mapFolding 0.4.3__py3-none-any.whl → 0.5.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. mapFolding/__init__.py +93 -58
  2. mapFolding/basecamp.py +9 -11
  3. mapFolding/beDRY.py +24 -23
  4. mapFolding/oeis.py +47 -45
  5. mapFolding/theDao.py +48 -48
  6. mapFolding/theSSOT.py +22 -20
  7. mapFolding/theSSOTdatatypes.py +20 -32
  8. {mapFolding-0.4.3.dist-info → mapFolding-0.5.1.dist-info}/METADATA +3 -1
  9. mapFolding-0.5.1.dist-info/RECORD +14 -0
  10. {mapFolding-0.4.3.dist-info → mapFolding-0.5.1.dist-info}/top_level.txt +0 -1
  11. mapFolding/reference/flattened.py +0 -377
  12. mapFolding/reference/hunterNumba.py +0 -132
  13. mapFolding/reference/irvineJavaPort.py +0 -120
  14. mapFolding/reference/jax.py +0 -208
  15. mapFolding/reference/lunnan.py +0 -153
  16. mapFolding/reference/lunnanNumpy.py +0 -123
  17. mapFolding/reference/lunnanWhile.py +0 -121
  18. mapFolding/reference/rotatedEntryPoint.py +0 -240
  19. mapFolding/reference/total_countPlus1vsPlusN.py +0 -211
  20. mapFolding/someAssemblyRequired/__init__.py +0 -5
  21. mapFolding/someAssemblyRequired/getLLVMforNoReason.py +0 -19
  22. mapFolding/someAssemblyRequired/makeJob.py +0 -55
  23. mapFolding/someAssemblyRequired/synthesizeModuleJAX.py +0 -29
  24. mapFolding/someAssemblyRequired/synthesizeNumba.py +0 -340
  25. mapFolding/someAssemblyRequired/synthesizeNumbaGeneralized.py +0 -396
  26. mapFolding/someAssemblyRequired/synthesizeNumbaJob.py +0 -162
  27. mapFolding/someAssemblyRequired/synthesizeNumbaModules.py +0 -129
  28. mapFolding/syntheticModules/numbaCount.py +0 -158
  29. mapFolding/syntheticModules/numba_doTheNeedful.py +0 -13
  30. mapFolding-0.4.3.dist-info/RECORD +0 -40
  31. tests/__init__.py +0 -1
  32. tests/conftest.py +0 -306
  33. tests/test_computations.py +0 -43
  34. tests/test_oeis.py +0 -129
  35. tests/test_other.py +0 -171
  36. tests/test_tasks.py +0 -40
  37. tests/test_types.py +0 -5
  38. /mapFolding/{syntheticModules/__init__.py → py.typed} +0 -0
  39. {mapFolding-0.4.3.dist-info → mapFolding-0.5.1.dist-info}/LICENSE +0 -0
  40. {mapFolding-0.4.3.dist-info → mapFolding-0.5.1.dist-info}/WHEEL +0 -0
  41. {mapFolding-0.4.3.dist-info → mapFolding-0.5.1.dist-info}/entry_points.txt +0 -0
@@ -1,240 +0,0 @@
1
- from mapFolding import outfitFoldings
2
- from numba import njit
3
- from typing import List
4
- import numpy
5
- from numpy.typing import NDArray
6
-
7
- """
8
- It is possible to enter the main `while` loop from an arbitrary point. This version is "rotated" to effectively enter at the modulo operator.
9
- """
10
-
11
- # Indices of array `track`, which is a collection of one-dimensional arrays each of length `the[leavesTotal] + 1`.
12
- # The values in the array cells are dynamic, small, unsigned integers.
13
- A = leafAbove = 0
14
- """Leaf above leaf m"""
15
- B = leafBelow = 1
16
- """Leaf below leaf m"""
17
- count = countDimensionsGapped = 2
18
- """Number of gaps available for leaf l"""
19
- gapter = gapRangeStart = 3
20
- """Index of gap stack for leaf l"""
21
-
22
- # Indices of array `my`, which holds dynamic, small, unsigned, integer values.
23
- tricky = [
24
- (leaf1ndex := 0),
25
- (gap1ndex := 1),
26
- (unconstrainedLeaf := 2),
27
- (gap1ndexCeiling := 3),
28
- (leafConnectee := 4),
29
- (taskIndex := 5),
30
- (dimension1ndex := 6),
31
- (foldingsSubtotal := 7),
32
- ]
33
-
34
- COUNTindicesDynamic = len(tricky)
35
-
36
- # Indices of array `the`, which holds unchanging, small, unsigned, integer values.
37
- tricky = [
38
- (dimensionsPlus1 := 0),
39
- (dimensionsTotal := 1),
40
- (leavesTotal := 2),
41
- ]
42
-
43
- COUNTindicesStatic = len(tricky)
44
-
45
- def countFolds(listDimensions: List[int]):
46
- static = numpy.zeros(COUNTindicesStatic, dtype=numpy.int64)
47
-
48
- listDimensions, static[leavesTotal], D, track,gapsWhere = outfitFoldings(listDimensions)
49
-
50
- static[dimensionsTotal] = len(listDimensions)
51
- static[dimensionsPlus1] = static[dimensionsTotal] + 1
52
-
53
- # Pass listDimensions and taskDivisions to _sherpa for benchmarking
54
- foldingsTotal = _sherpa(track, gapsWhere, static, D, listDimensions)
55
- return foldingsTotal
56
-
57
- # @recordBenchmarks()
58
- def _sherpa(track: NDArray, gap: NDArray, static: NDArray, D: NDArray, p: List[int]):
59
- """Performance critical section that counts foldings.
60
-
61
- Parameters:
62
- track: Array tracking folding state
63
- gap: Array for potential gaps
64
- static: Array containing static configuration values
65
- D: Array of leaf connections
66
- p: List of dimensions for benchmarking
67
- """
68
- foldingsTotal = countFoldings(track, gap, static, D)
69
- return foldingsTotal
70
-
71
- @njit(cache=True, parallel=False, fastmath=False)
72
- def countFoldings(TEMPLATEtrack: NDArray,
73
- TEMPLATEgapsWhere: NDArray,
74
- the: NDArray,
75
- connectionGraph: NDArray
76
- ):
77
-
78
- TEMPLATEmy = numpy.zeros(COUNTindicesDynamic, dtype=numpy.int64)
79
- TEMPLATEmy[leaf1ndex] = 1
80
-
81
- taskDivisions = 0
82
- # taskDivisions = the[leavesTotal]
83
- TEMPLATEmy[taskIndex] = taskDivisions - 1 # the first modulo is leavesTotal - 1
84
-
85
- def prepareWork(track: NDArray,
86
- gapsWhere: NDArray,
87
- my: NDArray) -> tuple[NDArray, NDArray, NDArray]:
88
- foldingsTotal = 0
89
- while True:
90
- if my[leaf1ndex] <= 1 or track[leafBelow][0] == 1:
91
- if my[leaf1ndex] > the[leavesTotal]:
92
- foldingsTotal += the[leavesTotal]
93
- else:
94
- my[unconstrainedLeaf] = 0
95
- my[gap1ndexCeiling] = track[gapRangeStart][my[leaf1ndex] - 1]
96
- my[gap1ndex] = my[gap1ndexCeiling]
97
-
98
- for PREPAREdimension1ndex in range(1, the[dimensionsPlus1]):
99
- if connectionGraph[PREPAREdimension1ndex][my[leaf1ndex]][my[leaf1ndex]] == my[leaf1ndex]:
100
- my[unconstrainedLeaf] += 1
101
- else:
102
- my[leafConnectee] = connectionGraph[PREPAREdimension1ndex][my[leaf1ndex]][my[leaf1ndex]]
103
- while my[leafConnectee] != my[leaf1ndex]:
104
-
105
- if my[leafConnectee] != my[leaf1ndex]:
106
- my[dimension1ndex] = PREPAREdimension1ndex
107
- return track, gapsWhere, my
108
-
109
- if my[leaf1ndex] != the[leavesTotal]:
110
- gapsWhere[my[gap1ndexCeiling]] = my[leafConnectee]
111
- if track[countDimensionsGapped][my[leafConnectee]] == 0:
112
- my[gap1ndexCeiling] += 1
113
- track[countDimensionsGapped][my[leafConnectee]] += 1
114
- else:
115
- print("else")
116
- my[dimension1ndex] = PREPAREdimension1ndex
117
- return track, gapsWhere, my
118
- # PREPAREmy[leafConnectee] % the[leavesTotal] == PREPAREmy[taskIndex]
119
- my[leafConnectee] = connectionGraph[dimension1ndex][my[leaf1ndex]][track[leafBelow][my[leafConnectee]]]
120
-
121
- if my[unconstrainedLeaf] == the[dimensionsTotal]:
122
- for indexLeaf in range(my[leaf1ndex]):
123
- gapsWhere[my[gap1ndexCeiling]] = indexLeaf
124
- my[gap1ndexCeiling] += 1
125
-
126
- for indexMiniGap in range(my[gap1ndex], my[gap1ndexCeiling]):
127
- gapsWhere[my[gap1ndex]] = gapsWhere[indexMiniGap]
128
- if track[countDimensionsGapped][gapsWhere[indexMiniGap]] == the[dimensionsTotal] - my[unconstrainedLeaf]:
129
- my[gap1ndex] += 1
130
- track[countDimensionsGapped][gapsWhere[indexMiniGap]] = 0
131
-
132
- while my[leaf1ndex] > 0 and my[gap1ndex] == track[gapRangeStart][my[leaf1ndex] - 1]:
133
- my[leaf1ndex] -= 1
134
- track[leafBelow][track[leafAbove][my[leaf1ndex]]] = track[leafBelow][my[leaf1ndex]]
135
- track[leafAbove][track[leafBelow][my[leaf1ndex]]] = track[leafAbove][my[leaf1ndex]]
136
-
137
- if my[leaf1ndex] > 0:
138
- my[gap1ndex] -= 1
139
- track[leafAbove][my[leaf1ndex]] = gapsWhere[my[gap1ndex]]
140
- track[leafBelow][my[leaf1ndex]] = track[leafBelow][track[leafAbove][my[leaf1ndex]]]
141
- track[leafBelow][track[leafAbove][my[leaf1ndex]]] = my[leaf1ndex]
142
- track[leafAbove][track[leafBelow][my[leaf1ndex]]] = my[leaf1ndex]
143
- track[gapRangeStart][my[leaf1ndex]] = my[gap1ndex]
144
- my[leaf1ndex] += 1
145
-
146
- RETURNtrack, RETURNgapsWhere, RETURNmy = prepareWork(TEMPLATEtrack.copy(), TEMPLATEgapsWhere.copy(), TEMPLATEmy.copy())
147
-
148
- foldingsTotal = doWork(RETURNtrack.copy(), RETURNgapsWhere.copy(), RETURNmy.copy(), the, connectionGraph, taskDivisions)
149
-
150
- return foldingsTotal
151
-
152
- @njit(cache=True, parallel=False, fastmath=False)
153
- def doWork(track: NDArray,
154
- gapsWhere: NDArray,
155
- my: NDArray,
156
- the: NDArray,
157
- connectionGraph: NDArray,
158
- taskDivisions: int = 0
159
- ):
160
-
161
- papasGotABrandNewBag = True
162
- if_activeLeaf1ndex_LTE_1_or_leafBelow_index_0_equals_1 = True
163
- for_dimension1ndex_in_range_1_to_dimensionsPlus1 = True
164
- while_leaf1ndexConnectee_notEquals_activeLeaf1ndex = True
165
-
166
- thisIsNotTheFirstPass = False
167
-
168
- while papasGotABrandNewBag:
169
- if my[leaf1ndex] <= 1 or track[leafBelow][0] == 1 or if_activeLeaf1ndex_LTE_1_or_leafBelow_index_0_equals_1 == True:
170
- if_activeLeaf1ndex_LTE_1_or_leafBelow_index_0_equals_1 = False
171
- if my[leaf1ndex] > the[leavesTotal] and thisIsNotTheFirstPass:
172
- my[foldingsSubtotal] += the[leavesTotal]
173
- else:
174
- if thisIsNotTheFirstPass:
175
- my[unconstrainedLeaf] = 0
176
- my[gap1ndexCeiling] = track[gapRangeStart][my[leaf1ndex] - 1]
177
- my[gap1ndex] = my[gap1ndexCeiling]
178
-
179
- for_dimension1ndex_in_range_1_to_dimensionsPlus1 = True
180
- while for_dimension1ndex_in_range_1_to_dimensionsPlus1 == True:
181
- for_dimension1ndex_in_range_1_to_dimensionsPlus1 = False
182
- if connectionGraph[my[dimension1ndex]][my[leaf1ndex]][my[leaf1ndex]] == my[leaf1ndex] and thisIsNotTheFirstPass:
183
- my[unconstrainedLeaf] += 1
184
- else:
185
- if thisIsNotTheFirstPass:
186
- my[leafConnectee] = connectionGraph[my[dimension1ndex]][my[leaf1ndex]][my[leaf1ndex]]
187
- if my[leafConnectee] != my[leaf1ndex]:
188
- while_leaf1ndexConnectee_notEquals_activeLeaf1ndex = True
189
-
190
- while while_leaf1ndexConnectee_notEquals_activeLeaf1ndex == True:
191
- while_leaf1ndexConnectee_notEquals_activeLeaf1ndex = False
192
- thisIsNotTheFirstPass = True
193
- if taskDivisions==0 or my[leaf1ndex] != taskDivisions:
194
- myTask = True
195
- else:
196
- modulo = my[leafConnectee] % the[leavesTotal]
197
- if modulo == my[taskIndex]: myTask = True
198
- else:
199
- myTask = False
200
- if myTask:
201
- gapsWhere[my[gap1ndexCeiling]] = my[leafConnectee]
202
- if track[countDimensionsGapped][my[leafConnectee]] == 0:
203
- my[gap1ndexCeiling] += 1
204
- track[countDimensionsGapped][my[leafConnectee]] += 1
205
- my[leafConnectee] = connectionGraph[my[dimension1ndex]][my[leaf1ndex]][track[leafBelow][my[leafConnectee]]]
206
- if my[leafConnectee] != my[leaf1ndex]:
207
- while_leaf1ndexConnectee_notEquals_activeLeaf1ndex = True
208
- my[dimension1ndex] += 1
209
- if my[dimension1ndex] < the[dimensionsPlus1]:
210
- for_dimension1ndex_in_range_1_to_dimensionsPlus1 = True
211
- else:
212
- my[dimension1ndex] = 1
213
-
214
- if my[unconstrainedLeaf] == the[dimensionsTotal]:
215
- for leaf1ndex in range(my[leaf1ndex]):
216
- gapsWhere[my[gap1ndexCeiling]] = leaf1ndex
217
- my[gap1ndexCeiling] += 1
218
-
219
- for indexMiniGap in range(my[gap1ndex], my[gap1ndexCeiling]):
220
- gapsWhere[my[gap1ndex]] = gapsWhere[indexMiniGap]
221
- if track[countDimensionsGapped][gapsWhere[indexMiniGap]] == the[dimensionsTotal] - my[unconstrainedLeaf]:
222
- my[gap1ndex] += 1
223
- track[countDimensionsGapped][gapsWhere[indexMiniGap]] = 0
224
-
225
- while my[leaf1ndex] > 0 and my[gap1ndex] == track[gapRangeStart][my[leaf1ndex] - 1]:
226
- my[leaf1ndex] -= 1
227
- track[leafBelow][track[leafAbove][my[leaf1ndex]]] = track[leafBelow][my[leaf1ndex]]
228
- track[leafAbove][track[leafBelow][my[leaf1ndex]]] = track[leafAbove][my[leaf1ndex]]
229
-
230
- if my[leaf1ndex] > 0:
231
- my[gap1ndex] -= 1
232
- track[leafAbove][my[leaf1ndex]] = gapsWhere[my[gap1ndex]]
233
- track[leafBelow][my[leaf1ndex]] = track[leafBelow][track[leafAbove][my[leaf1ndex]]]
234
- track[leafBelow][track[leafAbove][my[leaf1ndex]]] = my[leaf1ndex]
235
- track[leafAbove][track[leafBelow][my[leaf1ndex]]] = my[leaf1ndex]
236
- track[gapRangeStart][my[leaf1ndex]] = my[gap1ndex]
237
- my[leaf1ndex] += 1
238
-
239
- if my[leaf1ndex] <= 0:
240
- return my[foldingsSubtotal]
@@ -1,211 +0,0 @@
1
- from numba import njit
2
- import numpy
3
-
4
- @njit(cache=True)
5
- def foldings_plus_1(p: list[int], computationDivisions: int = 0, computationIndex: int = 0) -> int:
6
- n: int = 1 # Total number of leaves
7
- for dimension in p:
8
- n *= dimension
9
-
10
- d = len(p) # Number of dimensions
11
- # Compute arrays P, C, D as per the algorithm
12
- P = numpy.ones(d + 1, dtype=numpy.int64)
13
- for i in range(1, d + 1):
14
- P[i] = P[i - 1] * p[i - 1]
15
-
16
- # C[i][m] holds the i-th coordinate of leaf m
17
- C = numpy.zeros((d + 1, n + 1), dtype=numpy.int64)
18
- for i in range(1, d + 1):
19
- for m in range(1, n + 1):
20
- C[i][m] = ((m - 1) // P[i - 1]) - ((m - 1) // P[i]) * p[i - 1] + 1
21
-
22
- # D[i][l][m] computes the leaf connected to m in section i when inserting l
23
- D = numpy.zeros((d + 1, n + 1, n + 1), dtype=numpy.int64)
24
- for i in range(1, d + 1):
25
- for l in range(1, n + 1):
26
- for m in range(1, l + 1):
27
- delta = C[i][l] - C[i][m]
28
- if delta % 2 == 0:
29
- # If delta is even
30
- if C[i][m] == 1:
31
- D[i][l][m] = m
32
- else:
33
- D[i][l][m] = m - P[i - 1]
34
- else:
35
- # If delta is odd
36
- if C[i][m] == p[i - 1] or m + P[i - 1] > l:
37
- D[i][l][m] = m
38
- else:
39
- D[i][l][m] = m + P[i - 1]
40
- # Initialize arrays/lists
41
- A = numpy.zeros(n + 1, dtype=numpy.int64) # Leaf above leaf m
42
- B = numpy.zeros(n + 1, dtype=numpy.int64) # Leaf below leaf m
43
- count = numpy.zeros(n + 1, dtype=numpy.int64) # Counts for potential gaps
44
- gapter = numpy.zeros(n + 1, dtype=numpy.int64) # Indices for gap stack per leaf
45
- gap = numpy.zeros(n * n + 1, dtype=numpy.int64) # Stack of potential gaps
46
-
47
-
48
- # Initialize variables for backtracking
49
- total_count = 0 # Total number of foldings
50
- g = 0 # Gap index
51
- l = 1 # Current leaf
52
-
53
- # Start backtracking loop
54
- while l > 0:
55
- # If we have processed all leaves, increment total count
56
- if l > n:
57
- total_count += 1
58
- else:
59
- dd = 0 # Number of sections where leaf l is unconstrained
60
- gg = g # Temporary gap index
61
- g = gapter[l - 1] # Reset gap index for current leaf
62
-
63
- # Count possible gaps for leaf l in each section
64
- for i in range(1, d + 1):
65
- if D[i][l][l] == l:
66
- dd += 1
67
- else:
68
- m = D[i][l][l]
69
- while m != l:
70
- if computationDivisions == 0 or l != computationDivisions or m % computationDivisions == computationIndex:
71
- gap[gg] = m
72
- if count[m] == 0:
73
- gg += 1
74
- count[m] += 1
75
- m = D[i][l][B[m]]
76
-
77
- # If leaf l is unconstrained in all sections, it can be inserted anywhere
78
- if dd == d:
79
- for m in range(l):
80
- gap[gg] = m
81
- gg += 1
82
-
83
- # Filter gaps that are common to all sections
84
- for j in range(g, gg):
85
- gap[g] = gap[j]
86
- if count[gap[j]] == d - dd:
87
- g += 1
88
- count[gap[j]] = 0 # Reset count for next iteration
89
-
90
- # Recursive backtracking steps
91
- while l > 0 and g == gapter[l - 1]:
92
- l -= 1
93
- B[A[l]] = B[l]
94
- A[B[l]] = A[l]
95
-
96
- if l > 0:
97
- g -= 1
98
- A[l] = gap[g]
99
- B[l] = B[A[l]]
100
- B[A[l]] = l
101
- A[B[l]] = l
102
- gapter[l] = g # Save current gap index
103
- l += 1 # Move to next leaf
104
-
105
- return total_count
106
-
107
- @njit(cache=True)
108
- def foldings(p: list[int], computationDivisions: int = 0, computationIndex: int = 0) -> int:
109
- n: int = 1 # Total number of leaves
110
- for dimension in p:
111
- n *= dimension
112
-
113
- d = len(p) # Number of dimensions
114
- # Compute arrays P, C, D as per the algorithm
115
- P = numpy.ones(d + 1, dtype=numpy.int64)
116
- for i in range(1, d + 1):
117
- P[i] = P[i - 1] * p[i - 1]
118
-
119
- # C[i][m] holds the i-th coordinate of leaf m
120
- C = numpy.zeros((d + 1, n + 1), dtype=numpy.int64)
121
- for i in range(1, d + 1):
122
- for m in range(1, n + 1):
123
- C[i][m] = ((m - 1) // P[i - 1]) - ((m - 1) // P[i]) * p[i - 1] + 1
124
- # C[i][m] = ((m - 1) // P[i - 1]) % p[i - 1] + 1 # NOTE different, but either one works
125
-
126
- # D[i][l][m] computes the leaf connected to m in section i when inserting l
127
- D = numpy.zeros((d + 1, n + 1, n + 1), dtype=numpy.int64)
128
- for i in range(1, d + 1):
129
- for l in range(1, n + 1):
130
- for m in range(1, l + 1):
131
- delta = C[i][l] - C[i][m]
132
- if delta % 2 == 0:
133
- # If delta is even
134
- if C[i][m] == 1:
135
- D[i][l][m] = m
136
- else:
137
- D[i][l][m] = m - P[i - 1]
138
- else:
139
- # If delta is odd
140
- if C[i][m] == p[i - 1] or m + P[i - 1] > l:
141
- D[i][l][m] = m
142
- else:
143
- D[i][l][m] = m + P[i - 1]
144
- # Initialize arrays/lists
145
- A = numpy.zeros(n + 1, dtype=numpy.int64) # Leaf above leaf m
146
- B = numpy.zeros(n + 1, dtype=numpy.int64) # Leaf below leaf m
147
- count = numpy.zeros(n + 1, dtype=numpy.int64) # Counts for potential gaps
148
- gapter = numpy.zeros(n + 1, dtype=numpy.int64) # Indices for gap stack per leaf
149
- gap = numpy.zeros(n * n + 1, dtype=numpy.int64) # Stack of potential gaps
150
-
151
-
152
- # Initialize variables for backtracking
153
- total_count = 0 # Total number of foldings
154
- g = 0 # Gap index
155
- l = 1 # Current leaf
156
-
157
- # Start backtracking loop
158
- while l > 0:
159
- if l <= 1 or B[0] == 1: # NOTE different
160
- # NOTE the above `if` statement encloses the the if/else block below
161
- # NOTE these changes increase the throughput by more than an order of magnitude
162
- if l > n:
163
- total_count += n
164
- else:
165
- dd = 0 # Number of sections where leaf l is unconstrained
166
- gg = gapter[l - 1] # Track possible gaps # NOTE different, but not important
167
- g = gg # NOTE different, but not important
168
-
169
- # Count possible gaps for leaf l in each section
170
- for i in range(1, d + 1):
171
- if D[i][l][l] == l:
172
- dd += 1
173
- else:
174
- m = D[i][l][l]
175
- while m != l:
176
- if computationDivisions == 0 or l != computationDivisions or m % computationDivisions == computationIndex:
177
- gap[gg] = m
178
- if count[m] == 0:
179
- gg += 1
180
- count[m] += 1
181
- m = D[i][l][B[m]]
182
-
183
- # If leaf l is unconstrained in all sections, it can be inserted anywhere
184
- if dd == d:
185
- for m in range(l):
186
- gap[gg] = m
187
- gg += 1
188
-
189
- # Filter gaps that are common to all sections
190
- for j in range(g, gg):
191
- gap[g] = gap[j]
192
- if count[gap[j]] == d - dd:
193
- g += 1
194
- count[gap[j]] = 0 # Reset count for next iteration
195
-
196
- # Recursive backtracking steps
197
- while l > 0 and g == gapter[l - 1]:
198
- l -= 1
199
- B[A[l]] = B[l]
200
- A[B[l]] = A[l]
201
-
202
- if l > 0:
203
- g -= 1
204
- A[l] = gap[g]
205
- B[l] = B[A[l]]
206
- B[A[l]] = l
207
- A[B[l]] = l
208
- gapter[l] = g # Save current gap index
209
- l += 1 # Move to next leaf
210
-
211
- return total_count
@@ -1,5 +0,0 @@
1
- from mapFolding.someAssemblyRequired.getLLVMforNoReason import writeModuleLLVM
2
- from mapFolding.someAssemblyRequired.makeJob import makeStateJob
3
- from mapFolding.someAssemblyRequired.synthesizeNumbaGeneralized import youOughtaKnow
4
- from mapFolding.someAssemblyRequired.synthesizeNumbaJob import writeJobNumba
5
- from mapFolding.someAssemblyRequired.synthesizeNumbaModules import makeFlowNumbaOptimized
@@ -1,19 +0,0 @@
1
- import importlib
2
- import importlib.util
3
- import llvmlite.binding
4
- import pathlib
5
-
6
- def writeModuleLLVM(pathFilename: pathlib.Path, identifierCallable: str) -> pathlib.Path:
7
- """Import the generated module directly and get its LLVM IR."""
8
- specTarget = importlib.util.spec_from_file_location("generatedModule", pathFilename)
9
- if specTarget is None or specTarget.loader is None:
10
- raise ImportError(f"Could not create module spec or loader for {pathFilename}")
11
- moduleTarget = importlib.util.module_from_spec(specTarget)
12
- specTarget.loader.exec_module(moduleTarget)
13
-
14
- # Get LLVM IR and write to file
15
- linesLLVM = moduleTarget.__dict__[identifierCallable].inspect_llvm()[()]
16
- moduleLLVM = llvmlite.binding.module.parse_assembly(linesLLVM)
17
- pathFilenameLLVM = pathFilename.with_suffix(".ll")
18
- pathFilenameLLVM.write_text(str(moduleLLVM))
19
- return pathFilenameLLVM
@@ -1,55 +0,0 @@
1
- from mapFolding import getPathFilenameFoldsTotal, computationState, outfitCountFolds, getAlgorithmSource
2
- from types import ModuleType
3
- from typing import Any, Literal, Optional, Sequence, overload
4
- import pathlib
5
- import pickle
6
-
7
- @overload
8
- def makeStateJob(listDimensions: Sequence[int], *, writeJob: Literal[True] , **keywordArguments: Optional[str]) -> pathlib.Path: ...
9
- @overload
10
- def makeStateJob(listDimensions: Sequence[int], *, writeJob: Literal[False] , **keywordArguments: Optional[str]) -> computationState: ...
11
- def makeStateJob(listDimensions: Sequence[int], *, writeJob: bool = True, **keywordArguments: Optional[Any]) -> computationState | pathlib.Path:
12
- """
13
- Creates a computation state job for map folding calculations and optionally saves it to disk.
14
-
15
- This function initializes a computation state for map folding calculations based on the given dimensions,
16
- sets up the initial counting configuration, and can optionally save the state to a pickle file.
17
-
18
- Parameters
19
- ----------
20
- listDimensions : Sequence[int]
21
- The dimensions of the map to be folded, typically as [height, width].
22
- writeJob : bool, optional
23
- If True, saves the computation state to disk. If False, returns the state object directly.
24
- Default is True.
25
- **keywordArguments : Optional[str]
26
- Additional keyword arguments to be passed to the outfitCountFolds function.
27
-
28
- Returns
29
- -------
30
- Union[computationState, pathlib.Path]
31
- If writeJob is False, returns the computation state object.
32
- If writeJob is True, returns the Path object pointing to the saved state file.
33
-
34
- Notes
35
- -----
36
- The function creates necessary directories and saves the state as a pickle file
37
- when writeJob is True. The file is saved in a directory structure based on the map shape.
38
- """
39
-
40
- stateUniversal: computationState = outfitCountFolds(listDimensions, **keywordArguments)
41
-
42
- moduleSource: ModuleType = getAlgorithmSource()
43
- moduleSource.countInitialize(stateUniversal['connectionGraph'], stateUniversal['gapsWhere'], stateUniversal['my'], stateUniversal['track'])
44
-
45
- if not writeJob:
46
- return stateUniversal
47
-
48
- pathFilenameChopChop = getPathFilenameFoldsTotal(stateUniversal['mapShape'])
49
- suffix = pathFilenameChopChop.suffix
50
- pathJob = pathlib.Path(str(pathFilenameChopChop)[0:-len(suffix)])
51
- pathJob.mkdir(parents=True, exist_ok=True)
52
- pathFilenameJob = pathJob / 'stateJob.pkl'
53
-
54
- pathFilenameJob.write_bytes(pickle.dumps(stateUniversal))
55
- return pathFilenameJob
@@ -1,29 +0,0 @@
1
- from mapFolding import getAlgorithmSource, getPathSyntheticModules
2
- from mapFolding import setDatatypeModule, setDatatypeFoldsTotal, setDatatypeElephino, setDatatypeLeavesTotal
3
- from typing import Optional
4
- import ast
5
- import inspect
6
- import pathlib
7
- import sys
8
-
9
- def transformPythonToJAX(codePython: str) -> None:
10
- astPython = ast.parse(codePython)
11
-
12
- def writeJax(*, codeSource: Optional[str] = None, pathFilenameAlgorithm: Optional[pathlib.Path] = None, pathFilenameDestination: Optional[pathlib.Path] = None) -> None:
13
- if codeSource is None and pathFilenameAlgorithm is None:
14
- algorithmSource = getAlgorithmSource()
15
- codeSource = inspect.getsource(algorithmSource)
16
- transformedText = transformPythonToJAX(codeSource)
17
- pathFilenameAlgorithm = pathlib.Path(inspect.getfile(algorithmSource))
18
- else:
19
- raise NotImplementedError("You haven't written this part yet.")
20
- if pathFilenameDestination is None:
21
- pathFilenameDestination = getPathSyntheticModules() / "countJax.py"
22
- # pathFilenameDestination.write_text(transformedText)
23
-
24
- if __name__ == '__main__':
25
- setDatatypeModule('jax.numpy', sourGrapes=True)
26
- setDatatypeFoldsTotal('int64', sourGrapes=True)
27
- setDatatypeElephino('uint8', sourGrapes=True)
28
- setDatatypeLeavesTotal('uint8', sourGrapes=True)
29
- writeJax()