mapFolding 0.5.0__py3-none-any.whl → 0.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mapFolding/__init__.py +93 -58
- mapFolding/basecamp.py +5 -5
- mapFolding/beDRY.py +5 -5
- mapFolding/oeis.py +26 -25
- mapFolding/theSSOT.py +3 -15
- mapFolding/theSSOTdatatypes.py +10 -20
- {mapFolding-0.5.0.dist-info → mapFolding-0.5.1.dist-info}/METADATA +2 -1
- mapFolding-0.5.1.dist-info/RECORD +14 -0
- {mapFolding-0.5.0.dist-info → mapFolding-0.5.1.dist-info}/top_level.txt +0 -1
- mapFolding/reference/flattened.py +0 -377
- mapFolding/reference/hunterNumba.py +0 -132
- mapFolding/reference/irvineJavaPort.py +0 -120
- mapFolding/reference/jax.py +0 -208
- mapFolding/reference/lunnan.py +0 -153
- mapFolding/reference/lunnanNumpy.py +0 -123
- mapFolding/reference/lunnanWhile.py +0 -121
- mapFolding/reference/rotatedEntryPoint.py +0 -240
- mapFolding/reference/total_countPlus1vsPlusN.py +0 -211
- mapFolding/someAssemblyRequired/__init__.py +0 -5
- mapFolding/someAssemblyRequired/getLLVMforNoReason.py +0 -19
- mapFolding/someAssemblyRequired/makeJob.py +0 -56
- mapFolding/someAssemblyRequired/synthesizeModuleJAX.py +0 -27
- mapFolding/someAssemblyRequired/synthesizeNumba.py +0 -345
- mapFolding/someAssemblyRequired/synthesizeNumbaGeneralized.py +0 -397
- mapFolding/someAssemblyRequired/synthesizeNumbaJob.py +0 -155
- mapFolding/someAssemblyRequired/synthesizeNumbaModules.py +0 -123
- mapFolding/syntheticModules/numbaCount.py +0 -158
- mapFolding/syntheticModules/numba_doTheNeedful.py +0 -13
- mapFolding-0.5.0.dist-info/RECORD +0 -39
- tests/__init__.py +0 -1
- tests/conftest.py +0 -335
- tests/test_computations.py +0 -42
- tests/test_oeis.py +0 -128
- tests/test_other.py +0 -175
- tests/test_tasks.py +0 -40
- /mapFolding/{syntheticModules/__init__.py → py.typed} +0 -0
- {mapFolding-0.5.0.dist-info → mapFolding-0.5.1.dist-info}/LICENSE +0 -0
- {mapFolding-0.5.0.dist-info → mapFolding-0.5.1.dist-info}/WHEEL +0 -0
- {mapFolding-0.5.0.dist-info → mapFolding-0.5.1.dist-info}/entry_points.txt +0 -0
|
@@ -1,377 +0,0 @@
|
|
|
1
|
-
"""The algorithm flattened into semantic sections.
|
|
2
|
-
This version is not maintained, so you may see differences from the current version."""
|
|
3
|
-
from numpy import integer
|
|
4
|
-
from numpy.typing import NDArray
|
|
5
|
-
from typing import List, Any, Final, Optional, Union, Sequence, Tuple, Type, TypedDict
|
|
6
|
-
import enum
|
|
7
|
-
import numpy
|
|
8
|
-
import sys
|
|
9
|
-
|
|
10
|
-
def countFolds(listDimensions: Sequence[int], computationDivisions = None, CPUlimit: Optional[Union[int, float, bool]] = None):
|
|
11
|
-
def doWhile():
|
|
12
|
-
|
|
13
|
-
while activeLeafGreaterThan0Condition():
|
|
14
|
-
|
|
15
|
-
if activeLeafIsTheFirstLeafCondition() or leafBelowSentinelIs1Condition():
|
|
16
|
-
|
|
17
|
-
if activeLeafGreaterThanLeavesTotalCondition():
|
|
18
|
-
foldsSubTotalsIncrement()
|
|
19
|
-
|
|
20
|
-
else:
|
|
21
|
-
|
|
22
|
-
findGapsInitializeVariables()
|
|
23
|
-
while loopingTheDimensions():
|
|
24
|
-
|
|
25
|
-
if dimensionsUnconstrainedCondition():
|
|
26
|
-
dimensionsUnconstrainedIncrement()
|
|
27
|
-
|
|
28
|
-
else:
|
|
29
|
-
|
|
30
|
-
leafConnecteeInitialization()
|
|
31
|
-
while loopingLeavesConnectedToActiveLeaf():
|
|
32
|
-
if thereAreComputationDivisionsYouMightSkip():
|
|
33
|
-
countGaps()
|
|
34
|
-
leafConnecteeUpdate()
|
|
35
|
-
|
|
36
|
-
dimension1ndexIncrement()
|
|
37
|
-
|
|
38
|
-
if allDimensionsAreUnconstrained():
|
|
39
|
-
insertUnconstrainedLeaf()
|
|
40
|
-
|
|
41
|
-
indexMiniGapInitialization()
|
|
42
|
-
while loopingToActiveGapCeiling():
|
|
43
|
-
filterCommonGaps()
|
|
44
|
-
indexMiniGapIncrement()
|
|
45
|
-
|
|
46
|
-
while backtrackCondition():
|
|
47
|
-
backtrack()
|
|
48
|
-
|
|
49
|
-
if placeLeafCondition():
|
|
50
|
-
placeLeaf()
|
|
51
|
-
|
|
52
|
-
def activeGapIncrement():
|
|
53
|
-
my[indexMy.gap1ndex] += 1
|
|
54
|
-
|
|
55
|
-
def activeLeafGreaterThan0Condition():
|
|
56
|
-
return my[indexMy.leaf1ndex] > 0
|
|
57
|
-
|
|
58
|
-
def activeLeafGreaterThanLeavesTotalCondition():
|
|
59
|
-
return my[indexMy.leaf1ndex] > the[indexThe.leavesTotal]
|
|
60
|
-
|
|
61
|
-
def activeLeafIsTheFirstLeafCondition():
|
|
62
|
-
return my[indexMy.leaf1ndex] <= 1
|
|
63
|
-
|
|
64
|
-
def activeLeafNotEqualToTaskDivisionsCondition():
|
|
65
|
-
return my[indexMy.leaf1ndex] != the[indexThe.taskDivisions]
|
|
66
|
-
|
|
67
|
-
def allDimensionsAreUnconstrained():
|
|
68
|
-
return my[indexMy.dimensionsUnconstrained] == the[indexThe.dimensionsTotal]
|
|
69
|
-
|
|
70
|
-
def backtrack():
|
|
71
|
-
my[indexMy.leaf1ndex] -= 1
|
|
72
|
-
track[indexTrack.leafBelow, track[indexTrack.leafAbove, my[indexMy.leaf1ndex]]] = track[indexTrack.leafBelow, my[indexMy.leaf1ndex]]
|
|
73
|
-
track[indexTrack.leafAbove, track[indexTrack.leafBelow, my[indexMy.leaf1ndex]]] = track[indexTrack.leafAbove, my[indexMy.leaf1ndex]]
|
|
74
|
-
|
|
75
|
-
def backtrackCondition():
|
|
76
|
-
return my[indexMy.leaf1ndex] > 0 and my[indexMy.gap1ndex] == track[indexTrack.gapRangeStart, my[indexMy.leaf1ndex] - 1]
|
|
77
|
-
|
|
78
|
-
def computationDivisionsCondition():
|
|
79
|
-
return the[indexThe.taskDivisions] == int(False)
|
|
80
|
-
|
|
81
|
-
def countGaps():
|
|
82
|
-
gapsWhere[my[indexMy.gap1ndexCeiling]] = my[indexMy.leafConnectee]
|
|
83
|
-
if track[indexTrack.countDimensionsGapped, my[indexMy.leafConnectee]] == 0:
|
|
84
|
-
gap1ndexCeilingIncrement()
|
|
85
|
-
track[indexTrack.countDimensionsGapped, my[indexMy.leafConnectee]] += 1
|
|
86
|
-
|
|
87
|
-
def dimension1ndexIncrement():
|
|
88
|
-
my[indexMy.dimension1ndex] += 1
|
|
89
|
-
|
|
90
|
-
def dimensionsUnconstrainedCondition():
|
|
91
|
-
return connectionGraph[my[indexMy.dimension1ndex], my[indexMy.leaf1ndex], my[indexMy.leaf1ndex]] == my[indexMy.leaf1ndex]
|
|
92
|
-
|
|
93
|
-
def dimensionsUnconstrainedIncrement():
|
|
94
|
-
my[indexMy.dimensionsUnconstrained] += 1
|
|
95
|
-
|
|
96
|
-
def filterCommonGaps():
|
|
97
|
-
gapsWhere[my[indexMy.gap1ndex]] = gapsWhere[my[indexMy.indexMiniGap]]
|
|
98
|
-
if track[indexTrack.countDimensionsGapped, gapsWhere[my[indexMy.indexMiniGap]]] == the[indexThe.dimensionsTotal] - my[indexMy.dimensionsUnconstrained]:
|
|
99
|
-
activeGapIncrement()
|
|
100
|
-
track[indexTrack.countDimensionsGapped, gapsWhere[my[indexMy.indexMiniGap]]] = 0
|
|
101
|
-
|
|
102
|
-
def findGapsInitializeVariables():
|
|
103
|
-
my[indexMy.dimensionsUnconstrained] = 0
|
|
104
|
-
my[indexMy.gap1ndexCeiling] = track[indexTrack.gapRangeStart, my[indexMy.leaf1ndex] - 1]
|
|
105
|
-
my[indexMy.dimension1ndex] = 1
|
|
106
|
-
|
|
107
|
-
def foldsSubTotalsIncrement():
|
|
108
|
-
foldsSubTotals[my[indexMy.taskIndex]] += the[indexThe.leavesTotal]
|
|
109
|
-
|
|
110
|
-
def gap1ndexCeilingIncrement():
|
|
111
|
-
my[indexMy.gap1ndexCeiling] += 1
|
|
112
|
-
|
|
113
|
-
def indexMiniGapIncrement():
|
|
114
|
-
my[indexMy.indexMiniGap] += 1
|
|
115
|
-
|
|
116
|
-
def indexMiniGapInitialization():
|
|
117
|
-
my[indexMy.indexMiniGap] = my[indexMy.gap1ndex]
|
|
118
|
-
|
|
119
|
-
def insertUnconstrainedLeaf():
|
|
120
|
-
my[indexMy.indexLeaf] = 0
|
|
121
|
-
while my[indexMy.indexLeaf] < my[indexMy.leaf1ndex]:
|
|
122
|
-
gapsWhere[my[indexMy.gap1ndexCeiling]] = my[indexMy.indexLeaf]
|
|
123
|
-
my[indexMy.gap1ndexCeiling] += 1
|
|
124
|
-
my[indexMy.indexLeaf] += 1
|
|
125
|
-
|
|
126
|
-
def leafBelowSentinelIs1Condition():
|
|
127
|
-
return track[indexTrack.leafBelow, 0] == 1
|
|
128
|
-
|
|
129
|
-
def leafConnecteeInitialization():
|
|
130
|
-
my[indexMy.leafConnectee] = connectionGraph[my[indexMy.dimension1ndex], my[indexMy.leaf1ndex], my[indexMy.leaf1ndex]]
|
|
131
|
-
|
|
132
|
-
def leafConnecteeUpdate():
|
|
133
|
-
my[indexMy.leafConnectee] = connectionGraph[my[indexMy.dimension1ndex], my[indexMy.leaf1ndex], track[indexTrack.leafBelow, my[indexMy.leafConnectee]]]
|
|
134
|
-
|
|
135
|
-
def loopingLeavesConnectedToActiveLeaf():
|
|
136
|
-
return my[indexMy.leafConnectee] != my[indexMy.leaf1ndex]
|
|
137
|
-
|
|
138
|
-
def loopingTheDimensions():
|
|
139
|
-
return my[indexMy.dimension1ndex] <= the[indexThe.dimensionsTotal]
|
|
140
|
-
|
|
141
|
-
def loopingToActiveGapCeiling():
|
|
142
|
-
return my[indexMy.indexMiniGap] < my[indexMy.gap1ndexCeiling]
|
|
143
|
-
|
|
144
|
-
def placeLeaf():
|
|
145
|
-
my[indexMy.gap1ndex] -= 1
|
|
146
|
-
track[indexTrack.leafAbove, my[indexMy.leaf1ndex]] = gapsWhere[my[indexMy.gap1ndex]]
|
|
147
|
-
track[indexTrack.leafBelow, my[indexMy.leaf1ndex]] = track[indexTrack.leafBelow, track[indexTrack.leafAbove, my[indexMy.leaf1ndex]]]
|
|
148
|
-
track[indexTrack.leafBelow, track[indexTrack.leafAbove, my[indexMy.leaf1ndex]]] = my[indexMy.leaf1ndex]
|
|
149
|
-
track[indexTrack.leafAbove, track[indexTrack.leafBelow, my[indexMy.leaf1ndex]]] = my[indexMy.leaf1ndex]
|
|
150
|
-
track[indexTrack.gapRangeStart, my[indexMy.leaf1ndex]] = my[indexMy.gap1ndex]
|
|
151
|
-
my[indexMy.leaf1ndex] += 1
|
|
152
|
-
|
|
153
|
-
def placeLeafCondition():
|
|
154
|
-
return my[indexMy.leaf1ndex] > 0
|
|
155
|
-
|
|
156
|
-
def taskIndexCondition():
|
|
157
|
-
return my[indexMy.leafConnectee] % the[indexThe.taskDivisions] == my[indexMy.taskIndex]
|
|
158
|
-
|
|
159
|
-
def thereAreComputationDivisionsYouMightSkip():
|
|
160
|
-
if computationDivisionsCondition():
|
|
161
|
-
return True
|
|
162
|
-
if activeLeafNotEqualToTaskDivisionsCondition():
|
|
163
|
-
return True
|
|
164
|
-
if taskIndexCondition():
|
|
165
|
-
return True
|
|
166
|
-
return False
|
|
167
|
-
|
|
168
|
-
stateUniversal = outfitFoldings(listDimensions, computationDivisions=computationDivisions, CPUlimit=CPUlimit)
|
|
169
|
-
connectionGraph: Final[numpy.ndarray] = stateUniversal['connectionGraph']
|
|
170
|
-
foldsSubTotals = stateUniversal['foldsSubTotals']
|
|
171
|
-
gapsWhere = stateUniversal['gapsWhere']
|
|
172
|
-
my = stateUniversal['my']
|
|
173
|
-
the: Final[numpy.ndarray] = stateUniversal['the']
|
|
174
|
-
track = stateUniversal['track']
|
|
175
|
-
|
|
176
|
-
if the[indexThe.taskDivisions] == int(False):
|
|
177
|
-
doWhile()
|
|
178
|
-
else:
|
|
179
|
-
stateUniversal['my'] = my.copy()
|
|
180
|
-
stateUniversal['gapsWhere'] = gapsWhere.copy()
|
|
181
|
-
stateUniversal['track'] = track.copy()
|
|
182
|
-
for indexSherpa in range(the[indexThe.taskDivisions]):
|
|
183
|
-
my = stateUniversal['my'].copy()
|
|
184
|
-
my[indexMy.taskIndex] = indexSherpa
|
|
185
|
-
gapsWhere = stateUniversal['gapsWhere'].copy()
|
|
186
|
-
track = stateUniversal['track'].copy()
|
|
187
|
-
doWhile()
|
|
188
|
-
|
|
189
|
-
return numpy.sum(foldsSubTotals).item()
|
|
190
|
-
|
|
191
|
-
@enum.verify(enum.CONTINUOUS, enum.UNIQUE) if sys.version_info >= (3, 11) else lambda x: x
|
|
192
|
-
class EnumIndices(enum.IntEnum):
|
|
193
|
-
"""Base class for index enums."""
|
|
194
|
-
@staticmethod
|
|
195
|
-
def _generate_next_value_(name, start, count, last_values):
|
|
196
|
-
"""0-indexed."""
|
|
197
|
-
return count
|
|
198
|
-
|
|
199
|
-
def __index__(self) -> int:
|
|
200
|
-
"""Adapt enum to the ultra-rare event of indexing a NumPy 'ndarray', which is not the
|
|
201
|
-
same as `array.array`. See NumPy.org; I think it will be very popular someday."""
|
|
202
|
-
return self
|
|
203
|
-
|
|
204
|
-
class indexMy(EnumIndices):
|
|
205
|
-
"""Indices for dynamic values."""
|
|
206
|
-
dimension1ndex = enum.auto()
|
|
207
|
-
dimensionsUnconstrained = enum.auto()
|
|
208
|
-
gap1ndex = enum.auto()
|
|
209
|
-
gap1ndexCeiling = enum.auto()
|
|
210
|
-
indexLeaf = enum.auto()
|
|
211
|
-
indexMiniGap = enum.auto()
|
|
212
|
-
leaf1ndex = enum.auto()
|
|
213
|
-
leafConnectee = enum.auto()
|
|
214
|
-
taskIndex = enum.auto()
|
|
215
|
-
|
|
216
|
-
class indexThe(EnumIndices):
|
|
217
|
-
"""Indices for static values."""
|
|
218
|
-
dimensionsTotal = enum.auto()
|
|
219
|
-
leavesTotal = enum.auto()
|
|
220
|
-
taskDivisions = enum.auto()
|
|
221
|
-
|
|
222
|
-
class indexTrack(EnumIndices):
|
|
223
|
-
"""Indices for state tracking array."""
|
|
224
|
-
leafAbove = enum.auto()
|
|
225
|
-
leafBelow = enum.auto()
|
|
226
|
-
countDimensionsGapped = enum.auto()
|
|
227
|
-
gapRangeStart = enum.auto()
|
|
228
|
-
|
|
229
|
-
class computationState(TypedDict):
|
|
230
|
-
connectionGraph: NDArray[integer[Any]]
|
|
231
|
-
foldsSubTotals: NDArray[integer[Any]]
|
|
232
|
-
mapShape: Tuple[int, ...]
|
|
233
|
-
my: NDArray[integer[Any]]
|
|
234
|
-
gapsWhere: NDArray[integer[Any]]
|
|
235
|
-
the: NDArray[integer[Any]]
|
|
236
|
-
track: NDArray[integer[Any]]
|
|
237
|
-
|
|
238
|
-
dtypeLarge = numpy.int64
|
|
239
|
-
dtypeMedium = dtypeLarge
|
|
240
|
-
|
|
241
|
-
def getLeavesTotal(listDimensions: Sequence[int]) -> int:
|
|
242
|
-
"""
|
|
243
|
-
How many leaves are in the map.
|
|
244
|
-
|
|
245
|
-
Parameters:
|
|
246
|
-
listDimensions: A list of integers representing dimensions.
|
|
247
|
-
|
|
248
|
-
Returns:
|
|
249
|
-
productDimensions: The product of all positive integer dimensions.
|
|
250
|
-
"""
|
|
251
|
-
listNonNegative = parseDimensions(listDimensions, 'listDimensions')
|
|
252
|
-
listPositive = [dimension for dimension in listNonNegative if dimension > 0]
|
|
253
|
-
|
|
254
|
-
if not listPositive:
|
|
255
|
-
return 0
|
|
256
|
-
else:
|
|
257
|
-
productDimensions = 1
|
|
258
|
-
for dimension in listPositive:
|
|
259
|
-
if dimension > sys.maxsize // productDimensions:
|
|
260
|
-
raise OverflowError(f"I received {dimension=} in {listDimensions=}, but the product of the dimensions exceeds the maximum size of an integer on this system.")
|
|
261
|
-
productDimensions *= dimension
|
|
262
|
-
|
|
263
|
-
return productDimensions
|
|
264
|
-
|
|
265
|
-
def getTaskDivisions(computationDivisions: Optional[Union[int, str]], concurrencyLimit: int, CPUlimit: Optional[Union[bool, float, int]], listDimensions: Sequence[int]):
|
|
266
|
-
if not computationDivisions:
|
|
267
|
-
return 0
|
|
268
|
-
else:
|
|
269
|
-
leavesTotal = getLeavesTotal(listDimensions)
|
|
270
|
-
taskDivisions = 0
|
|
271
|
-
if isinstance(computationDivisions, int):
|
|
272
|
-
taskDivisions = computationDivisions
|
|
273
|
-
elif isinstance(computationDivisions, str):
|
|
274
|
-
computationDivisions = computationDivisions.lower()
|
|
275
|
-
if computationDivisions == "maximum":
|
|
276
|
-
taskDivisions = leavesTotal
|
|
277
|
-
elif computationDivisions == "cpu":
|
|
278
|
-
taskDivisions = min(concurrencyLimit, leavesTotal)
|
|
279
|
-
else:
|
|
280
|
-
raise ValueError("Not my problem.")
|
|
281
|
-
|
|
282
|
-
if taskDivisions > leavesTotal:
|
|
283
|
-
raise ValueError("What are you doing?")
|
|
284
|
-
|
|
285
|
-
return taskDivisions
|
|
286
|
-
|
|
287
|
-
def makeConnectionGraph(listDimensions: Sequence[int], **keywordArguments: Optional[Type]) -> NDArray[integer[Any]]:
|
|
288
|
-
datatype = keywordArguments.get('datatype', dtypeMedium)
|
|
289
|
-
mapShape = validateListDimensions(listDimensions)
|
|
290
|
-
leavesTotal = getLeavesTotal(mapShape)
|
|
291
|
-
arrayDimensions = numpy.array(mapShape, dtype=datatype)
|
|
292
|
-
dimensionsTotal = len(arrayDimensions)
|
|
293
|
-
|
|
294
|
-
cumulativeProduct = numpy.multiply.accumulate([1] + mapShape, dtype=datatype)
|
|
295
|
-
coordinateSystem = numpy.zeros((dimensionsTotal + 1, leavesTotal + 1), dtype=datatype)
|
|
296
|
-
for dimension1ndex in range(1, dimensionsTotal + 1):
|
|
297
|
-
for leaf1ndex in range(1, leavesTotal + 1):
|
|
298
|
-
coordinateSystem[dimension1ndex, leaf1ndex] = ( ((leaf1ndex - 1) // cumulativeProduct[dimension1ndex - 1]) % arrayDimensions[dimension1ndex - 1] + 1 )
|
|
299
|
-
|
|
300
|
-
connectionGraph = numpy.zeros((dimensionsTotal + 1, leavesTotal + 1, leavesTotal + 1), dtype=datatype)
|
|
301
|
-
for dimension1ndex in range(1, dimensionsTotal + 1):
|
|
302
|
-
for activeLeaf1ndex in range(1, leavesTotal + 1):
|
|
303
|
-
for connectee1ndex in range(1, activeLeaf1ndex + 1):
|
|
304
|
-
isFirstCoord = coordinateSystem[dimension1ndex, connectee1ndex] == 1
|
|
305
|
-
isLastCoord = coordinateSystem[dimension1ndex, connectee1ndex] == arrayDimensions[dimension1ndex - 1]
|
|
306
|
-
exceedsActive = connectee1ndex + cumulativeProduct[dimension1ndex - 1] > activeLeaf1ndex
|
|
307
|
-
isEvenParity = (coordinateSystem[dimension1ndex, activeLeaf1ndex] & 1) == (coordinateSystem[dimension1ndex, connectee1ndex] & 1)
|
|
308
|
-
|
|
309
|
-
if (isEvenParity and isFirstCoord) or (not isEvenParity and (isLastCoord or exceedsActive)):
|
|
310
|
-
connectionGraph[dimension1ndex, activeLeaf1ndex, connectee1ndex] = connectee1ndex
|
|
311
|
-
elif isEvenParity and not isFirstCoord:
|
|
312
|
-
connectionGraph[dimension1ndex, activeLeaf1ndex, connectee1ndex] = connectee1ndex - cumulativeProduct[dimension1ndex - 1]
|
|
313
|
-
elif not isEvenParity and not (isLastCoord or exceedsActive):
|
|
314
|
-
connectionGraph[dimension1ndex, activeLeaf1ndex, connectee1ndex] = connectee1ndex + cumulativeProduct[dimension1ndex - 1]
|
|
315
|
-
else:
|
|
316
|
-
connectionGraph[dimension1ndex, activeLeaf1ndex, connectee1ndex] = connectee1ndex
|
|
317
|
-
return connectionGraph
|
|
318
|
-
|
|
319
|
-
def makeDataContainer(shape, datatype: Optional[Type] = None):
|
|
320
|
-
if datatype is None:
|
|
321
|
-
datatype = dtypeMedium
|
|
322
|
-
return numpy.zeros(shape, dtype=datatype)
|
|
323
|
-
|
|
324
|
-
def outfitFoldings(listDimensions: Sequence[int], computationDivisions: Optional[Union[int, str]] = None, CPUlimit: Optional[Union[bool, float, int]] = None, **keywordArguments: Optional[Type]) -> computationState:
|
|
325
|
-
datatypeMedium = keywordArguments.get('datatypeMedium', dtypeMedium)
|
|
326
|
-
datatypeLarge = keywordArguments.get('datatypeLarge', dtypeLarge)
|
|
327
|
-
|
|
328
|
-
the = makeDataContainer(len(indexThe), datatypeMedium)
|
|
329
|
-
|
|
330
|
-
mapShape = tuple(sorted(validateListDimensions(listDimensions)))
|
|
331
|
-
the[indexThe.leavesTotal] = getLeavesTotal(mapShape)
|
|
332
|
-
the[indexThe.dimensionsTotal] = len(mapShape)
|
|
333
|
-
concurrencyLimit = setCPUlimit(CPUlimit)
|
|
334
|
-
the[indexThe.taskDivisions] = getTaskDivisions(computationDivisions, concurrencyLimit, CPUlimit, listDimensions)
|
|
335
|
-
|
|
336
|
-
stateInitialized = computationState(
|
|
337
|
-
connectionGraph = makeConnectionGraph(mapShape, datatype=datatypeMedium),
|
|
338
|
-
foldsSubTotals = makeDataContainer(the[indexThe.leavesTotal], datatypeLarge),
|
|
339
|
-
mapShape = mapShape,
|
|
340
|
-
my = makeDataContainer(len(indexMy), datatypeLarge),
|
|
341
|
-
gapsWhere = makeDataContainer(int(the[indexThe.leavesTotal]) * int(the[indexThe.leavesTotal]) + 1, datatypeMedium),
|
|
342
|
-
the = the,
|
|
343
|
-
track = makeDataContainer((len(indexTrack), the[indexThe.leavesTotal] + 1), datatypeLarge)
|
|
344
|
-
)
|
|
345
|
-
|
|
346
|
-
stateInitialized['my'][indexMy.leaf1ndex] = 1
|
|
347
|
-
return stateInitialized
|
|
348
|
-
|
|
349
|
-
def parseDimensions(dimensions: Sequence[int], parameterName: str = 'unnamed parameter') -> List[int]:
|
|
350
|
-
# listValidated = intInnit(dimensions, parameterName)
|
|
351
|
-
listNOTValidated = dimensions if isinstance(dimensions, (list, tuple)) else list(dimensions)
|
|
352
|
-
listNonNegative = []
|
|
353
|
-
for dimension in listNOTValidated:
|
|
354
|
-
if dimension < 0:
|
|
355
|
-
raise ValueError(f"Dimension {dimension} must be non-negative")
|
|
356
|
-
listNonNegative.append(dimension)
|
|
357
|
-
if not listNonNegative:
|
|
358
|
-
raise ValueError("At least one dimension must be non-negative")
|
|
359
|
-
return listNonNegative
|
|
360
|
-
|
|
361
|
-
def setCPUlimit(CPUlimit: Union[bool, float, int, None]) -> int:
|
|
362
|
-
# if not (CPUlimit is None or isinstance(CPUlimit, (bool, int, float))):
|
|
363
|
-
# CPUlimit = oopsieKwargsie(CPUlimit)
|
|
364
|
-
# concurrencyLimit = defineConcurrencyLimit(CPUlimit)
|
|
365
|
-
# numba.set_num_threads(concurrencyLimit)
|
|
366
|
-
concurrencyLimitHARDCODED = 1
|
|
367
|
-
concurrencyLimit = concurrencyLimitHARDCODED
|
|
368
|
-
return concurrencyLimit
|
|
369
|
-
|
|
370
|
-
def validateListDimensions(listDimensions: Sequence[int]) -> List[int]:
|
|
371
|
-
if not listDimensions:
|
|
372
|
-
raise ValueError(f"listDimensions is a required parameter.")
|
|
373
|
-
listNonNegative = parseDimensions(listDimensions, 'listDimensions')
|
|
374
|
-
dimensionsValid = [dimension for dimension in listNonNegative if dimension > 0]
|
|
375
|
-
if len(dimensionsValid) < 2:
|
|
376
|
-
raise NotImplementedError(f"This function requires listDimensions, {listDimensions}, to have at least two dimensions greater than 0. You may want to look at https://oeis.org/.")
|
|
377
|
-
return sorted(dimensionsValid)
|
|
@@ -1,132 +0,0 @@
|
|
|
1
|
-
from typing import List
|
|
2
|
-
import numba
|
|
3
|
-
import numpy
|
|
4
|
-
|
|
5
|
-
@numba.jit(cache=True, nopython=True, fastmath=True)
|
|
6
|
-
def countFolds(listDimensions: List[int]) -> int:
|
|
7
|
-
"""
|
|
8
|
-
Count the number of distinct ways to fold a map with at least two positive dimensions.
|
|
9
|
-
|
|
10
|
-
Parameters:
|
|
11
|
-
listDimensions: A list of integers representing the dimensions of the map. Error checking and DRY code are impermissible in the numba and jax universes. Validate the list yourself before passing here. There might be some tools for that in this package unless I have become a pyL33t coder.
|
|
12
|
-
|
|
13
|
-
Returns:
|
|
14
|
-
foldsTotal: The total number of distinct folds for the given map dimensions.
|
|
15
|
-
"""
|
|
16
|
-
def integerSmall(value) -> numpy.uint8:
|
|
17
|
-
return numpy.uint8(value)
|
|
18
|
-
|
|
19
|
-
def integerLarge(value) -> numpy.uint64:
|
|
20
|
-
return numpy.uint64(value)
|
|
21
|
-
|
|
22
|
-
dtypeMedium = numpy.uint8
|
|
23
|
-
dtypeMaximum = numpy.uint16
|
|
24
|
-
|
|
25
|
-
leavesTotal = integerSmall(1)
|
|
26
|
-
for 个 in listDimensions:
|
|
27
|
-
leavesTotal = leavesTotal * integerSmall(个)
|
|
28
|
-
dimensionsTotal = integerSmall(len(listDimensions))
|
|
29
|
-
|
|
30
|
-
"""How to build a leaf connection graph, also called a "Cartesian Product Decomposition"
|
|
31
|
-
or a "Dimensional Product Mapping", with sentinels:
|
|
32
|
-
Step 1: find the cumulative product of the map's dimensions"""
|
|
33
|
-
cumulativeProduct = numpy.ones(dimensionsTotal + 1, dtype=dtypeMedium)
|
|
34
|
-
for dimension1ndex in range(1, dimensionsTotal + 1):
|
|
35
|
-
cumulativeProduct[dimension1ndex] = cumulativeProduct[dimension1ndex - 1] * listDimensions[dimension1ndex - 1]
|
|
36
|
-
|
|
37
|
-
"""Step 2: for each dimension, create a coordinate system """
|
|
38
|
-
"""coordinateSystem[dimension1ndex, leaf1ndex] holds the dimension1ndex-th coordinate of leaf leaf1ndex"""
|
|
39
|
-
coordinateSystem = numpy.zeros((dimensionsTotal + 1, leavesTotal + 1), dtype=dtypeMedium)
|
|
40
|
-
for dimension1ndex in range(1, dimensionsTotal + 1):
|
|
41
|
-
for leaf1ndex in range(1, leavesTotal + 1):
|
|
42
|
-
coordinateSystem[dimension1ndex, leaf1ndex] = ((leaf1ndex - 1) // cumulativeProduct[dimension1ndex - 1]) % listDimensions[dimension1ndex - 1] + 1
|
|
43
|
-
|
|
44
|
-
"""Step 3: create a huge empty connection graph"""
|
|
45
|
-
connectionGraph = numpy.zeros((dimensionsTotal + 1, leavesTotal + 1, leavesTotal + 1), dtype=dtypeMedium)
|
|
46
|
-
|
|
47
|
-
"""Step for... for... for...: fill the connection graph"""
|
|
48
|
-
for dimension1ndex in range(1, dimensionsTotal + 1):
|
|
49
|
-
for leaf1ndex in range(1, leavesTotal + 1):
|
|
50
|
-
for leafConnectee in range(1, leaf1ndex + 1):
|
|
51
|
-
connectionGraph[dimension1ndex, leaf1ndex, leafConnectee] = (0 if leafConnectee == 0
|
|
52
|
-
else ((leafConnectee if coordinateSystem[dimension1ndex, leafConnectee] == 1
|
|
53
|
-
else leafConnectee - cumulativeProduct[dimension1ndex - 1])
|
|
54
|
-
if (coordinateSystem[dimension1ndex, leaf1ndex] & 1) == (coordinateSystem[dimension1ndex, leafConnectee] & 1)
|
|
55
|
-
else (leafConnectee if coordinateSystem[dimension1ndex, leafConnectee] == listDimensions[dimension1ndex-1]
|
|
56
|
-
or leafConnectee + cumulativeProduct[dimension1ndex - 1] > leaf1ndex
|
|
57
|
-
else leafConnectee + cumulativeProduct[dimension1ndex - 1])))
|
|
58
|
-
|
|
59
|
-
"""Indices of array `track` (to "track" the execution state), which is a collection of one-dimensional arrays each of length `leavesTotal + 1`."""
|
|
60
|
-
leafAbove = numba.literally(0)
|
|
61
|
-
leafBelow = numba.literally(1)
|
|
62
|
-
countDimensionsGapped = numba.literally(2)
|
|
63
|
-
gapRangeStart = numba.literally(3)
|
|
64
|
-
track = numpy.zeros((4, leavesTotal + 1), dtype=dtypeMedium)
|
|
65
|
-
|
|
66
|
-
gapsWhere = numpy.zeros(integerLarge(integerLarge(leavesTotal) * integerLarge(leavesTotal) + 1), dtype=dtypeMaximum)
|
|
67
|
-
|
|
68
|
-
foldsTotal = integerLarge(0)
|
|
69
|
-
leaf1ndex = integerSmall(1)
|
|
70
|
-
gap1ndex = integerSmall(0)
|
|
71
|
-
|
|
72
|
-
while leaf1ndex > 0:
|
|
73
|
-
if leaf1ndex <= 1 or track[leafBelow, 0] == 1:
|
|
74
|
-
if leaf1ndex > leavesTotal:
|
|
75
|
-
foldsTotal += leavesTotal
|
|
76
|
-
else:
|
|
77
|
-
dimensionsUnconstrained = integerSmall(0)
|
|
78
|
-
"""Track possible gaps for leaf1ndex in each section"""
|
|
79
|
-
gap1ndexCeiling = track[gapRangeStart, leaf1ndex - 1]
|
|
80
|
-
|
|
81
|
-
"""Count possible gaps for leaf1ndex in each section"""
|
|
82
|
-
dimension1ndex = integerSmall(1)
|
|
83
|
-
while dimension1ndex <= dimensionsTotal:
|
|
84
|
-
if connectionGraph[dimension1ndex, leaf1ndex, leaf1ndex] == leaf1ndex:
|
|
85
|
-
dimensionsUnconstrained += 1
|
|
86
|
-
else:
|
|
87
|
-
leafConnectee = connectionGraph[dimension1ndex, leaf1ndex, leaf1ndex]
|
|
88
|
-
while leafConnectee != leaf1ndex:
|
|
89
|
-
gapsWhere[gap1ndexCeiling] = leafConnectee
|
|
90
|
-
if track[countDimensionsGapped, leafConnectee] == 0:
|
|
91
|
-
gap1ndexCeiling += 1
|
|
92
|
-
track[countDimensionsGapped, leafConnectee] += 1
|
|
93
|
-
leafConnectee = connectionGraph[dimension1ndex, leaf1ndex, track[leafBelow, leafConnectee]]
|
|
94
|
-
dimension1ndex += 1
|
|
95
|
-
|
|
96
|
-
"""If leaf1ndex is unconstrained in all sections, it can be inserted anywhere"""
|
|
97
|
-
if dimensionsUnconstrained == dimensionsTotal:
|
|
98
|
-
indexLeaf = integerSmall(0)
|
|
99
|
-
while indexLeaf < leaf1ndex:
|
|
100
|
-
gapsWhere[gap1ndexCeiling] = indexLeaf
|
|
101
|
-
gap1ndexCeiling += 1
|
|
102
|
-
indexLeaf += 1
|
|
103
|
-
|
|
104
|
-
"""Filter gaps that are common to all sections"""
|
|
105
|
-
indexMiniGap = gap1ndex
|
|
106
|
-
while indexMiniGap < gap1ndexCeiling:
|
|
107
|
-
gapsWhere[gap1ndex] = gapsWhere[indexMiniGap]
|
|
108
|
-
if track[countDimensionsGapped, gapsWhere[indexMiniGap]] == dimensionsTotal - dimensionsUnconstrained:
|
|
109
|
-
gap1ndex += 1
|
|
110
|
-
"""Reset track[countDimensionsGapped] for next iteration"""
|
|
111
|
-
track[countDimensionsGapped, gapsWhere[indexMiniGap]] = 0
|
|
112
|
-
indexMiniGap += 1
|
|
113
|
-
|
|
114
|
-
"""Recursive backtracking steps"""
|
|
115
|
-
while leaf1ndex > 0 and gap1ndex == track[gapRangeStart, leaf1ndex - 1]:
|
|
116
|
-
leaf1ndex -= 1
|
|
117
|
-
track[leafBelow, track[leafAbove, leaf1ndex]] = track[leafBelow, leaf1ndex]
|
|
118
|
-
track[leafAbove, track[leafBelow, leaf1ndex]] = track[leafAbove, leaf1ndex]
|
|
119
|
-
|
|
120
|
-
"""Place leaf in valid position"""
|
|
121
|
-
if leaf1ndex > 0:
|
|
122
|
-
gap1ndex -= 1
|
|
123
|
-
track[leafAbove, leaf1ndex] = gapsWhere[gap1ndex]
|
|
124
|
-
track[leafBelow, leaf1ndex] = track[leafBelow, track[leafAbove, leaf1ndex]]
|
|
125
|
-
track[leafBelow, track[leafAbove, leaf1ndex]] = leaf1ndex
|
|
126
|
-
track[leafAbove, track[leafBelow, leaf1ndex]] = leaf1ndex
|
|
127
|
-
"""Save current gap index"""
|
|
128
|
-
track[gapRangeStart, leaf1ndex] = gap1ndex
|
|
129
|
-
"""Move to next leaf"""
|
|
130
|
-
leaf1ndex += 1
|
|
131
|
-
|
|
132
|
-
return int(foldsTotal)
|
|
@@ -1,120 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Ported from the Java version by Sean A. Irvine:
|
|
3
|
-
https://github.com/archmageirvine/joeis/blob/80e3e844b11f149704acbab520bc3a3a25ac34ff/src/irvine/oeis/a001/A001415.java
|
|
4
|
-
|
|
5
|
-
Citation: mapFolding/citations/jOEIS.bibtex
|
|
6
|
-
"""
|
|
7
|
-
def foldings(p: list[int], res: int = 0, mod: int = 0) -> int:
|
|
8
|
-
"""
|
|
9
|
-
Compute the total number of foldings for a map with dimensions specified in p.
|
|
10
|
-
|
|
11
|
-
Parameters:
|
|
12
|
-
p: List of integers representing the dimensions of the map.
|
|
13
|
-
res: Residue for modulo operation (integer).
|
|
14
|
-
mod: Modulus for modulo operation (integer).
|
|
15
|
-
|
|
16
|
-
Returns:
|
|
17
|
-
total_count: The total number of foldings (integer).
|
|
18
|
-
"""
|
|
19
|
-
n = 1 # Total number of leaves
|
|
20
|
-
d = len(p) # Number of dimensions
|
|
21
|
-
for dimension in p:
|
|
22
|
-
n *= dimension
|
|
23
|
-
|
|
24
|
-
# Initialize arrays/lists
|
|
25
|
-
A = [0] * (n + 1) # Leaf above leaf m
|
|
26
|
-
B = [0] * (n + 1) # Leaf below leaf m
|
|
27
|
-
count = [0] * (n + 1) # Counts for potential gaps
|
|
28
|
-
gapter = [0] * (n + 1) # Indices for gap stack per leaf
|
|
29
|
-
gap = [0] * (n * n + 1) # Stack of potential gaps
|
|
30
|
-
|
|
31
|
-
# Compute arrays P, C, D as per the algorithm
|
|
32
|
-
P = [1] * (d + 1)
|
|
33
|
-
for i in range(1, d + 1):
|
|
34
|
-
P[i] = P[i - 1] * p[i - 1]
|
|
35
|
-
|
|
36
|
-
# C[i][m] holds the i-th coordinate of leaf m
|
|
37
|
-
C = [[0] * (n + 1) for _ in range(d + 1)]
|
|
38
|
-
for i in range(1, d + 1):
|
|
39
|
-
for m in range(1, n + 1):
|
|
40
|
-
C[i][m] = ((m - 1) // P[i - 1]) - ((m - 1) // P[i]) * p[i - 1] + 1
|
|
41
|
-
|
|
42
|
-
# D[i][l][m] computes the leaf connected to m in section i when inserting l
|
|
43
|
-
D = [[[0] * (n + 1) for _ in range(n + 1)] for _ in range(d + 1)]
|
|
44
|
-
for i in range(1, d + 1):
|
|
45
|
-
for l in range(1, n + 1):
|
|
46
|
-
for m in range(1, l + 1):
|
|
47
|
-
delta = C[i][l] - C[i][m]
|
|
48
|
-
if delta % 2 == 0:
|
|
49
|
-
# If delta is even
|
|
50
|
-
if C[i][m] == 1:
|
|
51
|
-
D[i][l][m] = m
|
|
52
|
-
else:
|
|
53
|
-
D[i][l][m] = m - P[i - 1]
|
|
54
|
-
else:
|
|
55
|
-
# If delta is odd
|
|
56
|
-
if C[i][m] == p[i - 1] or m + P[i - 1] > l:
|
|
57
|
-
D[i][l][m] = m
|
|
58
|
-
else:
|
|
59
|
-
D[i][l][m] = m + P[i - 1]
|
|
60
|
-
|
|
61
|
-
# Initialize variables for backtracking
|
|
62
|
-
total_count = 0 # Total number of foldings
|
|
63
|
-
g = 0 # Gap index
|
|
64
|
-
l = 1 # Current leaf
|
|
65
|
-
|
|
66
|
-
# Start backtracking loop
|
|
67
|
-
while l > 0:
|
|
68
|
-
# If we have processed all leaves, increment total count
|
|
69
|
-
if l > n:
|
|
70
|
-
total_count += 1
|
|
71
|
-
else:
|
|
72
|
-
dd = 0 # Number of sections where leaf l is unconstrained
|
|
73
|
-
gg = g # Temporary gap index
|
|
74
|
-
g = gapter[l - 1] # Reset gap index for current leaf
|
|
75
|
-
|
|
76
|
-
# Count possible gaps for leaf l in each section
|
|
77
|
-
for i in range(1, d + 1):
|
|
78
|
-
if D[i][l][l] == l:
|
|
79
|
-
dd += 1
|
|
80
|
-
else:
|
|
81
|
-
m = D[i][l][l]
|
|
82
|
-
while m != l:
|
|
83
|
-
if mod == 0 or l != mod or m % mod == res:
|
|
84
|
-
gap[gg] = m
|
|
85
|
-
if count[m] == 0:
|
|
86
|
-
gg += 1
|
|
87
|
-
count[m] += 1
|
|
88
|
-
m = D[i][l][B[m]]
|
|
89
|
-
|
|
90
|
-
# If leaf l is unconstrained in all sections, it can be inserted anywhere
|
|
91
|
-
if dd == d:
|
|
92
|
-
for m in range(l):
|
|
93
|
-
gap[gg] = m
|
|
94
|
-
gg += 1
|
|
95
|
-
|
|
96
|
-
# Filter gaps that are common to all sections
|
|
97
|
-
for j in range(g, gg):
|
|
98
|
-
gap[g] = gap[j]
|
|
99
|
-
if count[gap[j]] == d - dd:
|
|
100
|
-
g += 1
|
|
101
|
-
count[gap[j]] = 0 # Reset count for next iteration
|
|
102
|
-
|
|
103
|
-
# Recursive backtracking steps
|
|
104
|
-
while l > 0 and g == gapter[l - 1]:
|
|
105
|
-
# No more gaps to try, backtrack to previous leaf
|
|
106
|
-
l -= 1
|
|
107
|
-
B[A[l]] = B[l]
|
|
108
|
-
A[B[l]] = A[l]
|
|
109
|
-
|
|
110
|
-
if l > 0:
|
|
111
|
-
# Try next gap for leaf l
|
|
112
|
-
g -= 1
|
|
113
|
-
A[l] = gap[g]
|
|
114
|
-
B[l] = B[A[l]]
|
|
115
|
-
B[A[l]] = l
|
|
116
|
-
A[B[l]] = l
|
|
117
|
-
gapter[l] = g # Save current gap index
|
|
118
|
-
l += 1 # Move to next leaf
|
|
119
|
-
|
|
120
|
-
return total_count
|