mapFolding 0.5.0__py3-none-any.whl → 0.6.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mapFolding/__init__.py +96 -58
- mapFolding/basecamp.py +5 -7
- mapFolding/beDRY.py +11 -41
- mapFolding/oeis.py +71 -74
- mapFolding/theConfiguration.py +58 -0
- mapFolding/theDao.py +1 -1
- mapFolding/theSSOT.py +14 -48
- mapFolding/theSSOTdatatypes.py +25 -36
- mapFolding/theWrongWay.py +7 -0
- {mapFolding-0.5.0.dist-info → mapfolding-0.6.0.dist-info}/METADATA +6 -4
- mapfolding-0.6.0.dist-info/RECORD +16 -0
- {mapFolding-0.5.0.dist-info → mapfolding-0.6.0.dist-info}/WHEEL +1 -1
- {mapFolding-0.5.0.dist-info → mapfolding-0.6.0.dist-info}/top_level.txt +0 -1
- mapFolding/reference/flattened.py +0 -377
- mapFolding/reference/hunterNumba.py +0 -132
- mapFolding/reference/irvineJavaPort.py +0 -120
- mapFolding/reference/jax.py +0 -208
- mapFolding/reference/lunnan.py +0 -153
- mapFolding/reference/lunnanNumpy.py +0 -123
- mapFolding/reference/lunnanWhile.py +0 -121
- mapFolding/reference/rotatedEntryPoint.py +0 -240
- mapFolding/reference/total_countPlus1vsPlusN.py +0 -211
- mapFolding/someAssemblyRequired/__init__.py +0 -5
- mapFolding/someAssemblyRequired/getLLVMforNoReason.py +0 -19
- mapFolding/someAssemblyRequired/makeJob.py +0 -56
- mapFolding/someAssemblyRequired/synthesizeModuleJAX.py +0 -27
- mapFolding/someAssemblyRequired/synthesizeNumba.py +0 -345
- mapFolding/someAssemblyRequired/synthesizeNumbaGeneralized.py +0 -397
- mapFolding/someAssemblyRequired/synthesizeNumbaJob.py +0 -155
- mapFolding/someAssemblyRequired/synthesizeNumbaModules.py +0 -123
- mapFolding/syntheticModules/numbaCount.py +0 -158
- mapFolding/syntheticModules/numba_doTheNeedful.py +0 -13
- mapFolding-0.5.0.dist-info/RECORD +0 -39
- tests/__init__.py +0 -1
- tests/conftest.py +0 -335
- tests/test_computations.py +0 -42
- tests/test_oeis.py +0 -128
- tests/test_other.py +0 -175
- tests/test_tasks.py +0 -40
- /mapFolding/{syntheticModules/__init__.py → py.typed} +0 -0
- {mapFolding-0.5.0.dist-info → mapfolding-0.6.0.dist-info}/LICENSE +0 -0
- {mapFolding-0.5.0.dist-info → mapfolding-0.6.0.dist-info}/entry_points.txt +0 -0
|
@@ -1,123 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
A generally faithful translation of the original Atlas Autocode code by W. F. Lunnon to Python using NumPy.
|
|
3
|
-
W. F. Lunnon, Multi-dimensional map-folding, The Computer Journal, Volume 14, Issue 1, 1971, Pages 75-80, https://doi.org/10.1093/comjnl/14.1.75
|
|
4
|
-
"""
|
|
5
|
-
from typing import List
|
|
6
|
-
import numpy
|
|
7
|
-
|
|
8
|
-
def foldings(p: List[int]) -> int:
|
|
9
|
-
"""
|
|
10
|
-
Run loop with (A, B) on each folding of a p[1] x ... x p[d] map, where A and B are the above and below vectors.
|
|
11
|
-
|
|
12
|
-
Parameters:
|
|
13
|
-
p: A list of integers representing the dimensions of the map.
|
|
14
|
-
|
|
15
|
-
Returns:
|
|
16
|
-
G: The number of distinct foldings for the given map dimensions.
|
|
17
|
-
|
|
18
|
-
NOTE If there are fewer than two dimensions, any dimensions are not positive, or any dimensions are not integers, the output will be unreliable.
|
|
19
|
-
"""
|
|
20
|
-
|
|
21
|
-
g: int = 0
|
|
22
|
-
d: int = len(p)
|
|
23
|
-
n: int = 1
|
|
24
|
-
for i in range(d):
|
|
25
|
-
n = n * p[i]
|
|
26
|
-
|
|
27
|
-
# d dimensions and n leaves
|
|
28
|
-
|
|
29
|
-
A = numpy.zeros(n + 1, dtype=int)
|
|
30
|
-
B = numpy.zeros(n + 1, dtype=int)
|
|
31
|
-
count = numpy.zeros(n + 1, dtype=int)
|
|
32
|
-
gapter = numpy.zeros(n + 1, dtype=int)
|
|
33
|
-
gap = numpy.zeros(n * n + 1, dtype=int)
|
|
34
|
-
|
|
35
|
-
# B[m] is the leaf below leaf m in the current folding,
|
|
36
|
-
# A[m] the leaf above. count[m] is the no. of sections in which
|
|
37
|
-
# there is a gap for the new leaf l below leaf m,
|
|
38
|
-
# gap[gapter[l - 1] + j] is the j-th (possible or actual) gap for leaf l,
|
|
39
|
-
# and later gap[gapter[l]] is the gap where leaf l is currently inserted
|
|
40
|
-
|
|
41
|
-
P = numpy.ones(d + 1, dtype=int)
|
|
42
|
-
C = numpy.zeros((d + 1, n + 1), dtype=int)
|
|
43
|
-
D = numpy.zeros((d + 1, n + 1, n + 1), dtype=int)
|
|
44
|
-
|
|
45
|
-
for i in range(1, d + 1):
|
|
46
|
-
P[i] = P[i - 1] * p[i - 1]
|
|
47
|
-
|
|
48
|
-
for i in range(1, d + 1):
|
|
49
|
-
for m in range(1, n + 1):
|
|
50
|
-
C[i][m] = ((m - 1) // P[i - 1]) % p[i - 1] + 1 # NOTE Because modulo is available, this statement is simpler.
|
|
51
|
-
|
|
52
|
-
for i in range(1, d + 1):
|
|
53
|
-
for l in range(1, n + 1):
|
|
54
|
-
for m in range(1, l + 1):
|
|
55
|
-
if C[i][l] - C[i][m] == (C[i][l] - C[i][m]) // 2 * 2:
|
|
56
|
-
if C[i][m] == 1:
|
|
57
|
-
D[i][l][m] = m
|
|
58
|
-
else:
|
|
59
|
-
D[i][l][m] = m - P[i - 1]
|
|
60
|
-
else:
|
|
61
|
-
if C[i][m] == p[i - 1] or m + P[i - 1] > l:
|
|
62
|
-
D[i][l][m] = m
|
|
63
|
-
else:
|
|
64
|
-
D[i][l][m] = m + P[i - 1]
|
|
65
|
-
# P[i] = p[1] x ... x p[i], C[i][m] = i-th co-ordinate of leaf m,
|
|
66
|
-
# D[i][l][m] = leaf connected to m in section i when inserting l;
|
|
67
|
-
|
|
68
|
-
G: int = 0
|
|
69
|
-
l: int = 1
|
|
70
|
-
|
|
71
|
-
# kick off with null folding
|
|
72
|
-
while l > 0:
|
|
73
|
-
if l <= 1 or B[0] == 1: # NOTE This statement is part of a significant divergence from the 1971 paper. As a result, this version is greater than one order of magnitude faster.
|
|
74
|
-
if l > n:
|
|
75
|
-
G = G + n # NOTE Due to `B[0] == 1`, this implementation increments the counted foldings in batches of `n`-many foldings, rather than immediately incrementing when a folding is found, i.e. `G = G + 1`
|
|
76
|
-
else:
|
|
77
|
-
dd: int = 0
|
|
78
|
-
gg: int = gapter[l - 1]
|
|
79
|
-
g = gg
|
|
80
|
-
# dd is the no. of sections in which l is unconstrained,
|
|
81
|
-
# gg the no. of possible and g the no. of actual gaps for l, + gapter[l - 1]
|
|
82
|
-
|
|
83
|
-
# find the possible gaps for leaf l in each section,
|
|
84
|
-
# then discard those not common to all. All possible if dd = d
|
|
85
|
-
for i in range(1, d + 1):
|
|
86
|
-
if D[i][l][l] == l:
|
|
87
|
-
dd = dd + 1
|
|
88
|
-
else:
|
|
89
|
-
m: int = D[i][l][l]
|
|
90
|
-
while m != l:
|
|
91
|
-
gap[gg] = m
|
|
92
|
-
if count[m] == 0:
|
|
93
|
-
gg = gg + 1
|
|
94
|
-
count[m] += 1
|
|
95
|
-
m = D[i][l][B[m]]
|
|
96
|
-
|
|
97
|
-
if dd == d:
|
|
98
|
-
for m in range(l):
|
|
99
|
-
gap[gg] = m
|
|
100
|
-
gg = gg + 1
|
|
101
|
-
|
|
102
|
-
for j in range(g, gg):
|
|
103
|
-
gap[g] = gap[j]
|
|
104
|
-
if count[gap[j]] == d - dd:
|
|
105
|
-
g = g + 1
|
|
106
|
-
count[gap[j]] = 0
|
|
107
|
-
|
|
108
|
-
# for each gap insert leaf l, [the main while loop shall progress],
|
|
109
|
-
# remove leaf l
|
|
110
|
-
while l > 0 and g == gapter[l - 1]:
|
|
111
|
-
l = l - 1
|
|
112
|
-
B[A[l]] = B[l]
|
|
113
|
-
A[B[l]] = A[l]
|
|
114
|
-
|
|
115
|
-
if l > 0:
|
|
116
|
-
g = g - 1
|
|
117
|
-
A[l] = gap[g]
|
|
118
|
-
B[l] = B[A[l]]
|
|
119
|
-
B[A[l]] = l
|
|
120
|
-
A[B[l]] = l
|
|
121
|
-
gapter[l] = g
|
|
122
|
-
l = l + 1
|
|
123
|
-
return G
|
|
@@ -1,121 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
A largely faithful translation of the original Atlas Autocode code by W. F. Lunnon to Python using `while`.
|
|
3
|
-
W. F. Lunnon, Multi-dimensional map-folding, The Computer Journal, Volume 14, Issue 1, 1971, Pages 75-80, https://doi.org/10.1093/comjnl/14.1.75
|
|
4
|
-
"""
|
|
5
|
-
from typing import Sequence
|
|
6
|
-
|
|
7
|
-
def foldings(p: Sequence[int]) -> int:
|
|
8
|
-
"""
|
|
9
|
-
Run loop with (A, B) on each folding of a p[1] x ... x p[d] map, where A and B are the above and below vectors.
|
|
10
|
-
|
|
11
|
-
Parameters:
|
|
12
|
-
p: An array of integers representing the dimensions of the map.
|
|
13
|
-
|
|
14
|
-
Returns:
|
|
15
|
-
G: The number of distinct foldings for the given map dimensions.
|
|
16
|
-
|
|
17
|
-
NOTE If there are fewer than two dimensions, any dimensions are not positive, or any dimensions are not integers, the output will be unreliable.
|
|
18
|
-
"""
|
|
19
|
-
|
|
20
|
-
g: int = 0
|
|
21
|
-
d: int = len(p)
|
|
22
|
-
n: int = 1
|
|
23
|
-
for i in range(d):
|
|
24
|
-
n = n * p[i]
|
|
25
|
-
|
|
26
|
-
# d dimensions and n leaves
|
|
27
|
-
|
|
28
|
-
A = [0] * (n + 1)
|
|
29
|
-
B = [0] * (n + 1)
|
|
30
|
-
count = [0] * (n + 1)
|
|
31
|
-
gapter = [0] * (n + 1)
|
|
32
|
-
gap = [0] * (n * n + 1)
|
|
33
|
-
|
|
34
|
-
# B[m] is the leaf below leaf m in the current folding,
|
|
35
|
-
# A[m] the leaf above. count[m] is the no. of sections in which
|
|
36
|
-
# there is a gap for the new leaf l below leaf m,
|
|
37
|
-
# gap[gapter[l - 1] + j] is the j-th (possible or actual) gap for leaf l,
|
|
38
|
-
# and later gap[gapter[l]] is the gap where leaf l is currently inserted
|
|
39
|
-
|
|
40
|
-
P = [1] * (d + 1)
|
|
41
|
-
C = [[0] * (n + 1) for dimension1 in range(d + 1)]
|
|
42
|
-
D = [[[0] * (n + 1) for dimension2 in range(n + 1)] for dimension1 in range(d + 1)]
|
|
43
|
-
|
|
44
|
-
for i in range(1, d + 1):
|
|
45
|
-
P[i] = P[i - 1] * p[i - 1]
|
|
46
|
-
|
|
47
|
-
for i in range(1, d + 1):
|
|
48
|
-
for m in range(1, n + 1):
|
|
49
|
-
C[i][m] = ((m - 1) // P[i - 1]) - ((m - 1) // P[i]) * p[i - 1] + 1
|
|
50
|
-
|
|
51
|
-
for i in range(1, d + 1):
|
|
52
|
-
for l in range(1, n + 1):
|
|
53
|
-
for m in range(1, l + 1):
|
|
54
|
-
if C[i][l] - C[i][m] == (C[i][l] - C[i][m]) // 2 * 2: # !
|
|
55
|
-
if C[i][m] == 1:
|
|
56
|
-
D[i][l][m] = m
|
|
57
|
-
else:
|
|
58
|
-
D[i][l][m] = m - P[i - 1]
|
|
59
|
-
else:
|
|
60
|
-
if C[i][m] == p[i - 1] or m + P[i - 1] > l:
|
|
61
|
-
D[i][l][m] = m
|
|
62
|
-
else:
|
|
63
|
-
D[i][l][m] = m + P[i - 1]
|
|
64
|
-
# P[i] = p[1] x ... x p[i], C[i][m] = i-th co-ordinate of leaf m,
|
|
65
|
-
# D[i][l][m] = leaf connected to m in section i when inserting l;
|
|
66
|
-
|
|
67
|
-
G: int = 0
|
|
68
|
-
l: int = 1
|
|
69
|
-
|
|
70
|
-
# kick off with null folding
|
|
71
|
-
while l > 0:
|
|
72
|
-
if l > n:
|
|
73
|
-
G = G + 1
|
|
74
|
-
else:
|
|
75
|
-
dd: int = 0
|
|
76
|
-
gg: int = gapter[l - 1]
|
|
77
|
-
g = gg
|
|
78
|
-
# dd is the no. of sections in which l is unconstrained,
|
|
79
|
-
# gg the no. of possible and g the no. of actual gaps for l, + gapter[l - 1]
|
|
80
|
-
|
|
81
|
-
# find the possible gaps for leaf l in each section,
|
|
82
|
-
# then discard those not common to all. All possible if dd = d
|
|
83
|
-
for i in range(1, d + 1):
|
|
84
|
-
if D[i][l][l] == l:
|
|
85
|
-
dd = dd + 1
|
|
86
|
-
else:
|
|
87
|
-
m: int = D[i][l][l]
|
|
88
|
-
while m != l:
|
|
89
|
-
gap[gg] = m
|
|
90
|
-
if count[m] == 0:
|
|
91
|
-
gg = gg + 1
|
|
92
|
-
count[m] += 1
|
|
93
|
-
m = D[i][l][B[m]]
|
|
94
|
-
|
|
95
|
-
if dd == d:
|
|
96
|
-
for m in range(l):
|
|
97
|
-
gap[gg] = m
|
|
98
|
-
gg = gg + 1
|
|
99
|
-
|
|
100
|
-
for j in range(g, gg):
|
|
101
|
-
gap[g] = gap[j]
|
|
102
|
-
if count[gap[j]] == d - dd:
|
|
103
|
-
g = g + 1
|
|
104
|
-
count[gap[j]] = 0
|
|
105
|
-
|
|
106
|
-
# for each gap insert leaf l, [the main while loop shall progress],
|
|
107
|
-
# remove leaf l
|
|
108
|
-
while l > 0 and g == gapter[l - 1]:
|
|
109
|
-
l = l - 1
|
|
110
|
-
B[A[l]] = B[l]
|
|
111
|
-
A[B[l]] = A[l]
|
|
112
|
-
|
|
113
|
-
if l > 0:
|
|
114
|
-
g = g - 1
|
|
115
|
-
A[l] = gap[g]
|
|
116
|
-
B[l] = B[A[l]]
|
|
117
|
-
B[A[l]] = l
|
|
118
|
-
A[B[l]] = l
|
|
119
|
-
gapter[l] = g
|
|
120
|
-
l = l + 1
|
|
121
|
-
return G
|
|
@@ -1,240 +0,0 @@
|
|
|
1
|
-
from mapFolding import outfitFoldings
|
|
2
|
-
from numba import njit
|
|
3
|
-
from typing import List
|
|
4
|
-
import numpy
|
|
5
|
-
from numpy.typing import NDArray
|
|
6
|
-
|
|
7
|
-
"""
|
|
8
|
-
It is possible to enter the main `while` loop from an arbitrary point. This version is "rotated" to effectively enter at the modulo operator.
|
|
9
|
-
"""
|
|
10
|
-
|
|
11
|
-
# Indices of array `track`, which is a collection of one-dimensional arrays each of length `the[leavesTotal] + 1`.
|
|
12
|
-
# The values in the array cells are dynamic, small, unsigned integers.
|
|
13
|
-
A = leafAbove = 0
|
|
14
|
-
"""Leaf above leaf m"""
|
|
15
|
-
B = leafBelow = 1
|
|
16
|
-
"""Leaf below leaf m"""
|
|
17
|
-
count = countDimensionsGapped = 2
|
|
18
|
-
"""Number of gaps available for leaf l"""
|
|
19
|
-
gapter = gapRangeStart = 3
|
|
20
|
-
"""Index of gap stack for leaf l"""
|
|
21
|
-
|
|
22
|
-
# Indices of array `my`, which holds dynamic, small, unsigned, integer values.
|
|
23
|
-
tricky = [
|
|
24
|
-
(leaf1ndex := 0),
|
|
25
|
-
(gap1ndex := 1),
|
|
26
|
-
(unconstrainedLeaf := 2),
|
|
27
|
-
(gap1ndexCeiling := 3),
|
|
28
|
-
(leafConnectee := 4),
|
|
29
|
-
(taskIndex := 5),
|
|
30
|
-
(dimension1ndex := 6),
|
|
31
|
-
(foldingsSubtotal := 7),
|
|
32
|
-
]
|
|
33
|
-
|
|
34
|
-
COUNTindicesDynamic = len(tricky)
|
|
35
|
-
|
|
36
|
-
# Indices of array `the`, which holds unchanging, small, unsigned, integer values.
|
|
37
|
-
tricky = [
|
|
38
|
-
(dimensionsPlus1 := 0),
|
|
39
|
-
(dimensionsTotal := 1),
|
|
40
|
-
(leavesTotal := 2),
|
|
41
|
-
]
|
|
42
|
-
|
|
43
|
-
COUNTindicesStatic = len(tricky)
|
|
44
|
-
|
|
45
|
-
def countFolds(listDimensions: List[int]):
|
|
46
|
-
static = numpy.zeros(COUNTindicesStatic, dtype=numpy.int64)
|
|
47
|
-
|
|
48
|
-
listDimensions, static[leavesTotal], D, track,gapsWhere = outfitFoldings(listDimensions)
|
|
49
|
-
|
|
50
|
-
static[dimensionsTotal] = len(listDimensions)
|
|
51
|
-
static[dimensionsPlus1] = static[dimensionsTotal] + 1
|
|
52
|
-
|
|
53
|
-
# Pass listDimensions and taskDivisions to _sherpa for benchmarking
|
|
54
|
-
foldingsTotal = _sherpa(track, gapsWhere, static, D, listDimensions)
|
|
55
|
-
return foldingsTotal
|
|
56
|
-
|
|
57
|
-
# @recordBenchmarks()
|
|
58
|
-
def _sherpa(track: NDArray, gap: NDArray, static: NDArray, D: NDArray, p: List[int]):
|
|
59
|
-
"""Performance critical section that counts foldings.
|
|
60
|
-
|
|
61
|
-
Parameters:
|
|
62
|
-
track: Array tracking folding state
|
|
63
|
-
gap: Array for potential gaps
|
|
64
|
-
static: Array containing static configuration values
|
|
65
|
-
D: Array of leaf connections
|
|
66
|
-
p: List of dimensions for benchmarking
|
|
67
|
-
"""
|
|
68
|
-
foldingsTotal = countFoldings(track, gap, static, D)
|
|
69
|
-
return foldingsTotal
|
|
70
|
-
|
|
71
|
-
@njit(cache=True, parallel=False, fastmath=False)
|
|
72
|
-
def countFoldings(TEMPLATEtrack: NDArray,
|
|
73
|
-
TEMPLATEgapsWhere: NDArray,
|
|
74
|
-
the: NDArray,
|
|
75
|
-
connectionGraph: NDArray
|
|
76
|
-
):
|
|
77
|
-
|
|
78
|
-
TEMPLATEmy = numpy.zeros(COUNTindicesDynamic, dtype=numpy.int64)
|
|
79
|
-
TEMPLATEmy[leaf1ndex] = 1
|
|
80
|
-
|
|
81
|
-
taskDivisions = 0
|
|
82
|
-
# taskDivisions = the[leavesTotal]
|
|
83
|
-
TEMPLATEmy[taskIndex] = taskDivisions - 1 # the first modulo is leavesTotal - 1
|
|
84
|
-
|
|
85
|
-
def prepareWork(track: NDArray,
|
|
86
|
-
gapsWhere: NDArray,
|
|
87
|
-
my: NDArray) -> tuple[NDArray, NDArray, NDArray]:
|
|
88
|
-
foldingsTotal = 0
|
|
89
|
-
while True:
|
|
90
|
-
if my[leaf1ndex] <= 1 or track[leafBelow][0] == 1:
|
|
91
|
-
if my[leaf1ndex] > the[leavesTotal]:
|
|
92
|
-
foldingsTotal += the[leavesTotal]
|
|
93
|
-
else:
|
|
94
|
-
my[unconstrainedLeaf] = 0
|
|
95
|
-
my[gap1ndexCeiling] = track[gapRangeStart][my[leaf1ndex] - 1]
|
|
96
|
-
my[gap1ndex] = my[gap1ndexCeiling]
|
|
97
|
-
|
|
98
|
-
for PREPAREdimension1ndex in range(1, the[dimensionsPlus1]):
|
|
99
|
-
if connectionGraph[PREPAREdimension1ndex][my[leaf1ndex]][my[leaf1ndex]] == my[leaf1ndex]:
|
|
100
|
-
my[unconstrainedLeaf] += 1
|
|
101
|
-
else:
|
|
102
|
-
my[leafConnectee] = connectionGraph[PREPAREdimension1ndex][my[leaf1ndex]][my[leaf1ndex]]
|
|
103
|
-
while my[leafConnectee] != my[leaf1ndex]:
|
|
104
|
-
|
|
105
|
-
if my[leafConnectee] != my[leaf1ndex]:
|
|
106
|
-
my[dimension1ndex] = PREPAREdimension1ndex
|
|
107
|
-
return track, gapsWhere, my
|
|
108
|
-
|
|
109
|
-
if my[leaf1ndex] != the[leavesTotal]:
|
|
110
|
-
gapsWhere[my[gap1ndexCeiling]] = my[leafConnectee]
|
|
111
|
-
if track[countDimensionsGapped][my[leafConnectee]] == 0:
|
|
112
|
-
my[gap1ndexCeiling] += 1
|
|
113
|
-
track[countDimensionsGapped][my[leafConnectee]] += 1
|
|
114
|
-
else:
|
|
115
|
-
print("else")
|
|
116
|
-
my[dimension1ndex] = PREPAREdimension1ndex
|
|
117
|
-
return track, gapsWhere, my
|
|
118
|
-
# PREPAREmy[leafConnectee] % the[leavesTotal] == PREPAREmy[taskIndex]
|
|
119
|
-
my[leafConnectee] = connectionGraph[dimension1ndex][my[leaf1ndex]][track[leafBelow][my[leafConnectee]]]
|
|
120
|
-
|
|
121
|
-
if my[unconstrainedLeaf] == the[dimensionsTotal]:
|
|
122
|
-
for indexLeaf in range(my[leaf1ndex]):
|
|
123
|
-
gapsWhere[my[gap1ndexCeiling]] = indexLeaf
|
|
124
|
-
my[gap1ndexCeiling] += 1
|
|
125
|
-
|
|
126
|
-
for indexMiniGap in range(my[gap1ndex], my[gap1ndexCeiling]):
|
|
127
|
-
gapsWhere[my[gap1ndex]] = gapsWhere[indexMiniGap]
|
|
128
|
-
if track[countDimensionsGapped][gapsWhere[indexMiniGap]] == the[dimensionsTotal] - my[unconstrainedLeaf]:
|
|
129
|
-
my[gap1ndex] += 1
|
|
130
|
-
track[countDimensionsGapped][gapsWhere[indexMiniGap]] = 0
|
|
131
|
-
|
|
132
|
-
while my[leaf1ndex] > 0 and my[gap1ndex] == track[gapRangeStart][my[leaf1ndex] - 1]:
|
|
133
|
-
my[leaf1ndex] -= 1
|
|
134
|
-
track[leafBelow][track[leafAbove][my[leaf1ndex]]] = track[leafBelow][my[leaf1ndex]]
|
|
135
|
-
track[leafAbove][track[leafBelow][my[leaf1ndex]]] = track[leafAbove][my[leaf1ndex]]
|
|
136
|
-
|
|
137
|
-
if my[leaf1ndex] > 0:
|
|
138
|
-
my[gap1ndex] -= 1
|
|
139
|
-
track[leafAbove][my[leaf1ndex]] = gapsWhere[my[gap1ndex]]
|
|
140
|
-
track[leafBelow][my[leaf1ndex]] = track[leafBelow][track[leafAbove][my[leaf1ndex]]]
|
|
141
|
-
track[leafBelow][track[leafAbove][my[leaf1ndex]]] = my[leaf1ndex]
|
|
142
|
-
track[leafAbove][track[leafBelow][my[leaf1ndex]]] = my[leaf1ndex]
|
|
143
|
-
track[gapRangeStart][my[leaf1ndex]] = my[gap1ndex]
|
|
144
|
-
my[leaf1ndex] += 1
|
|
145
|
-
|
|
146
|
-
RETURNtrack, RETURNgapsWhere, RETURNmy = prepareWork(TEMPLATEtrack.copy(), TEMPLATEgapsWhere.copy(), TEMPLATEmy.copy())
|
|
147
|
-
|
|
148
|
-
foldingsTotal = doWork(RETURNtrack.copy(), RETURNgapsWhere.copy(), RETURNmy.copy(), the, connectionGraph, taskDivisions)
|
|
149
|
-
|
|
150
|
-
return foldingsTotal
|
|
151
|
-
|
|
152
|
-
@njit(cache=True, parallel=False, fastmath=False)
|
|
153
|
-
def doWork(track: NDArray,
|
|
154
|
-
gapsWhere: NDArray,
|
|
155
|
-
my: NDArray,
|
|
156
|
-
the: NDArray,
|
|
157
|
-
connectionGraph: NDArray,
|
|
158
|
-
taskDivisions: int = 0
|
|
159
|
-
):
|
|
160
|
-
|
|
161
|
-
papasGotABrandNewBag = True
|
|
162
|
-
if_activeLeaf1ndex_LTE_1_or_leafBelow_index_0_equals_1 = True
|
|
163
|
-
for_dimension1ndex_in_range_1_to_dimensionsPlus1 = True
|
|
164
|
-
while_leaf1ndexConnectee_notEquals_activeLeaf1ndex = True
|
|
165
|
-
|
|
166
|
-
thisIsNotTheFirstPass = False
|
|
167
|
-
|
|
168
|
-
while papasGotABrandNewBag:
|
|
169
|
-
if my[leaf1ndex] <= 1 or track[leafBelow][0] == 1 or if_activeLeaf1ndex_LTE_1_or_leafBelow_index_0_equals_1 == True:
|
|
170
|
-
if_activeLeaf1ndex_LTE_1_or_leafBelow_index_0_equals_1 = False
|
|
171
|
-
if my[leaf1ndex] > the[leavesTotal] and thisIsNotTheFirstPass:
|
|
172
|
-
my[foldingsSubtotal] += the[leavesTotal]
|
|
173
|
-
else:
|
|
174
|
-
if thisIsNotTheFirstPass:
|
|
175
|
-
my[unconstrainedLeaf] = 0
|
|
176
|
-
my[gap1ndexCeiling] = track[gapRangeStart][my[leaf1ndex] - 1]
|
|
177
|
-
my[gap1ndex] = my[gap1ndexCeiling]
|
|
178
|
-
|
|
179
|
-
for_dimension1ndex_in_range_1_to_dimensionsPlus1 = True
|
|
180
|
-
while for_dimension1ndex_in_range_1_to_dimensionsPlus1 == True:
|
|
181
|
-
for_dimension1ndex_in_range_1_to_dimensionsPlus1 = False
|
|
182
|
-
if connectionGraph[my[dimension1ndex]][my[leaf1ndex]][my[leaf1ndex]] == my[leaf1ndex] and thisIsNotTheFirstPass:
|
|
183
|
-
my[unconstrainedLeaf] += 1
|
|
184
|
-
else:
|
|
185
|
-
if thisIsNotTheFirstPass:
|
|
186
|
-
my[leafConnectee] = connectionGraph[my[dimension1ndex]][my[leaf1ndex]][my[leaf1ndex]]
|
|
187
|
-
if my[leafConnectee] != my[leaf1ndex]:
|
|
188
|
-
while_leaf1ndexConnectee_notEquals_activeLeaf1ndex = True
|
|
189
|
-
|
|
190
|
-
while while_leaf1ndexConnectee_notEquals_activeLeaf1ndex == True:
|
|
191
|
-
while_leaf1ndexConnectee_notEquals_activeLeaf1ndex = False
|
|
192
|
-
thisIsNotTheFirstPass = True
|
|
193
|
-
if taskDivisions==0 or my[leaf1ndex] != taskDivisions:
|
|
194
|
-
myTask = True
|
|
195
|
-
else:
|
|
196
|
-
modulo = my[leafConnectee] % the[leavesTotal]
|
|
197
|
-
if modulo == my[taskIndex]: myTask = True
|
|
198
|
-
else:
|
|
199
|
-
myTask = False
|
|
200
|
-
if myTask:
|
|
201
|
-
gapsWhere[my[gap1ndexCeiling]] = my[leafConnectee]
|
|
202
|
-
if track[countDimensionsGapped][my[leafConnectee]] == 0:
|
|
203
|
-
my[gap1ndexCeiling] += 1
|
|
204
|
-
track[countDimensionsGapped][my[leafConnectee]] += 1
|
|
205
|
-
my[leafConnectee] = connectionGraph[my[dimension1ndex]][my[leaf1ndex]][track[leafBelow][my[leafConnectee]]]
|
|
206
|
-
if my[leafConnectee] != my[leaf1ndex]:
|
|
207
|
-
while_leaf1ndexConnectee_notEquals_activeLeaf1ndex = True
|
|
208
|
-
my[dimension1ndex] += 1
|
|
209
|
-
if my[dimension1ndex] < the[dimensionsPlus1]:
|
|
210
|
-
for_dimension1ndex_in_range_1_to_dimensionsPlus1 = True
|
|
211
|
-
else:
|
|
212
|
-
my[dimension1ndex] = 1
|
|
213
|
-
|
|
214
|
-
if my[unconstrainedLeaf] == the[dimensionsTotal]:
|
|
215
|
-
for leaf1ndex in range(my[leaf1ndex]):
|
|
216
|
-
gapsWhere[my[gap1ndexCeiling]] = leaf1ndex
|
|
217
|
-
my[gap1ndexCeiling] += 1
|
|
218
|
-
|
|
219
|
-
for indexMiniGap in range(my[gap1ndex], my[gap1ndexCeiling]):
|
|
220
|
-
gapsWhere[my[gap1ndex]] = gapsWhere[indexMiniGap]
|
|
221
|
-
if track[countDimensionsGapped][gapsWhere[indexMiniGap]] == the[dimensionsTotal] - my[unconstrainedLeaf]:
|
|
222
|
-
my[gap1ndex] += 1
|
|
223
|
-
track[countDimensionsGapped][gapsWhere[indexMiniGap]] = 0
|
|
224
|
-
|
|
225
|
-
while my[leaf1ndex] > 0 and my[gap1ndex] == track[gapRangeStart][my[leaf1ndex] - 1]:
|
|
226
|
-
my[leaf1ndex] -= 1
|
|
227
|
-
track[leafBelow][track[leafAbove][my[leaf1ndex]]] = track[leafBelow][my[leaf1ndex]]
|
|
228
|
-
track[leafAbove][track[leafBelow][my[leaf1ndex]]] = track[leafAbove][my[leaf1ndex]]
|
|
229
|
-
|
|
230
|
-
if my[leaf1ndex] > 0:
|
|
231
|
-
my[gap1ndex] -= 1
|
|
232
|
-
track[leafAbove][my[leaf1ndex]] = gapsWhere[my[gap1ndex]]
|
|
233
|
-
track[leafBelow][my[leaf1ndex]] = track[leafBelow][track[leafAbove][my[leaf1ndex]]]
|
|
234
|
-
track[leafBelow][track[leafAbove][my[leaf1ndex]]] = my[leaf1ndex]
|
|
235
|
-
track[leafAbove][track[leafBelow][my[leaf1ndex]]] = my[leaf1ndex]
|
|
236
|
-
track[gapRangeStart][my[leaf1ndex]] = my[gap1ndex]
|
|
237
|
-
my[leaf1ndex] += 1
|
|
238
|
-
|
|
239
|
-
if my[leaf1ndex] <= 0:
|
|
240
|
-
return my[foldingsSubtotal]
|
|
@@ -1,211 +0,0 @@
|
|
|
1
|
-
from numba import njit
|
|
2
|
-
import numpy
|
|
3
|
-
|
|
4
|
-
@njit(cache=True)
|
|
5
|
-
def foldings_plus_1(p: list[int], computationDivisions: int = 0, computationIndex: int = 0) -> int:
|
|
6
|
-
n: int = 1 # Total number of leaves
|
|
7
|
-
for dimension in p:
|
|
8
|
-
n *= dimension
|
|
9
|
-
|
|
10
|
-
d = len(p) # Number of dimensions
|
|
11
|
-
# Compute arrays P, C, D as per the algorithm
|
|
12
|
-
P = numpy.ones(d + 1, dtype=numpy.int64)
|
|
13
|
-
for i in range(1, d + 1):
|
|
14
|
-
P[i] = P[i - 1] * p[i - 1]
|
|
15
|
-
|
|
16
|
-
# C[i][m] holds the i-th coordinate of leaf m
|
|
17
|
-
C = numpy.zeros((d + 1, n + 1), dtype=numpy.int64)
|
|
18
|
-
for i in range(1, d + 1):
|
|
19
|
-
for m in range(1, n + 1):
|
|
20
|
-
C[i][m] = ((m - 1) // P[i - 1]) - ((m - 1) // P[i]) * p[i - 1] + 1
|
|
21
|
-
|
|
22
|
-
# D[i][l][m] computes the leaf connected to m in section i when inserting l
|
|
23
|
-
D = numpy.zeros((d + 1, n + 1, n + 1), dtype=numpy.int64)
|
|
24
|
-
for i in range(1, d + 1):
|
|
25
|
-
for l in range(1, n + 1):
|
|
26
|
-
for m in range(1, l + 1):
|
|
27
|
-
delta = C[i][l] - C[i][m]
|
|
28
|
-
if delta % 2 == 0:
|
|
29
|
-
# If delta is even
|
|
30
|
-
if C[i][m] == 1:
|
|
31
|
-
D[i][l][m] = m
|
|
32
|
-
else:
|
|
33
|
-
D[i][l][m] = m - P[i - 1]
|
|
34
|
-
else:
|
|
35
|
-
# If delta is odd
|
|
36
|
-
if C[i][m] == p[i - 1] or m + P[i - 1] > l:
|
|
37
|
-
D[i][l][m] = m
|
|
38
|
-
else:
|
|
39
|
-
D[i][l][m] = m + P[i - 1]
|
|
40
|
-
# Initialize arrays/lists
|
|
41
|
-
A = numpy.zeros(n + 1, dtype=numpy.int64) # Leaf above leaf m
|
|
42
|
-
B = numpy.zeros(n + 1, dtype=numpy.int64) # Leaf below leaf m
|
|
43
|
-
count = numpy.zeros(n + 1, dtype=numpy.int64) # Counts for potential gaps
|
|
44
|
-
gapter = numpy.zeros(n + 1, dtype=numpy.int64) # Indices for gap stack per leaf
|
|
45
|
-
gap = numpy.zeros(n * n + 1, dtype=numpy.int64) # Stack of potential gaps
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
# Initialize variables for backtracking
|
|
49
|
-
total_count = 0 # Total number of foldings
|
|
50
|
-
g = 0 # Gap index
|
|
51
|
-
l = 1 # Current leaf
|
|
52
|
-
|
|
53
|
-
# Start backtracking loop
|
|
54
|
-
while l > 0:
|
|
55
|
-
# If we have processed all leaves, increment total count
|
|
56
|
-
if l > n:
|
|
57
|
-
total_count += 1
|
|
58
|
-
else:
|
|
59
|
-
dd = 0 # Number of sections where leaf l is unconstrained
|
|
60
|
-
gg = g # Temporary gap index
|
|
61
|
-
g = gapter[l - 1] # Reset gap index for current leaf
|
|
62
|
-
|
|
63
|
-
# Count possible gaps for leaf l in each section
|
|
64
|
-
for i in range(1, d + 1):
|
|
65
|
-
if D[i][l][l] == l:
|
|
66
|
-
dd += 1
|
|
67
|
-
else:
|
|
68
|
-
m = D[i][l][l]
|
|
69
|
-
while m != l:
|
|
70
|
-
if computationDivisions == 0 or l != computationDivisions or m % computationDivisions == computationIndex:
|
|
71
|
-
gap[gg] = m
|
|
72
|
-
if count[m] == 0:
|
|
73
|
-
gg += 1
|
|
74
|
-
count[m] += 1
|
|
75
|
-
m = D[i][l][B[m]]
|
|
76
|
-
|
|
77
|
-
# If leaf l is unconstrained in all sections, it can be inserted anywhere
|
|
78
|
-
if dd == d:
|
|
79
|
-
for m in range(l):
|
|
80
|
-
gap[gg] = m
|
|
81
|
-
gg += 1
|
|
82
|
-
|
|
83
|
-
# Filter gaps that are common to all sections
|
|
84
|
-
for j in range(g, gg):
|
|
85
|
-
gap[g] = gap[j]
|
|
86
|
-
if count[gap[j]] == d - dd:
|
|
87
|
-
g += 1
|
|
88
|
-
count[gap[j]] = 0 # Reset count for next iteration
|
|
89
|
-
|
|
90
|
-
# Recursive backtracking steps
|
|
91
|
-
while l > 0 and g == gapter[l - 1]:
|
|
92
|
-
l -= 1
|
|
93
|
-
B[A[l]] = B[l]
|
|
94
|
-
A[B[l]] = A[l]
|
|
95
|
-
|
|
96
|
-
if l > 0:
|
|
97
|
-
g -= 1
|
|
98
|
-
A[l] = gap[g]
|
|
99
|
-
B[l] = B[A[l]]
|
|
100
|
-
B[A[l]] = l
|
|
101
|
-
A[B[l]] = l
|
|
102
|
-
gapter[l] = g # Save current gap index
|
|
103
|
-
l += 1 # Move to next leaf
|
|
104
|
-
|
|
105
|
-
return total_count
|
|
106
|
-
|
|
107
|
-
@njit(cache=True)
|
|
108
|
-
def foldings(p: list[int], computationDivisions: int = 0, computationIndex: int = 0) -> int:
|
|
109
|
-
n: int = 1 # Total number of leaves
|
|
110
|
-
for dimension in p:
|
|
111
|
-
n *= dimension
|
|
112
|
-
|
|
113
|
-
d = len(p) # Number of dimensions
|
|
114
|
-
# Compute arrays P, C, D as per the algorithm
|
|
115
|
-
P = numpy.ones(d + 1, dtype=numpy.int64)
|
|
116
|
-
for i in range(1, d + 1):
|
|
117
|
-
P[i] = P[i - 1] * p[i - 1]
|
|
118
|
-
|
|
119
|
-
# C[i][m] holds the i-th coordinate of leaf m
|
|
120
|
-
C = numpy.zeros((d + 1, n + 1), dtype=numpy.int64)
|
|
121
|
-
for i in range(1, d + 1):
|
|
122
|
-
for m in range(1, n + 1):
|
|
123
|
-
C[i][m] = ((m - 1) // P[i - 1]) - ((m - 1) // P[i]) * p[i - 1] + 1
|
|
124
|
-
# C[i][m] = ((m - 1) // P[i - 1]) % p[i - 1] + 1 # NOTE different, but either one works
|
|
125
|
-
|
|
126
|
-
# D[i][l][m] computes the leaf connected to m in section i when inserting l
|
|
127
|
-
D = numpy.zeros((d + 1, n + 1, n + 1), dtype=numpy.int64)
|
|
128
|
-
for i in range(1, d + 1):
|
|
129
|
-
for l in range(1, n + 1):
|
|
130
|
-
for m in range(1, l + 1):
|
|
131
|
-
delta = C[i][l] - C[i][m]
|
|
132
|
-
if delta % 2 == 0:
|
|
133
|
-
# If delta is even
|
|
134
|
-
if C[i][m] == 1:
|
|
135
|
-
D[i][l][m] = m
|
|
136
|
-
else:
|
|
137
|
-
D[i][l][m] = m - P[i - 1]
|
|
138
|
-
else:
|
|
139
|
-
# If delta is odd
|
|
140
|
-
if C[i][m] == p[i - 1] or m + P[i - 1] > l:
|
|
141
|
-
D[i][l][m] = m
|
|
142
|
-
else:
|
|
143
|
-
D[i][l][m] = m + P[i - 1]
|
|
144
|
-
# Initialize arrays/lists
|
|
145
|
-
A = numpy.zeros(n + 1, dtype=numpy.int64) # Leaf above leaf m
|
|
146
|
-
B = numpy.zeros(n + 1, dtype=numpy.int64) # Leaf below leaf m
|
|
147
|
-
count = numpy.zeros(n + 1, dtype=numpy.int64) # Counts for potential gaps
|
|
148
|
-
gapter = numpy.zeros(n + 1, dtype=numpy.int64) # Indices for gap stack per leaf
|
|
149
|
-
gap = numpy.zeros(n * n + 1, dtype=numpy.int64) # Stack of potential gaps
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
# Initialize variables for backtracking
|
|
153
|
-
total_count = 0 # Total number of foldings
|
|
154
|
-
g = 0 # Gap index
|
|
155
|
-
l = 1 # Current leaf
|
|
156
|
-
|
|
157
|
-
# Start backtracking loop
|
|
158
|
-
while l > 0:
|
|
159
|
-
if l <= 1 or B[0] == 1: # NOTE different
|
|
160
|
-
# NOTE the above `if` statement encloses the the if/else block below
|
|
161
|
-
# NOTE these changes increase the throughput by more than an order of magnitude
|
|
162
|
-
if l > n:
|
|
163
|
-
total_count += n
|
|
164
|
-
else:
|
|
165
|
-
dd = 0 # Number of sections where leaf l is unconstrained
|
|
166
|
-
gg = gapter[l - 1] # Track possible gaps # NOTE different, but not important
|
|
167
|
-
g = gg # NOTE different, but not important
|
|
168
|
-
|
|
169
|
-
# Count possible gaps for leaf l in each section
|
|
170
|
-
for i in range(1, d + 1):
|
|
171
|
-
if D[i][l][l] == l:
|
|
172
|
-
dd += 1
|
|
173
|
-
else:
|
|
174
|
-
m = D[i][l][l]
|
|
175
|
-
while m != l:
|
|
176
|
-
if computationDivisions == 0 or l != computationDivisions or m % computationDivisions == computationIndex:
|
|
177
|
-
gap[gg] = m
|
|
178
|
-
if count[m] == 0:
|
|
179
|
-
gg += 1
|
|
180
|
-
count[m] += 1
|
|
181
|
-
m = D[i][l][B[m]]
|
|
182
|
-
|
|
183
|
-
# If leaf l is unconstrained in all sections, it can be inserted anywhere
|
|
184
|
-
if dd == d:
|
|
185
|
-
for m in range(l):
|
|
186
|
-
gap[gg] = m
|
|
187
|
-
gg += 1
|
|
188
|
-
|
|
189
|
-
# Filter gaps that are common to all sections
|
|
190
|
-
for j in range(g, gg):
|
|
191
|
-
gap[g] = gap[j]
|
|
192
|
-
if count[gap[j]] == d - dd:
|
|
193
|
-
g += 1
|
|
194
|
-
count[gap[j]] = 0 # Reset count for next iteration
|
|
195
|
-
|
|
196
|
-
# Recursive backtracking steps
|
|
197
|
-
while l > 0 and g == gapter[l - 1]:
|
|
198
|
-
l -= 1
|
|
199
|
-
B[A[l]] = B[l]
|
|
200
|
-
A[B[l]] = A[l]
|
|
201
|
-
|
|
202
|
-
if l > 0:
|
|
203
|
-
g -= 1
|
|
204
|
-
A[l] = gap[g]
|
|
205
|
-
B[l] = B[A[l]]
|
|
206
|
-
B[A[l]] = l
|
|
207
|
-
A[B[l]] = l
|
|
208
|
-
gapter[l] = g # Save current gap index
|
|
209
|
-
l += 1 # Move to next leaf
|
|
210
|
-
|
|
211
|
-
return total_count
|
|
@@ -1,5 +0,0 @@
|
|
|
1
|
-
from mapFolding.someAssemblyRequired.getLLVMforNoReason import writeModuleLLVM
|
|
2
|
-
from mapFolding.someAssemblyRequired.makeJob import makeStateJob
|
|
3
|
-
from mapFolding.someAssemblyRequired.synthesizeNumbaGeneralized import youOughtaKnow
|
|
4
|
-
from mapFolding.someAssemblyRequired.synthesizeNumbaJob import writeJobNumba
|
|
5
|
-
from mapFolding.someAssemblyRequired.synthesizeNumbaModules import makeFlowNumbaOptimized
|