collections import defaultdict
|
|
22
|
-
from collections.abc import Sequence
|
|
23
|
-
from
|
|
24
|
-
from
|
|
22
|
+
from collections.abc import Callable, Sequence
|
|
23
|
+
from copy import deepcopy
|
|
24
|
+
from typing import Any
|
|
25
|
+
from mapFolding.someAssemblyRequired import ast_Identifier, DOT, IfThis, Make, NodeTourist, parseLogicalPath2astModule, str_nameDOTname, Then
|
|
26
|
+
from mapFolding.theSSOT import raiseIfNoneGitHubIssueNumber3, The
|
|
25
27
|
from pathlib import Path, PurePosixPath
|
|
26
28
|
from Z0Z_tools import updateExtendPolishDictionaryLists
|
|
27
29
|
import ast
|
|
@@ -171,22 +173,21 @@ class IngredientsModule:
|
|
|
171
173
|
"""
|
|
172
174
|
Assemble a complete Python module from its constituent AST components.
|
|
173
175
|
|
|
174
|
-
IngredientsModule provides a structured container for all elements needed to
|
|
175
|
-
|
|
176
|
+
IngredientsModule provides a structured container for all elements needed to generate a complete Python module,
|
|
177
|
+
including:
|
|
176
178
|
|
|
177
|
-
1. Import statements aggregated from all module components
|
|
178
|
-
2. Prologue code that runs before function definitions
|
|
179
|
-
3. Function definitions with their dependencies
|
|
180
|
-
4. Epilogue code that runs after function definitions
|
|
181
|
-
5. Entry point code executed when the module runs as a script
|
|
182
|
-
6. Type ignores and other annotations
|
|
179
|
+
1. Import statements aggregated from all module components.
|
|
180
|
+
2. Prologue code that runs before function definitions.
|
|
181
|
+
3. Function definitions with their dependencies.
|
|
182
|
+
4. Epilogue code that runs after function definitions.
|
|
183
|
+
5. Entry point code executed when the module runs as a script.
|
|
184
|
+
6. Type ignores and other annotations.
|
|
183
185
|
|
|
184
|
-
This class enables programmatic assembly of Python modules with a clear
|
|
185
|
-
|
|
186
|
-
proper ordering and relationships between components.
|
|
186
|
+
This class enables programmatic assembly of Python modules with a clear separation between different structural
|
|
187
|
+
elements, while maintaining the proper ordering and relationships between components.
|
|
187
188
|
|
|
188
|
-
The modular design allows transformations to be applied to specific parts
|
|
189
|
-
|
|
189
|
+
The modular design allows transformations to be applied to specific parts of a module while preserving the overall
|
|
190
|
+
structure.
|
|
190
191
|
|
|
191
192
|
Parameters:
|
|
192
193
|
ingredientsFunction (None): One or more `IngredientsFunction` that will appended to `listIngredientsFunctions`.
|
|
@@ -311,22 +312,20 @@ class RecipeSynthesizeFlow:
|
|
|
311
312
|
"""
|
|
312
313
|
Configure the generation of new modules, including Numba-accelerated code modules.
|
|
313
314
|
|
|
314
|
-
RecipeSynthesizeFlow defines the complete blueprint for transforming an original
|
|
315
|
-
|
|
315
|
+
RecipeSynthesizeFlow defines the complete blueprint for transforming an original Python algorithm into an optimized,
|
|
316
|
+
accelerated implementation. It specifies:
|
|
316
317
|
|
|
317
|
-
1. Source code locations and identifiers
|
|
318
|
-
2. Target code locations and identifiers
|
|
319
|
-
3. Naming conventions for generated modules and functions
|
|
320
|
-
4. File system paths for output files
|
|
321
|
-
5. Import relationships between components
|
|
318
|
+
1. Source code locations and identifiers.
|
|
319
|
+
2. Target code locations and identifiers.
|
|
320
|
+
3. Naming conventions for generated modules and functions.
|
|
321
|
+
4. File system paths for output files.
|
|
322
|
+
5. Import relationships between components.
|
|
322
323
|
|
|
323
|
-
This configuration class serves as a single source of truth for the code generation
|
|
324
|
-
|
|
325
|
-
customization of the transformation assembly line.
|
|
324
|
+
This configuration class serves as a single source of truth for the code generation process, ensuring consistency
|
|
325
|
+
across all generated artifacts while enabling customization of the transformation assembly line.
|
|
326
326
|
|
|
327
|
-
The transformation process uses this configuration to extract functions from the
|
|
328
|
-
|
|
329
|
-
properly structured optimized modules with all necessary imports.
|
|
327
|
+
The transformation process uses this configuration to extract functions from the source module, transform them
|
|
328
|
+
according to optimization rules, and output properly structured optimized modules with all necessary imports.
|
|
330
329
|
"""
|
|
331
330
|
# ========================================
|
|
332
331
|
# Source
|
|
@@ -471,3 +470,99 @@ class ShatteredDataclass:
|
|
|
471
470
|
|
|
472
471
|
signatureReturnAnnotation: ast.Subscript = dummySubscript
|
|
473
472
|
"""tuple-based return type annotation for function definitions."""
|
|
473
|
+
|
|
474
|
+
@dataclasses.dataclass
|
|
475
|
+
class DeReConstructField2ast:
|
|
476
|
+
"""
|
|
477
|
+
Transform a dataclass field into AST node representations for code generation.
|
|
478
|
+
|
|
479
|
+
This class extracts and transforms a dataclass Field object into various AST node
|
|
480
|
+
representations needed for code generation. It handles the conversion of field
|
|
481
|
+
attributes, type annotations, and metadata into AST constructs that can be used
|
|
482
|
+
to reconstruct the field in generated code.
|
|
483
|
+
|
|
484
|
+
The class is particularly important for decomposing dataclass fields (like those in
|
|
485
|
+
ComputationState) to enable their use in specialized contexts like Numba-optimized
|
|
486
|
+
functions, where the full dataclass cannot be directly used but its contents need
|
|
487
|
+
to be accessible.
|
|
488
|
+
|
|
489
|
+
Each field is processed according to its type and metadata to create appropriate
|
|
490
|
+
variable declarations, type annotations, and initialization code as AST nodes.
|
|
491
|
+
"""
|
|
492
|
+
dataclassesDOTdataclassLogicalPathModule: dataclasses.InitVar[str_nameDOTname]
|
|
493
|
+
dataclassClassDef: dataclasses.InitVar[ast.ClassDef]
|
|
494
|
+
dataclassesDOTdataclassInstance_Identifier: dataclasses.InitVar[ast_Identifier]
|
|
495
|
+
field: dataclasses.InitVar[dataclasses.Field[Any]]
|
|
496
|
+
|
|
497
|
+
ledger: LedgerOfImports = dataclasses.field(default_factory=LedgerOfImports)
|
|
498
|
+
|
|
499
|
+
name: ast_Identifier = dataclasses.field(init=False)
|
|
500
|
+
typeBuffalo: type[Any] | str | Any = dataclasses.field(init=False)
|
|
501
|
+
default: Any | None = dataclasses.field(init=False)
|
|
502
|
+
default_factory: Callable[..., Any] | None = dataclasses.field(init=False)
|
|
503
|
+
repr: bool = dataclasses.field(init=False)
|
|
504
|
+
hash: bool | None = dataclasses.field(init=False)
|
|
505
|
+
init: bool = dataclasses.field(init=False)
|
|
506
|
+
compare: bool = dataclasses.field(init=False)
|
|
507
|
+
metadata: dict[Any, Any] = dataclasses.field(init=False)
|
|
508
|
+
kw_only: bool = dataclasses.field(init=False)
|
|
509
|
+
|
|
510
|
+
astName: ast.Name = dataclasses.field(init=False)
|
|
511
|
+
ast_keyword_field__field: ast.keyword = dataclasses.field(init=False)
|
|
512
|
+
ast_nameDOTname: ast.Attribute = dataclasses.field(init=False)
|
|
513
|
+
astAnnotation: ast.expr = dataclasses.field(init=False)
|
|
514
|
+
ast_argAnnotated: ast.arg = dataclasses.field(init=False)
|
|
515
|
+
astAnnAssignConstructor: ast.AnnAssign|ast.Assign = dataclasses.field(init=False)
|
|
516
|
+
Z0Z_hack: tuple[ast.AnnAssign|ast.Assign, str] = dataclasses.field(init=False)
|
|
517
|
+
|
|
518
|
+
def __post_init__(self, dataclassesDOTdataclassLogicalPathModule: str_nameDOTname, dataclassClassDef: ast.ClassDef, dataclassesDOTdataclassInstance_Identifier: ast_Identifier, field: dataclasses.Field[Any]) -> None:
|
|
519
|
+
self.compare = field.compare
|
|
520
|
+
self.default = field.default if field.default is not dataclasses.MISSING else None
|
|
521
|
+
self.default_factory = field.default_factory if field.default_factory is not dataclasses.MISSING else None
|
|
522
|
+
self.hash = field.hash
|
|
523
|
+
self.init = field.init
|
|
524
|
+
self.kw_only = field.kw_only if field.kw_only is not dataclasses.MISSING else False
|
|
525
|
+
self.metadata = dict(field.metadata)
|
|
526
|
+
self.name = field.name
|
|
527
|
+
self.repr = field.repr
|
|
528
|
+
self.typeBuffalo = field.type
|
|
529
|
+
|
|
530
|
+
self.astName = Make.Name(self.name)
|
|
531
|
+
self.ast_keyword_field__field = Make.keyword(self.name, self.astName)
|
|
532
|
+
self.ast_nameDOTname = Make.Attribute(Make.Name(dataclassesDOTdataclassInstance_Identifier), self.name)
|
|
533
|
+
|
|
534
|
+
sherpa = NodeTourist(IfThis.isAnnAssign_targetIs(IfThis.isName_Identifier(self.name)), Then.extractIt(DOT.annotation)).captureLastMatch(dataclassClassDef)
|
|
535
|
+
if sherpa is None: raise raiseIfNoneGitHubIssueNumber3
|
|
536
|
+
else: self.astAnnotation = sherpa
|
|
537
|
+
|
|
538
|
+
self.ast_argAnnotated = Make.arg(self.name, self.astAnnotation)
|
|
539
|
+
|
|
540
|
+
dtype = self.metadata.get('dtype', None)
|
|
541
|
+
if dtype:
|
|
542
|
+
moduleWithLogicalPath: str_nameDOTname = 'numpy'
|
|
543
|
+
annotationType = 'ndarray'
|
|
544
|
+
self.ledger.addImportFrom_asStr(moduleWithLogicalPath, annotationType)
|
|
545
|
+
self.ledger.addImportFrom_asStr(moduleWithLogicalPath, 'dtype')
|
|
546
|
+
axesSubscript = Make.Subscript(Make.Name('tuple'), Make.Name('uint8'))
|
|
547
|
+
dtype_asnameName: ast.Name = self.astAnnotation # type: ignore
|
|
548
|
+
if dtype_asnameName.id == 'Array3D':
|
|
549
|
+
axesSubscript = Make.Subscript(Make.Name('tuple'), Make.Tuple([Make.Name('uint8'), Make.Name('uint8'), Make.Name('uint8')]))
|
|
550
|
+
ast_expr = Make.Subscript(Make.Name(annotationType), Make.Tuple([axesSubscript, Make.Subscript(Make.Name('dtype'), dtype_asnameName)]))
|
|
551
|
+
constructor = 'array'
|
|
552
|
+
self.ledger.addImportFrom_asStr(moduleWithLogicalPath, constructor)
|
|
553
|
+
dtypeIdentifier: ast_Identifier = dtype.__name__
|
|
554
|
+
self.ledger.addImportFrom_asStr(moduleWithLogicalPath, dtypeIdentifier, dtype_asnameName.id)
|
|
555
|
+
self.astAnnAssignConstructor = Make.AnnAssign(self.astName, ast_expr, Make.Call(Make.Name(constructor), list_keyword=[Make.keyword('dtype', dtype_asnameName)]))
|
|
556
|
+
self.astAnnAssignConstructor = Make.Assign([self.astName], Make.Call(Make.Name(constructor), list_keyword=[Make.keyword('dtype', dtype_asnameName)]))
|
|
557
|
+
self.Z0Z_hack = (self.astAnnAssignConstructor, 'array')
|
|
558
|
+
elif isinstance(self.astAnnotation, ast.Name):
|
|
559
|
+
self.astAnnAssignConstructor = Make.AnnAssign(self.astName, self.astAnnotation, Make.Call(self.astAnnotation, [Make.Constant(-1)]))
|
|
560
|
+
self.Z0Z_hack = (self.astAnnAssignConstructor, 'scalar')
|
|
561
|
+
elif isinstance(self.astAnnotation, ast.Subscript):
|
|
562
|
+
elementConstructor: ast_Identifier = self.metadata['elementConstructor']
|
|
563
|
+
self.ledger.addImportFrom_asStr(dataclassesDOTdataclassLogicalPathModule, elementConstructor)
|
|
564
|
+
takeTheTuple: ast.Tuple = deepcopy(self.astAnnotation.slice) # type: ignore
|
|
565
|
+
self.astAnnAssignConstructor = Make.AnnAssign(self.astName, self.astAnnotation, takeTheTuple)
|
|
566
|
+
self.Z0Z_hack = (self.astAnnAssignConstructor, elementConstructor)
|
|
567
|
+
if isinstance(self.astAnnotation, ast.Name):
|
|
568
|
+
self.ledger.addImportFrom_asStr(dataclassesDOTdataclassLogicalPathModule, self.astAnnotation.id) # pyright: ignore [reportUnknownArgumentType, reportUnknownMemberType, reportIJustCalledATypeGuardMethod_WTF]
|
|
@@ -0,0 +1,274 @@
|
|
|
1
|
+
from mapFolding import getPathFilenameFoldsTotal, raiseIfNoneGitHubIssueNumber3, The
|
|
2
|
+
from mapFolding.someAssemblyRequired import (
|
|
3
|
+
ast_Identifier,
|
|
4
|
+
Be,
|
|
5
|
+
extractFunctionDef,
|
|
6
|
+
IfThis,
|
|
7
|
+
IngredientsFunction,
|
|
8
|
+
IngredientsModule,
|
|
9
|
+
LedgerOfImports,
|
|
10
|
+
Make,
|
|
11
|
+
NodeChanger,
|
|
12
|
+
NodeTourist,
|
|
13
|
+
str_nameDOTname,
|
|
14
|
+
Then,
|
|
15
|
+
)
|
|
16
|
+
from mapFolding.someAssemblyRequired.RecipeJob import RecipeJobTheorem2Numba
|
|
17
|
+
from mapFolding.someAssemblyRequired.toolboxNumba import parametersNumbaLight, SpicesJobNumba, decorateCallableWithNumba
|
|
18
|
+
from mapFolding.someAssemblyRequired.transformationTools import dictionaryEstimates, write_astModule, makeInitializedComputationState
|
|
19
|
+
from mapFolding.syntheticModules.initializeCount import initializeGroupsOfFolds
|
|
20
|
+
from mapFolding.dataBaskets import MapFoldingState
|
|
21
|
+
from pathlib import PurePosixPath
|
|
22
|
+
from typing import cast, NamedTuple
|
|
23
|
+
from Z0Z_tools import autoDecodingRLE
|
|
24
|
+
import ast
|
|
25
|
+
"""Synthesize one file to compute `foldsTotal` of `mapShape`."""
|
|
26
|
+
|
|
27
|
+
list_IdentifiersNotUsedAllHARDCODED = ['concurrencyLimit', 'foldsTotal', 'mapShape',]
|
|
28
|
+
list_IdentifiersNotUsedParallelSequentialHARDCODED = ['indexLeaf']
|
|
29
|
+
list_IdentifiersNotUsedSequentialHARDCODED = ['foldGroups', 'taskDivisions', 'taskIndex',]
|
|
30
|
+
|
|
31
|
+
list_IdentifiersReplacedHARDCODED = ['groupsOfFolds',]
|
|
32
|
+
|
|
33
|
+
list_IdentifiersStaticValuesHARDCODED = ['dimensionsTotal', 'leavesTotal',]
|
|
34
|
+
|
|
35
|
+
list_IdentifiersNotUsedHARDCODED = list_IdentifiersStaticValuesHARDCODED + list_IdentifiersReplacedHARDCODED + list_IdentifiersNotUsedAllHARDCODED + list_IdentifiersNotUsedParallelSequentialHARDCODED + list_IdentifiersNotUsedSequentialHARDCODED
|
|
36
|
+
|
|
37
|
+
def addLauncherNumbaProgress(ingredientsModule: IngredientsModule, ingredientsFunction: IngredientsFunction, job: RecipeJobTheorem2Numba, spices: SpicesJobNumba) -> tuple[IngredientsModule, IngredientsFunction]:
|
|
38
|
+
"""
|
|
39
|
+
Add progress tracking capabilities to a Numba-optimized function.
|
|
40
|
+
|
|
41
|
+
This function modifies both the module and the function to integrate Numba-compatible
|
|
42
|
+
progress tracking for long-running calculations. It performs several key transformations:
|
|
43
|
+
|
|
44
|
+
1. Adds a progress bar parameter to the function signature
|
|
45
|
+
2. Replaces counting increments with progress bar updates
|
|
46
|
+
3. Creates a launcher section that displays and updates progress
|
|
47
|
+
4. Configures file output to save results upon completion
|
|
48
|
+
|
|
49
|
+
The progress tracking is particularly important for map folding calculations
|
|
50
|
+
which can take hours or days to complete, providing visual feedback and
|
|
51
|
+
estimated completion times.
|
|
52
|
+
|
|
53
|
+
Parameters:
|
|
54
|
+
ingredientsModule: The module where the function is defined.
|
|
55
|
+
ingredientsFunction: The function to modify with progress tracking.
|
|
56
|
+
job: Configuration specifying shape details and output paths.
|
|
57
|
+
spices: Configuration specifying progress bar details.
|
|
58
|
+
|
|
59
|
+
Returns:
|
|
60
|
+
A tuple containing the modified module and function with progress tracking.
|
|
61
|
+
"""
|
|
62
|
+
linesLaunch: str = f"""
|
|
63
|
+
if __name__ == '__main__':
|
|
64
|
+
with ProgressBar(total={job.foldsTotalEstimated}, update_interval=2) as statusUpdate:
|
|
65
|
+
{job.countCallable}(statusUpdate)
|
|
66
|
+
foldsTotal = statusUpdate.n * {job.state.leavesTotal}
|
|
67
|
+
print('\\nmap {job.state.mapShape} =', foldsTotal)
|
|
68
|
+
writeStream = open('{job.pathFilenameFoldsTotal.as_posix()}', 'w')
|
|
69
|
+
writeStream.write(str(foldsTotal))
|
|
70
|
+
writeStream.close()
|
|
71
|
+
"""
|
|
72
|
+
numba_progressPythonClass: ast_Identifier = 'ProgressBar'
|
|
73
|
+
numba_progressNumbaType: ast_Identifier = 'ProgressBarType'
|
|
74
|
+
ingredientsModule.imports.addImportFrom_asStr('numba_progress', numba_progressPythonClass)
|
|
75
|
+
ingredientsModule.imports.addImportFrom_asStr('numba_progress', numba_progressNumbaType)
|
|
76
|
+
|
|
77
|
+
ast_argNumbaProgress = ast.arg(arg=spices.numbaProgressBarIdentifier, annotation=ast.Name(id=numba_progressPythonClass, ctx=ast.Load()))
|
|
78
|
+
ingredientsFunction.astFunctionDef.args.args.append(ast_argNumbaProgress)
|
|
79
|
+
|
|
80
|
+
findThis = IfThis.isAugAssign_targetIs(IfThis.isName_Identifier(job.shatteredDataclass.countingVariableName.id))
|
|
81
|
+
doThat = Then.replaceWith(Make.Expr(Make.Call(Make.Attribute(Make.Name(spices.numbaProgressBarIdentifier),'update'),[Make.Constant(1)])))
|
|
82
|
+
countWithProgressBar = NodeChanger(findThis, doThat)
|
|
83
|
+
countWithProgressBar.visit(ingredientsFunction.astFunctionDef)
|
|
84
|
+
|
|
85
|
+
removeReturnStatement = NodeChanger(Be.Return, Then.removeIt)
|
|
86
|
+
removeReturnStatement.visit(ingredientsFunction.astFunctionDef)
|
|
87
|
+
ingredientsFunction.astFunctionDef.returns = Make.Constant(value=None)
|
|
88
|
+
|
|
89
|
+
ingredientsModule.appendLauncher(ast.parse(linesLaunch))
|
|
90
|
+
|
|
91
|
+
return ingredientsModule, ingredientsFunction
|
|
92
|
+
|
|
93
|
+
def move_arg2FunctionDefDOTbodyAndAssignInitialValues(ingredientsFunction: IngredientsFunction, job: RecipeJobTheorem2Numba) -> IngredientsFunction:
|
|
94
|
+
"""
|
|
95
|
+
Convert function parameters into initialized variables with concrete values.
|
|
96
|
+
|
|
97
|
+
This function implements a critical transformation that converts function parameters
|
|
98
|
+
into statically initialized variables in the function body. This enables several
|
|
99
|
+
optimizations:
|
|
100
|
+
|
|
101
|
+
1. Eliminating parameter passing overhead.
|
|
102
|
+
2. Embedding concrete values directly in the code.
|
|
103
|
+
3. Allowing Numba to optimize based on known value characteristics.
|
|
104
|
+
4. Simplifying function signatures for specialized use cases.
|
|
105
|
+
|
|
106
|
+
The function handles different data types (scalars, arrays, custom types) appropriately,
|
|
107
|
+
replacing abstract parameter references with concrete values from the computation state.
|
|
108
|
+
It also removes unused parameters and variables to eliminate dead code.
|
|
109
|
+
|
|
110
|
+
Parameters:
|
|
111
|
+
ingredientsFunction: The function to transform.
|
|
112
|
+
job: Recipe containing concrete values for parameters and field metadata.
|
|
113
|
+
|
|
114
|
+
Returns:
|
|
115
|
+
The modified function with parameters converted to initialized variables.
|
|
116
|
+
"""
|
|
117
|
+
ingredientsFunction.imports.update(job.shatteredDataclass.imports)
|
|
118
|
+
|
|
119
|
+
list_argCuzMyBrainRefusesToThink = ingredientsFunction.astFunctionDef.args.args + ingredientsFunction.astFunctionDef.args.posonlyargs + ingredientsFunction.astFunctionDef.args.kwonlyargs
|
|
120
|
+
list_arg_arg: list[ast_Identifier] = [ast_arg.arg for ast_arg in list_argCuzMyBrainRefusesToThink]
|
|
121
|
+
listName: list[ast.Name] = []
|
|
122
|
+
NodeTourist(Be.Name, Then.appendTo(listName)).visit(ingredientsFunction.astFunctionDef)
|
|
123
|
+
list_Identifiers: list[ast_Identifier] = [astName.id for astName in listName]
|
|
124
|
+
list_IdentifiersNotUsed: list[ast_Identifier] = list(set(list_arg_arg) - set(list_Identifiers))
|
|
125
|
+
|
|
126
|
+
for ast_arg in list_argCuzMyBrainRefusesToThink:
|
|
127
|
+
if ast_arg.arg in job.shatteredDataclass.field2AnnAssign:
|
|
128
|
+
if ast_arg.arg in list_IdentifiersNotUsed:
|
|
129
|
+
pass
|
|
130
|
+
else:
|
|
131
|
+
ImaAnnAssign, elementConstructor = job.shatteredDataclass.Z0Z_field2AnnAssign[ast_arg.arg]
|
|
132
|
+
match elementConstructor:
|
|
133
|
+
case 'scalar':
|
|
134
|
+
ImaAnnAssign.value.args[0].value = int(job.state.__dict__[ast_arg.arg]) # type: ignore
|
|
135
|
+
case 'array':
|
|
136
|
+
dataAsStrRLE: str = autoDecodingRLE(job.state.__dict__[ast_arg.arg], True)
|
|
137
|
+
dataAs_astExpr: ast.expr = cast(ast.Expr, ast.parse(dataAsStrRLE).body[0]).value
|
|
138
|
+
ImaAnnAssign.value.args = [dataAs_astExpr] # type: ignore
|
|
139
|
+
case _:
|
|
140
|
+
list_exprDOTannotation: list[ast.expr] = []
|
|
141
|
+
list_exprDOTvalue: list[ast.expr] = []
|
|
142
|
+
for dimension in job.state.mapShape:
|
|
143
|
+
list_exprDOTannotation.append(Make.Name(elementConstructor))
|
|
144
|
+
list_exprDOTvalue.append(Make.Call(Make.Name(elementConstructor), [Make.Constant(dimension)]))
|
|
145
|
+
ImaAnnAssign.annotation.slice.elts = list_exprDOTannotation # type: ignore
|
|
146
|
+
ImaAnnAssign.value.elts = list_exprDOTvalue # type: ignore
|
|
147
|
+
|
|
148
|
+
ingredientsFunction.astFunctionDef.body.insert(0, ImaAnnAssign)
|
|
149
|
+
|
|
150
|
+
findThis = IfThis.is_arg_Identifier(ast_arg.arg)
|
|
151
|
+
remove_arg = NodeChanger(findThis, Then.removeIt)
|
|
152
|
+
remove_arg.visit(ingredientsFunction.astFunctionDef)
|
|
153
|
+
|
|
154
|
+
ast.fix_missing_locations(ingredientsFunction.astFunctionDef)
|
|
155
|
+
return ingredientsFunction
|
|
156
|
+
|
|
157
|
+
def makeJobNumba(job: RecipeJobTheorem2Numba, spices: SpicesJobNumba) -> None:
|
|
158
|
+
|
|
159
|
+
astFunctionDef = extractFunctionDef(job.source_astModule, job.countCallable)
|
|
160
|
+
if not astFunctionDef: raise raiseIfNoneGitHubIssueNumber3
|
|
161
|
+
ingredientsCount: IngredientsFunction = IngredientsFunction(astFunctionDef, LedgerOfImports())
|
|
162
|
+
|
|
163
|
+
# Remove `foldGroups` and any other unused statements, so you can dynamically determine which variables are not used
|
|
164
|
+
findThis = IfThis.isAssignAndTargets0Is(IfThis.isSubscript_Identifier('foldGroups'))
|
|
165
|
+
doThat = Then.removeIt
|
|
166
|
+
remove_foldGroups = NodeChanger(findThis, doThat)
|
|
167
|
+
remove_foldGroups.visit(ingredientsCount.astFunctionDef)
|
|
168
|
+
|
|
169
|
+
# replace identifiers with static values with their values, so you can dynamically determine which variables are not used
|
|
170
|
+
list_IdentifiersStaticValues = list_IdentifiersStaticValuesHARDCODED
|
|
171
|
+
for identifier in list_IdentifiersStaticValues:
|
|
172
|
+
findThis = IfThis.isName_Identifier(identifier)
|
|
173
|
+
doThat = Then.replaceWith(Make.Constant(int(job.state.__dict__[identifier])))
|
|
174
|
+
NodeChanger(findThis, doThat).visit(ingredientsCount.astFunctionDef)
|
|
175
|
+
|
|
176
|
+
ingredientsModule = IngredientsModule()
|
|
177
|
+
# This launcher eliminates the use of one identifier, so run it now and you can dynamically determine which variables are not used
|
|
178
|
+
if spices.useNumbaProgressBar:
|
|
179
|
+
ingredientsModule, ingredientsCount = addLauncherNumbaProgress(ingredientsModule, ingredientsCount, job, spices)
|
|
180
|
+
spices.parametersNumba['nogil'] = True
|
|
181
|
+
else:
|
|
182
|
+
linesLaunch: str = f"""
|
|
183
|
+
if __name__ == '__main__':
|
|
184
|
+
import time
|
|
185
|
+
timeStart = time.perf_counter()
|
|
186
|
+
foldsTotal = {job.countCallable}() * {job.state.leavesTotal}
|
|
187
|
+
print(time.perf_counter() - timeStart)
|
|
188
|
+
print('\\nmap {job.state.mapShape} =', foldsTotal)
|
|
189
|
+
writeStream = open('{job.pathFilenameFoldsTotal.as_posix()}', 'w')
|
|
190
|
+
writeStream.write(str(foldsTotal))
|
|
191
|
+
writeStream.close()
|
|
192
|
+
"""
|
|
193
|
+
# from mapFolding.oeis import getFoldsTotalKnown
|
|
194
|
+
# print(foldsTotal == getFoldsTotalKnown({job.state.mapShape}))
|
|
195
|
+
ingredientsModule.appendLauncher(ast.parse(linesLaunch))
|
|
196
|
+
changeReturnParallelCallable = NodeChanger(Be.Return, Then.replaceWith(Make.Return(job.shatteredDataclass.countingVariableName)))
|
|
197
|
+
changeReturnParallelCallable.visit(ingredientsCount.astFunctionDef)
|
|
198
|
+
ingredientsCount.astFunctionDef.returns = job.shatteredDataclass.countingVariableAnnotation
|
|
199
|
+
|
|
200
|
+
ingredientsCount = move_arg2FunctionDefDOTbodyAndAssignInitialValues(ingredientsCount, job)
|
|
201
|
+
|
|
202
|
+
class DatatypeConfig(NamedTuple):
|
|
203
|
+
Z0Z_module: str_nameDOTname
|
|
204
|
+
fml: ast_Identifier
|
|
205
|
+
Z0Z_type_name: ast_Identifier
|
|
206
|
+
Z0Z_asname: ast_Identifier | None = None
|
|
207
|
+
|
|
208
|
+
listDatatypeConfigs = [
|
|
209
|
+
DatatypeConfig(fml='DatatypeLeavesTotal', Z0Z_module='numba', Z0Z_type_name='uint8'),
|
|
210
|
+
DatatypeConfig(fml='DatatypeElephino', Z0Z_module='numba', Z0Z_type_name='uint16'),
|
|
211
|
+
DatatypeConfig(fml='DatatypeFoldsTotal', Z0Z_module='numba', Z0Z_type_name='uint64'),
|
|
212
|
+
]
|
|
213
|
+
|
|
214
|
+
for datatypeConfig in listDatatypeConfigs:
|
|
215
|
+
ingredientsModule.imports.addImportFrom_asStr(datatypeConfig.Z0Z_module, datatypeConfig.Z0Z_type_name)
|
|
216
|
+
statement = Make.Assign(
|
|
217
|
+
[Make.Name(datatypeConfig.fml, ast.Store())],
|
|
218
|
+
Make.Name(datatypeConfig.Z0Z_type_name)
|
|
219
|
+
)
|
|
220
|
+
ingredientsModule.appendPrologue(statement=statement)
|
|
221
|
+
|
|
222
|
+
ingredientsCount.imports.removeImportFromModule('mapFolding.theSSOT')
|
|
223
|
+
|
|
224
|
+
listNumPyTypeConfigs = [
|
|
225
|
+
DatatypeConfig(fml='Array1DLeavesTotal', Z0Z_module='numpy', Z0Z_type_name='uint8', Z0Z_asname='Array1DLeavesTotal'),
|
|
226
|
+
DatatypeConfig(fml='Array1DElephino', Z0Z_module='numpy', Z0Z_type_name='uint16', Z0Z_asname='Array1DElephino'),
|
|
227
|
+
DatatypeConfig(fml='Array3D', Z0Z_module='numpy', Z0Z_type_name='uint8', Z0Z_asname='Array3D'),
|
|
228
|
+
]
|
|
229
|
+
|
|
230
|
+
for typeConfig in listNumPyTypeConfigs:
|
|
231
|
+
ingredientsCount.imports.removeImportFrom(typeConfig.Z0Z_module, None, typeConfig.fml)
|
|
232
|
+
ingredientsCount.imports.addImportFrom_asStr(typeConfig.Z0Z_module, typeConfig.Z0Z_type_name, typeConfig.Z0Z_asname)
|
|
233
|
+
|
|
234
|
+
ingredientsCount.astFunctionDef.decorator_list = [] # TODO low-priority, handle this more elegantly
|
|
235
|
+
# TODO when I add the function signature in numba style back to the decorator, the logic needs to handle `ProgressBarType:`
|
|
236
|
+
ingredientsCount = decorateCallableWithNumba(ingredientsCount, spices.parametersNumba)
|
|
237
|
+
|
|
238
|
+
ingredientsModule.appendIngredientsFunction(ingredientsCount)
|
|
239
|
+
write_astModule(ingredientsModule, job.pathFilenameModule, job.packageIdentifier)
|
|
240
|
+
|
|
241
|
+
"""
|
|
242
|
+
Overview
|
|
243
|
+
- the code starts life in theDao.py, which has many optimizations;
|
|
244
|
+
- `makeNumbaOptimizedFlow` increase optimization especially by using numba;
|
|
245
|
+
- `makeJobNumba` increases optimization especially by limiting its capabilities to just one set of parameters
|
|
246
|
+
- the synthesized module must run well as a standalone interpreted-Python script
|
|
247
|
+
- the next major optimization step will (probably) be to use the module synthesized by `makeJobNumba` to compile a standalone executable
|
|
248
|
+
- Nevertheless, at each major optimization step, the code is constantly being improved and optimized, so everything must be well organized (read: semantic) and able to handle a range of arbitrary upstream and not disrupt downstream transformations
|
|
249
|
+
|
|
250
|
+
Necessary
|
|
251
|
+
- Move the function's parameters to the function body,
|
|
252
|
+
- initialize identifiers with their state types and values,
|
|
253
|
+
|
|
254
|
+
Optimizations
|
|
255
|
+
- replace static-valued identifiers with their values
|
|
256
|
+
- narrowly focused imports
|
|
257
|
+
|
|
258
|
+
Minutia
|
|
259
|
+
- do not use `with` statement inside numba jitted code, except to use numba's obj mode
|
|
260
|
+
"""
|
|
261
|
+
|
|
262
|
+
if __name__ == '__main__':
|
|
263
|
+
mapShape = (1,46)
|
|
264
|
+
state = MapFoldingState(mapShape)
|
|
265
|
+
state = initializeGroupsOfFolds(state)
|
|
266
|
+
# foldsTotalEstimated = getFoldsTotalKnown(state.mapShape) // state.leavesTotal
|
|
267
|
+
# foldsTotalEstimated = dictionaryEstimates[state.mapShape] // state.leavesTotal
|
|
268
|
+
foldsTotalEstimated = 0
|
|
269
|
+
pathModule = PurePosixPath(The.pathPackage, 'jobs')
|
|
270
|
+
pathFilenameFoldsTotal = PurePosixPath(getPathFilenameFoldsTotal(state.mapShape, pathModule))
|
|
271
|
+
aJob = RecipeJobTheorem2Numba(state, foldsTotalEstimated, pathModule=pathModule, pathFilenameFoldsTotal=pathFilenameFoldsTotal)
|
|
272
|
+
spices = SpicesJobNumba(useNumbaProgressBar=False, parametersNumba=parametersNumbaLight)
|
|
273
|
+
# spices = SpicesJobNumba()
|
|
274
|
+
makeJobNumba(aJob, spices)
|
|
@@ -21,9 +21,9 @@ as Python scripts or further compiled into standalone executables.
|
|
|
21
21
|
from mapFolding import getPathFilenameFoldsTotal, raiseIfNoneGitHubIssueNumber3, The
|
|
22
22
|
from mapFolding.someAssemblyRequired import (
|
|
23
23
|
ast_Identifier,
|
|
24
|
-
|
|
24
|
+
Be,
|
|
25
25
|
extractFunctionDef,
|
|
26
|
-
|
|
26
|
+
IfThis,
|
|
27
27
|
IngredientsFunction,
|
|
28
28
|
IngredientsModule,
|
|
29
29
|
LedgerOfImports,
|
|
@@ -95,12 +95,12 @@ if __name__ == '__main__':
|
|
|
95
95
|
ast_argNumbaProgress = ast.arg(arg=spices.numbaProgressBarIdentifier, annotation=ast.Name(id=numba_progressPythonClass, ctx=ast.Load()))
|
|
96
96
|
ingredientsFunction.astFunctionDef.args.args.append(ast_argNumbaProgress)
|
|
97
97
|
|
|
98
|
-
findThis =
|
|
98
|
+
findThis = IfThis.isAugAssign_targetIs(IfThis.isName_Identifier(job.shatteredDataclass.countingVariableName.id))
|
|
99
99
|
doThat = Then.replaceWith(Make.Expr(Make.Call(Make.Attribute(Make.Name(spices.numbaProgressBarIdentifier),'update'),[Make.Constant(1)])))
|
|
100
100
|
countWithProgressBar = NodeChanger(findThis, doThat)
|
|
101
101
|
countWithProgressBar.visit(ingredientsFunction.astFunctionDef)
|
|
102
102
|
|
|
103
|
-
removeReturnStatement = NodeChanger(
|
|
103
|
+
removeReturnStatement = NodeChanger(Be.Return, Then.removeIt)
|
|
104
104
|
removeReturnStatement.visit(ingredientsFunction.astFunctionDef)
|
|
105
105
|
ingredientsFunction.astFunctionDef.returns = Make.Constant(value=None)
|
|
106
106
|
|
|
@@ -137,7 +137,7 @@ def move_arg2FunctionDefDOTbodyAndAssignInitialValues(ingredientsFunction: Ingre
|
|
|
137
137
|
list_argCuzMyBrainRefusesToThink = ingredientsFunction.astFunctionDef.args.args + ingredientsFunction.astFunctionDef.args.posonlyargs + ingredientsFunction.astFunctionDef.args.kwonlyargs
|
|
138
138
|
list_arg_arg: list[ast_Identifier] = [ast_arg.arg for ast_arg in list_argCuzMyBrainRefusesToThink]
|
|
139
139
|
listName: list[ast.Name] = []
|
|
140
|
-
NodeTourist(
|
|
140
|
+
NodeTourist(Be.Name, Then.appendTo(listName)).visit(ingredientsFunction.astFunctionDef)
|
|
141
141
|
list_Identifiers: list[ast_Identifier] = [astName.id for astName in listName]
|
|
142
142
|
list_IdentifiersNotUsed: list[ast_Identifier] = list(set(list_arg_arg) - set(list_Identifiers))
|
|
143
143
|
|
|
@@ -165,7 +165,7 @@ def move_arg2FunctionDefDOTbodyAndAssignInitialValues(ingredientsFunction: Ingre
|
|
|
165
165
|
|
|
166
166
|
ingredientsFunction.astFunctionDef.body.insert(0, ImaAnnAssign)
|
|
167
167
|
|
|
168
|
-
findThis =
|
|
168
|
+
findThis = IfThis.is_arg_Identifier(ast_arg.arg)
|
|
169
169
|
remove_arg = NodeChanger(findThis, Then.removeIt)
|
|
170
170
|
remove_arg.visit(ingredientsFunction.astFunctionDef)
|
|
171
171
|
|
|
@@ -201,7 +201,7 @@ def makeJobNumba(job: RecipeJob, spices: SpicesJobNumba) -> None:
|
|
|
201
201
|
ingredientsCount: IngredientsFunction = IngredientsFunction(astFunctionDef, LedgerOfImports())
|
|
202
202
|
|
|
203
203
|
# Remove `foldGroups` and any other unused statements, so you can dynamically determine which variables are not used
|
|
204
|
-
findThis =
|
|
204
|
+
findThis = IfThis.isAssignAndTargets0Is(IfThis.isSubscript_Identifier('foldGroups'))
|
|
205
205
|
doThat = Then.removeIt
|
|
206
206
|
remove_foldGroups = NodeChanger(findThis, doThat)
|
|
207
207
|
remove_foldGroups.visit(ingredientsCount.astFunctionDef)
|
|
@@ -209,7 +209,7 @@ def makeJobNumba(job: RecipeJob, spices: SpicesJobNumba) -> None:
|
|
|
209
209
|
# replace identifiers with static values with their values, so you can dynamically determine which variables are not used
|
|
210
210
|
list_IdentifiersStaticValues = list_IdentifiersStaticValuesHARDCODED
|
|
211
211
|
for identifier in list_IdentifiersStaticValues:
|
|
212
|
-
findThis =
|
|
212
|
+
findThis = IfThis.isName_Identifier(identifier)
|
|
213
213
|
doThat = Then.replaceWith(Make.Constant(int(job.state.__dict__[identifier])))
|
|
214
214
|
NodeChanger(findThis, doThat).visit(ingredientsCount.astFunctionDef)
|
|
215
215
|
|
|
@@ -233,7 +233,7 @@ if __name__ == '__main__':
|
|
|
233
233
|
# from mapFolding.oeis import getFoldsTotalKnown
|
|
234
234
|
# print(foldsTotal == getFoldsTotalKnown({job.state.mapShape}))
|
|
235
235
|
ingredientsModule.appendLauncher(ast.parse(linesLaunch))
|
|
236
|
-
changeReturnParallelCallable = NodeChanger(
|
|
236
|
+
changeReturnParallelCallable = NodeChanger(Be.Return, Then.replaceWith(Make.Return(job.shatteredDataclass.countingVariableName)))
|
|
237
237
|
changeReturnParallelCallable.visit(ingredientsCount.astFunctionDef)
|
|
238
238
|
ingredientsCount.astFunctionDef.returns = job.shatteredDataclass.countingVariableAnnotation
|
|
239
239
|
|
|
@@ -300,10 +300,11 @@ if __name__ == '__main__':
|
|
|
300
300
|
"""
|
|
301
301
|
|
|
302
302
|
if __name__ == '__main__':
|
|
303
|
-
mapShape = (
|
|
303
|
+
mapShape = (1,46)
|
|
304
304
|
state = makeInitializedComputationState(mapShape)
|
|
305
305
|
# foldsTotalEstimated = getFoldsTotalKnown(state.mapShape) // state.leavesTotal
|
|
306
|
-
foldsTotalEstimated = dictionaryEstimates[state.mapShape] // state.leavesTotal
|
|
306
|
+
# foldsTotalEstimated = dictionaryEstimates[state.mapShape] // state.leavesTotal
|
|
307
|
+
foldsTotalEstimated = 0
|
|
307
308
|
pathModule = PurePosixPath(The.pathPackage, 'jobs')
|
|
308
309
|
pathFilenameFoldsTotal = PurePosixPath(getPathFilenameFoldsTotal(state.mapShape, pathModule))
|
|
309
310
|
aJob = RecipeJob(state, foldsTotalEstimated, pathModule=pathModule, pathFilenameFoldsTotal=pathFilenameFoldsTotal)
|
|
@@ -16,23 +16,14 @@ performance improvements while preserving code semantics and correctness.
|
|
|
16
16
|
"""
|
|
17
17
|
|
|
18
18
|
from collections.abc import Callable, Sequence
|
|
19
|
-
from mapFolding
|
|
19
|
+
from mapFolding import NotRequired, TypedDict
|
|
20
|
+
from mapFolding.someAssemblyRequired import ast_Identifier, IngredientsFunction, Make, RecipeSynthesizeFlow, str_nameDOTname
|
|
20
21
|
from mapFolding.someAssemblyRequired.transformationTools import makeNewFlow, write_astModule
|
|
21
22
|
from numba.core.compiler import CompilerBase as numbaCompilerBase
|
|
22
|
-
from typing import Any, cast, Final
|
|
23
|
+
from typing import Any, cast, Final
|
|
23
24
|
import ast
|
|
24
25
|
import dataclasses
|
|
25
26
|
|
|
26
|
-
try:
|
|
27
|
-
from typing import NotRequired
|
|
28
|
-
except Exception:
|
|
29
|
-
from typing_extensions import NotRequired # pyright: ignore[reportShadowedImports]
|
|
30
|
-
|
|
31
|
-
if TYPE_CHECKING:
|
|
32
|
-
from typing import TypedDict
|
|
33
|
-
else:
|
|
34
|
-
TypedDict = dict[str,Any]
|
|
35
|
-
|
|
36
27
|
# Consolidate settings classes through inheritance https://github.com/hunterhogan/mapFolding/issues/15
|
|
37
28
|
theNumbaFlow: RecipeSynthesizeFlow = RecipeSynthesizeFlow()
|
|
38
29
|
|
|
@@ -60,17 +51,8 @@ class ParametersNumba(TypedDict):
|
|
|
60
51
|
signature_or_function: NotRequired[Any | Callable[..., Any] | str | tuple[Any, ...]]
|
|
61
52
|
target: NotRequired[str]
|
|
62
53
|
|
|
63
|
-
parametersNumbaFailEarly: Final[ParametersNumba] = { '_nrt': True, 'boundscheck': True, 'cache': True, 'error_model': 'python', 'fastmath': False, 'forceinline': True, 'inline': 'always', 'looplift': False, 'no_cfunc_wrapper': False, 'no_cpython_wrapper': False, 'nopython': True, 'parallel': False, }
|
|
64
|
-
"""For a production function: speed is irrelevant, error discovery is paramount, must be compatible with anything downstream."""
|
|
65
54
|
parametersNumbaDefault: Final[ParametersNumba] = { '_nrt': True, 'boundscheck': False, 'cache': True, 'error_model': 'numpy', 'fastmath': True, 'forceinline': True, 'inline': 'always', 'looplift': False, 'no_cfunc_wrapper': False, 'no_cpython_wrapper': False, 'nopython': True, 'parallel': False, }
|
|
66
55
|
"""Middle of the road: fast, lean, but will talk to non-jitted functions."""
|
|
67
|
-
parametersNumbaParallelDEFAULT: Final[ParametersNumba] = { **parametersNumbaDefault, '_nrt': True, 'parallel': True, }
|
|
68
|
-
"""Middle of the road: fast, lean, but will talk to non-jitted functions."""
|
|
69
|
-
parametersNumbaSuperJit: Final[ParametersNumba] = { **parametersNumbaDefault, 'no_cfunc_wrapper': True, 'no_cpython_wrapper': True, }
|
|
70
|
-
"""Speed, no helmet, no talking to non-jitted functions."""
|
|
71
|
-
parametersNumbaSuperJitParallel: Final[ParametersNumba] = { **parametersNumbaSuperJit, '_nrt': True, 'parallel': True, }
|
|
72
|
-
"""Speed, no helmet, concurrency, no talking to non-jitted functions."""
|
|
73
|
-
parametersNumbaMinimum: Final[ParametersNumba] = { '_nrt': True, 'boundscheck': True, 'cache': True, 'error_model': 'numpy', 'fastmath': True, 'forceinline': False, 'inline': 'always', 'looplift': False, 'no_cfunc_wrapper': False, 'no_cpython_wrapper': False, 'nopython': False, 'forceobj': True, 'parallel': False, }
|
|
74
56
|
parametersNumbaLight: Final[ParametersNumba] = {'cache': True, 'error_model': 'numpy', 'fastmath': True, 'forceinline': True}
|
|
75
57
|
|
|
76
58
|
Z0Z_numbaDataTypeModule: str_nameDOTname = 'numba'
|
|
@@ -141,7 +123,7 @@ def decorateCallableWithNumba(ingredientsFunction: IngredientsFunction, paramete
|
|
|
141
123
|
ingredientsFunction.imports.addImportFrom_asStr(decoratorModule, decoratorCallable)
|
|
142
124
|
# Leave this line in so that global edits will change it.
|
|
143
125
|
astDecorator: ast.Call = Make.Call(Make.Name(decoratorCallable), list_argsDecorator, listDecoratorKeywords)
|
|
144
|
-
astDecorator: ast.Call = Make.Call(Make.Name(decoratorCallable),
|
|
126
|
+
astDecorator: ast.Call = Make.Call(Make.Name(decoratorCallable), list_keyword=listDecoratorKeywords)
|
|
145
127
|
|
|
146
128
|
ingredientsFunction.astFunctionDef.decorator_list = [astDecorator]
|
|
147
129
|
return ingredientsFunction
|
|
@@ -188,11 +170,5 @@ def makeNumbaFlow(numbaFlow: RecipeSynthesizeFlow) -> None:
|
|
|
188
170
|
|
|
189
171
|
write_astModule(ingredientsModuleNumbaUnified, numbaFlow.pathFilenameDispatcher, numbaFlow.packageIdentifier)
|
|
190
172
|
|
|
191
|
-
def getIt(astCallConcurrencyResult: list[ast.Call]) -> Callable[[ast.AST], ast.AST]:
|
|
192
|
-
def workhorse(node: ast.AST) -> ast.AST:
|
|
193
|
-
NodeTourist(be.Call, Then.appendTo(astCallConcurrencyResult)).visit(node)
|
|
194
|
-
return node
|
|
195
|
-
return workhorse
|
|
196
|
-
|
|
197
173
|
if __name__ == '__main__':
|
|
198
174
|
makeNumbaFlow(theNumbaFlow)
|