mapFolding 0.4.2__py3-none-any.whl → 0.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mapFolding/__init__.py +3 -2
- mapFolding/basecamp.py +12 -14
- mapFolding/beDRY.py +81 -58
- mapFolding/oeis.py +35 -33
- mapFolding/someAssemblyRequired/makeJob.py +8 -7
- mapFolding/someAssemblyRequired/synthesizeModuleJAX.py +1 -3
- mapFolding/someAssemblyRequired/synthesizeNumba.py +57 -60
- mapFolding/someAssemblyRequired/synthesizeNumbaGeneralized.py +102 -30
- mapFolding/someAssemblyRequired/synthesizeNumbaJob.py +18 -36
- mapFolding/someAssemblyRequired/synthesizeNumbaModules.py +77 -31
- mapFolding/syntheticModules/numbaCount.py +158 -0
- mapFolding/syntheticModules/numba_doTheNeedful.py +5 -12
- mapFolding/theDao.py +105 -105
- mapFolding/theSSOT.py +80 -205
- mapFolding/theSSOTdatatypes.py +166 -0
- {mapFolding-0.4.2.dist-info → mapFolding-0.5.0.dist-info}/METADATA +2 -1
- mapFolding-0.5.0.dist-info/RECORD +39 -0
- tests/conftest.py +84 -26
- tests/test_computations.py +29 -66
- tests/test_oeis.py +8 -12
- tests/test_other.py +11 -7
- tests/test_tasks.py +5 -5
- mapFolding/syntheticModules/numba_countInitialize.py +0 -52
- mapFolding/syntheticModules/numba_countParallel.py +0 -65
- mapFolding/syntheticModules/numba_countSequential.py +0 -67
- mapFolding/theSSOTnumba.py +0 -125
- mapFolding-0.4.2.dist-info/RECORD +0 -42
- tests/test_types.py +0 -5
- {mapFolding-0.4.2.dist-info → mapFolding-0.5.0.dist-info}/LICENSE +0 -0
- {mapFolding-0.4.2.dist-info → mapFolding-0.5.0.dist-info}/WHEEL +0 -0
- {mapFolding-0.4.2.dist-info → mapFolding-0.5.0.dist-info}/entry_points.txt +0 -0
- {mapFolding-0.4.2.dist-info → mapFolding-0.5.0.dist-info}/top_level.txt +0 -0
|
@@ -4,42 +4,76 @@ everything I am doing. I would rather benefit from humanity's
|
|
|
4
4
|
collective wisdom."""
|
|
5
5
|
from mapFolding.someAssemblyRequired.synthesizeNumba import *
|
|
6
6
|
|
|
7
|
-
def
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
7
|
+
def getFunctionDef(algorithmSource: ModuleType, *arguments, **keywordArguments) -> tuple[ast.FunctionDef, UniversalImportTracker]:
|
|
8
|
+
pythonSource = inspect.getsource(algorithmSource)
|
|
9
|
+
astModule: ast.Module = ast.parse(pythonSource, type_comments=True)
|
|
10
|
+
FunctionDefTarget, allImports = makeFunctionDef(astModule, *arguments, **keywordArguments)
|
|
11
|
+
return FunctionDefTarget, allImports
|
|
12
|
+
|
|
13
|
+
def makePythonSource(listFunctionDefs: list[ast.FunctionDef], listAstImports: list[ast.Import | ast.ImportFrom], additional_imports: list[str]) -> str:
|
|
14
|
+
astModule = ast.Module(body=cast(list[ast.stmt], listAstImports + listFunctionDefs), type_ignores=[])
|
|
15
|
+
ast.fix_missing_locations(astModule)
|
|
16
|
+
pythonSource = ast.unparse(astModule)
|
|
17
|
+
if not pythonSource: raise FREAKOUT
|
|
18
|
+
pythonSource = autoflake.fix_code(pythonSource, additional_imports)
|
|
19
|
+
return pythonSource
|
|
12
20
|
|
|
13
|
-
|
|
21
|
+
def writePythonAsModule(pythonSource: str, listCallableSynthesized: list[str], relativePathWrite: Path | None, filenameWrite: str | None, formatFilenameWrite: str | None) -> list[youOughtaKnow]:
|
|
22
|
+
pathFilename = None
|
|
23
|
+
if not relativePathWrite:
|
|
24
|
+
pathWrite = getPathSyntheticModules()
|
|
25
|
+
else:
|
|
26
|
+
pathWrite = getPathPackage() / relativePathWrite
|
|
14
27
|
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
pythonSource = makeAstModuleForOneCallable(pythonSource, callableTarget, parametersNumba, inlineCallables, unpackArrays, allImports)
|
|
18
|
-
if not pythonSource: raise FREAKOUT
|
|
19
|
-
pythonSource = autoflake.fix_code(pythonSource, ['mapFolding', 'numba', 'numpy'])
|
|
28
|
+
if not formatFilenameWrite:
|
|
29
|
+
formatFilenameWrite = formatFilenameModuleDEFAULT
|
|
20
30
|
|
|
21
|
-
|
|
22
|
-
|
|
31
|
+
if not filenameWrite:
|
|
32
|
+
if len(listCallableSynthesized) == 1:
|
|
33
|
+
callableTarget = listCallableSynthesized[0]
|
|
23
34
|
else:
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
35
|
+
callableTarget = 'count'
|
|
36
|
+
filenameWrite = formatFilenameWrite.format(callableTarget=callableTarget)
|
|
37
|
+
else:
|
|
38
|
+
if not filenameWrite.endswith('.py'):
|
|
39
|
+
warnings.warn(f"Filename {filenameWrite=} does not end with '.py'.")
|
|
28
40
|
|
|
29
|
-
|
|
41
|
+
pathFilename = pathWrite / filenameWrite
|
|
30
42
|
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
43
|
+
pathFilename.write_text(pythonSource)
|
|
44
|
+
|
|
45
|
+
howIsThisStillAThing = getPathPackage().parent
|
|
46
|
+
dumbassPythonNamespace = pathFilename.relative_to(howIsThisStillAThing).with_suffix('').parts
|
|
47
|
+
ImaModule = '.'.join(dumbassPythonNamespace)
|
|
48
|
+
|
|
49
|
+
listStuffYouOughtaKnow: list[youOughtaKnow] = []
|
|
50
|
+
|
|
51
|
+
for callableTarget in listCallableSynthesized:
|
|
34
52
|
astImportFrom = ast.ImportFrom(module=ImaModule, names=[ast.alias(name=callableTarget, asname=None)], level=0)
|
|
53
|
+
stuff = youOughtaKnow(callableSynthesized=callableTarget, pathFilenameForMe=pathFilename, astForCompetentProgrammers=astImportFrom)
|
|
54
|
+
listStuffYouOughtaKnow.append(stuff)
|
|
55
|
+
|
|
56
|
+
return listStuffYouOughtaKnow
|
|
35
57
|
|
|
36
|
-
|
|
58
|
+
def makeFlowNumbaOptimized(listCallablesInline: list[str], callableDispatcher: bool | None = False, algorithmSource: ModuleType | None = None, relativePathWrite: Path | None = None, filenameModuleWrite: str | None = None, formatFilenameWrite: str | None = None) -> list[youOughtaKnow]:
|
|
59
|
+
if relativePathWrite and relativePathWrite.is_absolute():
|
|
60
|
+
raise ValueError("The path to write the module must be relative to the root of the package.")
|
|
61
|
+
if not algorithmSource:
|
|
62
|
+
algorithmSource = getAlgorithmSource()
|
|
63
|
+
|
|
64
|
+
Z0Z_filenameModuleWrite = 'numbaCount.py'
|
|
37
65
|
|
|
66
|
+
listStuffYouOughtaKnow: list[youOughtaKnow] = []
|
|
67
|
+
additional_imports = ['mapFolding', 'numba', 'numpy']
|
|
68
|
+
|
|
69
|
+
listFunctionDefs: list[ast.FunctionDef] = []
|
|
70
|
+
allImportsModule = UniversalImportTracker()
|
|
38
71
|
for callableTarget in listCallablesInline:
|
|
39
72
|
parametersNumba = None
|
|
40
73
|
inlineCallables = True
|
|
41
74
|
unpackArrays = False
|
|
42
75
|
allImports = None
|
|
76
|
+
filenameWrite = None
|
|
43
77
|
match callableTarget:
|
|
44
78
|
case 'countParallel':
|
|
45
79
|
parametersNumba = parametersNumbaSuperJitParallel
|
|
@@ -48,7 +82,17 @@ def makeFlowNumbaOptimized(listCallablesInline: List[str], callableDispatcher: O
|
|
|
48
82
|
unpackArrays = True
|
|
49
83
|
case 'countInitialize':
|
|
50
84
|
parametersNumba = parametersNumbaDEFAULT
|
|
51
|
-
|
|
85
|
+
FunctionDefTarget, allImports = getFunctionDef(algorithmSource, callableTarget, parametersNumba, inlineCallables, unpackArrays, allImports)
|
|
86
|
+
listFunctionDefs.append(FunctionDefTarget)
|
|
87
|
+
allImportsModule.update(allImports)
|
|
88
|
+
|
|
89
|
+
listAstImports = allImportsModule.makeListAst()
|
|
90
|
+
pythonSource = makePythonSource(listFunctionDefs, listAstImports, additional_imports)
|
|
91
|
+
|
|
92
|
+
filenameWrite = filenameModuleWrite or Z0Z_filenameModuleWrite
|
|
93
|
+
|
|
94
|
+
listStuff = writePythonAsModule(pythonSource, listCallablesInline, relativePathWrite, filenameWrite, formatFilenameWrite)
|
|
95
|
+
listStuffYouOughtaKnow.extend(listStuff)
|
|
52
96
|
|
|
53
97
|
if callableDispatcher:
|
|
54
98
|
callableTarget = getAlgorithmDispatcher().__name__
|
|
@@ -56,22 +100,24 @@ def makeFlowNumbaOptimized(listCallablesInline: List[str], callableDispatcher: O
|
|
|
56
100
|
inlineCallables = False
|
|
57
101
|
unpackArrays = False
|
|
58
102
|
allImports = UniversalImportTracker()
|
|
103
|
+
filenameWrite = None
|
|
59
104
|
for stuff in listStuffYouOughtaKnow:
|
|
60
105
|
statement = stuff.astForCompetentProgrammers
|
|
61
106
|
if isinstance(statement, (ast.Import, ast.ImportFrom)):
|
|
62
107
|
allImports.addAst(statement)
|
|
108
|
+
FunctionDefTarget, allImports = getFunctionDef(algorithmSource, callableTarget, parametersNumba, inlineCallables, unpackArrays, allImports)
|
|
109
|
+
listAstImports = allImports.makeListAst()
|
|
110
|
+
|
|
111
|
+
pythonSource = makePythonSource([FunctionDefTarget], listAstImports, additional_imports)
|
|
63
112
|
|
|
64
|
-
|
|
113
|
+
listStuff = writePythonAsModule(pythonSource, [callableTarget], relativePathWrite, filenameWrite, formatFilenameWrite)
|
|
114
|
+
listStuffYouOughtaKnow.extend(listStuff)
|
|
65
115
|
|
|
66
116
|
return listStuffYouOughtaKnow
|
|
67
117
|
|
|
68
118
|
if __name__ == '__main__':
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
setDatatypeLeavesTotal('uint8', sourGrapes=True)
|
|
73
|
-
Z0Z_setDatatypeModuleScalar('numba')
|
|
74
|
-
Z0Z_setDecoratorCallable('jit')
|
|
75
|
-
listCallablesInline: List[str] = ['countInitialize', 'countParallel', 'countSequential']
|
|
119
|
+
# Z0Z_setDatatypeModuleScalar('numba')
|
|
120
|
+
# Z0Z_setDecoratorCallable('jit')
|
|
121
|
+
listCallablesInline: list[str] = ['countInitialize', 'countParallel', 'countSequential']
|
|
76
122
|
callableDispatcher = True
|
|
77
123
|
makeFlowNumbaOptimized(listCallablesInline, callableDispatcher)
|
|
@@ -0,0 +1,158 @@
|
|
|
1
|
+
from mapFolding import indexTrack, indexMy
|
|
2
|
+
from numba import int64, prange, uint16, jit
|
|
3
|
+
from numpy import ndarray, dtype, integer
|
|
4
|
+
from typing import Any
|
|
5
|
+
|
|
6
|
+
@jit((uint16[:, :, ::1], uint16[::1], uint16[::1], uint16[:, ::1]), _nrt=True, boundscheck=False, cache=True, error_model='numpy', fastmath=True, forceinline=True, inline='always', looplift=False, no_cfunc_wrapper=False, no_cpython_wrapper=False, nopython=True, parallel=False)
|
|
7
|
+
def countInitialize(connectionGraph: ndarray[tuple[int, int, int], dtype[integer[Any]]], gapsWhere: ndarray[tuple[int], dtype[integer[Any]]], my: ndarray[tuple[int], dtype[integer[Any]]], track: ndarray[tuple[int, int], dtype[integer[Any]]]) -> None:
|
|
8
|
+
while my[indexMy.leaf1ndex.value] > 0:
|
|
9
|
+
if my[indexMy.leaf1ndex.value] <= 1 or track[indexTrack.leafBelow.value, 0] == 1:
|
|
10
|
+
my[indexMy.dimensionsUnconstrained.value] = my[indexMy.dimensionsTotal.value]
|
|
11
|
+
my[indexMy.gap1ndexCeiling.value] = track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
|
|
12
|
+
my[indexMy.indexDimension.value] = 0
|
|
13
|
+
while my[indexMy.indexDimension.value] < my[indexMy.dimensionsTotal.value]:
|
|
14
|
+
if connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]] == my[indexMy.leaf1ndex.value]:
|
|
15
|
+
my[indexMy.dimensionsUnconstrained.value] -= 1
|
|
16
|
+
else:
|
|
17
|
+
my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]]
|
|
18
|
+
while my[indexMy.leafConnectee.value] != my[indexMy.leaf1ndex.value]:
|
|
19
|
+
gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.leafConnectee.value]
|
|
20
|
+
if track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] == 0:
|
|
21
|
+
my[indexMy.gap1ndexCeiling.value] += 1
|
|
22
|
+
track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] += 1
|
|
23
|
+
my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], track[indexTrack.leafBelow.value, my[indexMy.leafConnectee.value]]]
|
|
24
|
+
my[indexMy.indexDimension.value] += 1
|
|
25
|
+
if not my[indexMy.dimensionsUnconstrained.value]:
|
|
26
|
+
my[indexMy.indexLeaf.value] = 0
|
|
27
|
+
while my[indexMy.indexLeaf.value] < my[indexMy.leaf1ndex.value]:
|
|
28
|
+
gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.indexLeaf.value]
|
|
29
|
+
my[indexMy.gap1ndexCeiling.value] += 1
|
|
30
|
+
my[indexMy.indexLeaf.value] += 1
|
|
31
|
+
my[indexMy.indexMiniGap.value] = my[indexMy.gap1ndex.value]
|
|
32
|
+
while my[indexMy.indexMiniGap.value] < my[indexMy.gap1ndexCeiling.value]:
|
|
33
|
+
gapsWhere[my[indexMy.gap1ndex.value]] = gapsWhere[my[indexMy.indexMiniGap.value]]
|
|
34
|
+
if track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] == my[indexMy.dimensionsUnconstrained.value]:
|
|
35
|
+
my[indexMy.gap1ndex.value] += 1
|
|
36
|
+
track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] = 0
|
|
37
|
+
my[indexMy.indexMiniGap.value] += 1
|
|
38
|
+
if my[indexMy.leaf1ndex.value] > 0:
|
|
39
|
+
my[indexMy.gap1ndex.value] -= 1
|
|
40
|
+
track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]] = gapsWhere[my[indexMy.gap1ndex.value]]
|
|
41
|
+
track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]] = track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]]
|
|
42
|
+
track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
|
|
43
|
+
track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
|
|
44
|
+
track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value]] = my[indexMy.gap1ndex.value]
|
|
45
|
+
my[indexMy.leaf1ndex.value] += 1
|
|
46
|
+
if my[indexMy.gap1ndex.value] > 0:
|
|
47
|
+
return
|
|
48
|
+
|
|
49
|
+
@jit((uint16[:, :, ::1], int64[::1], uint16[::1], uint16[::1], uint16[:, ::1]), _nrt=True, boundscheck=False, cache=True, error_model='numpy', fastmath=True, forceinline=True, inline='always', looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nopython=True, parallel=True)
|
|
50
|
+
def countParallel(connectionGraph: ndarray[tuple[int, int, int], dtype[integer[Any]]], foldGroups: ndarray[tuple[int], dtype[integer[Any]]], gapsWhere: ndarray[tuple[int], dtype[integer[Any]]], my: ndarray[tuple[int], dtype[integer[Any]]], track: ndarray[tuple[int, int], dtype[integer[Any]]]) -> None:
|
|
51
|
+
gapsWherePARALLEL = gapsWhere.copy()
|
|
52
|
+
myPARALLEL = my.copy()
|
|
53
|
+
trackPARALLEL = track.copy()
|
|
54
|
+
taskDivisionsPrange = myPARALLEL[indexMy.taskDivisions.value]
|
|
55
|
+
for indexSherpa in prange(taskDivisionsPrange):
|
|
56
|
+
groupsOfFolds: int = 0
|
|
57
|
+
gapsWhere = gapsWherePARALLEL.copy()
|
|
58
|
+
my = myPARALLEL.copy()
|
|
59
|
+
track = trackPARALLEL.copy()
|
|
60
|
+
my[indexMy.taskIndex.value] = indexSherpa
|
|
61
|
+
while my[indexMy.leaf1ndex.value] > 0:
|
|
62
|
+
if my[indexMy.leaf1ndex.value] <= 1 or track[indexTrack.leafBelow.value, 0] == 1:
|
|
63
|
+
if my[indexMy.leaf1ndex.value] > foldGroups[-1]:
|
|
64
|
+
groupsOfFolds += 1
|
|
65
|
+
else:
|
|
66
|
+
my[indexMy.dimensionsUnconstrained.value] = my[indexMy.dimensionsTotal.value]
|
|
67
|
+
my[indexMy.gap1ndexCeiling.value] = track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
|
|
68
|
+
my[indexMy.indexDimension.value] = 0
|
|
69
|
+
while my[indexMy.indexDimension.value] < my[indexMy.dimensionsTotal.value]:
|
|
70
|
+
if connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]] == my[indexMy.leaf1ndex.value]:
|
|
71
|
+
my[indexMy.dimensionsUnconstrained.value] -= 1
|
|
72
|
+
else:
|
|
73
|
+
my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]]
|
|
74
|
+
while my[indexMy.leafConnectee.value] != my[indexMy.leaf1ndex.value]:
|
|
75
|
+
if my[indexMy.leaf1ndex.value] != my[indexMy.taskDivisions.value] or my[indexMy.leafConnectee.value] % my[indexMy.taskDivisions.value] == my[indexMy.taskIndex.value]:
|
|
76
|
+
gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.leafConnectee.value]
|
|
77
|
+
if track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] == 0:
|
|
78
|
+
my[indexMy.gap1ndexCeiling.value] += 1
|
|
79
|
+
track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] += 1
|
|
80
|
+
my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], track[indexTrack.leafBelow.value, my[indexMy.leafConnectee.value]]]
|
|
81
|
+
my[indexMy.indexDimension.value] += 1
|
|
82
|
+
my[indexMy.indexMiniGap.value] = my[indexMy.gap1ndex.value]
|
|
83
|
+
while my[indexMy.indexMiniGap.value] < my[indexMy.gap1ndexCeiling.value]:
|
|
84
|
+
gapsWhere[my[indexMy.gap1ndex.value]] = gapsWhere[my[indexMy.indexMiniGap.value]]
|
|
85
|
+
if track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] == my[indexMy.dimensionsUnconstrained.value]:
|
|
86
|
+
my[indexMy.gap1ndex.value] += 1
|
|
87
|
+
track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] = 0
|
|
88
|
+
my[indexMy.indexMiniGap.value] += 1
|
|
89
|
+
while my[indexMy.leaf1ndex.value] > 0 and my[indexMy.gap1ndex.value] == track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]:
|
|
90
|
+
my[indexMy.leaf1ndex.value] -= 1
|
|
91
|
+
track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]
|
|
92
|
+
track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]
|
|
93
|
+
if my[indexMy.leaf1ndex.value] > 0:
|
|
94
|
+
my[indexMy.gap1ndex.value] -= 1
|
|
95
|
+
track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]] = gapsWhere[my[indexMy.gap1ndex.value]]
|
|
96
|
+
track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]] = track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]]
|
|
97
|
+
track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
|
|
98
|
+
track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
|
|
99
|
+
track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value]] = my[indexMy.gap1ndex.value]
|
|
100
|
+
my[indexMy.leaf1ndex.value] += 1
|
|
101
|
+
foldGroups[my[indexMy.taskIndex.value]] = groupsOfFolds
|
|
102
|
+
|
|
103
|
+
@jit((uint16[:, :, ::1], int64[::1], uint16[::1], uint16[::1], uint16[:, ::1]), _nrt=True, boundscheck=False, cache=True, error_model='numpy', fastmath=True, forceinline=True, inline='always', looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nopython=True, parallel=False)
|
|
104
|
+
def countSequential(connectionGraph: ndarray[tuple[int, int, int], dtype[integer[Any]]], foldGroups: ndarray[tuple[int], dtype[integer[Any]]], gapsWhere: ndarray[tuple[int], dtype[integer[Any]]], my: ndarray[tuple[int], dtype[integer[Any]]], track: ndarray[tuple[int, int], dtype[integer[Any]]]) -> None:
|
|
105
|
+
leafBelow = track[indexTrack.leafBelow.value]
|
|
106
|
+
gapRangeStart = track[indexTrack.gapRangeStart.value]
|
|
107
|
+
countDimensionsGapped = track[indexTrack.countDimensionsGapped.value]
|
|
108
|
+
leafAbove = track[indexTrack.leafAbove.value]
|
|
109
|
+
leaf1ndex = my[indexMy.leaf1ndex.value]
|
|
110
|
+
dimensionsUnconstrained = my[indexMy.dimensionsUnconstrained.value]
|
|
111
|
+
dimensionsTotal = my[indexMy.dimensionsTotal.value]
|
|
112
|
+
gap1ndexCeiling = my[indexMy.gap1ndexCeiling.value]
|
|
113
|
+
indexDimension = my[indexMy.indexDimension.value]
|
|
114
|
+
leafConnectee = my[indexMy.leafConnectee.value]
|
|
115
|
+
indexMiniGap = my[indexMy.indexMiniGap.value]
|
|
116
|
+
gap1ndex = my[indexMy.gap1ndex.value]
|
|
117
|
+
taskIndex = my[indexMy.taskIndex.value]
|
|
118
|
+
groupsOfFolds: int = 0
|
|
119
|
+
while leaf1ndex > 0:
|
|
120
|
+
if leaf1ndex <= 1 or leafBelow[0] == 1:
|
|
121
|
+
if leaf1ndex > foldGroups[-1]:
|
|
122
|
+
groupsOfFolds += 1
|
|
123
|
+
else:
|
|
124
|
+
dimensionsUnconstrained = dimensionsTotal
|
|
125
|
+
gap1ndexCeiling = gapRangeStart[leaf1ndex - 1]
|
|
126
|
+
indexDimension = 0
|
|
127
|
+
while indexDimension < dimensionsTotal:
|
|
128
|
+
leafConnectee = connectionGraph[indexDimension, leaf1ndex, leaf1ndex]
|
|
129
|
+
if leafConnectee == leaf1ndex:
|
|
130
|
+
dimensionsUnconstrained -= 1
|
|
131
|
+
else:
|
|
132
|
+
while leafConnectee != leaf1ndex:
|
|
133
|
+
gapsWhere[gap1ndexCeiling] = leafConnectee
|
|
134
|
+
if countDimensionsGapped[leafConnectee] == 0:
|
|
135
|
+
gap1ndexCeiling += 1
|
|
136
|
+
countDimensionsGapped[leafConnectee] += 1
|
|
137
|
+
leafConnectee = connectionGraph[indexDimension, leaf1ndex, leafBelow[leafConnectee]]
|
|
138
|
+
indexDimension += 1
|
|
139
|
+
indexMiniGap = gap1ndex
|
|
140
|
+
while indexMiniGap < gap1ndexCeiling:
|
|
141
|
+
gapsWhere[gap1ndex] = gapsWhere[indexMiniGap]
|
|
142
|
+
if countDimensionsGapped[gapsWhere[indexMiniGap]] == dimensionsUnconstrained:
|
|
143
|
+
gap1ndex += 1
|
|
144
|
+
countDimensionsGapped[gapsWhere[indexMiniGap]] = 0
|
|
145
|
+
indexMiniGap += 1
|
|
146
|
+
while leaf1ndex > 0 and gap1ndex == gapRangeStart[leaf1ndex - 1]:
|
|
147
|
+
leaf1ndex -= 1
|
|
148
|
+
leafBelow[leafAbove[leaf1ndex]] = leafBelow[leaf1ndex]
|
|
149
|
+
leafAbove[leafBelow[leaf1ndex]] = leafAbove[leaf1ndex]
|
|
150
|
+
if leaf1ndex > 0:
|
|
151
|
+
gap1ndex -= 1
|
|
152
|
+
leafAbove[leaf1ndex] = gapsWhere[gap1ndex]
|
|
153
|
+
leafBelow[leaf1ndex] = leafBelow[leafAbove[leaf1ndex]]
|
|
154
|
+
leafBelow[leafAbove[leaf1ndex]] = leaf1ndex
|
|
155
|
+
leafAbove[leafBelow[leaf1ndex]] = leaf1ndex
|
|
156
|
+
gapRangeStart[leaf1ndex] = gap1ndex
|
|
157
|
+
leaf1ndex += 1
|
|
158
|
+
foldGroups[taskIndex] = groupsOfFolds
|
|
@@ -1,18 +1,11 @@
|
|
|
1
|
-
from mapFolding.syntheticModules.numba_countInitialize import countInitialize
|
|
2
|
-
from mapFolding.syntheticModules.numba_countParallel import countParallel
|
|
3
|
-
from mapFolding.syntheticModules.numba_countSequential import countSequential
|
|
4
1
|
from mapFolding import indexMy
|
|
5
|
-
from
|
|
6
|
-
from numba import jit
|
|
7
|
-
from
|
|
8
|
-
from numpy import dtype
|
|
9
|
-
from numpy import ndarray
|
|
10
|
-
from numpy import integer
|
|
11
|
-
from typing import Tuple
|
|
2
|
+
from mapFolding.syntheticModules.numbaCount import countInitialize, countParallel, countSequential
|
|
3
|
+
from numba import uint16, jit, int64
|
|
4
|
+
from numpy import ndarray, dtype, integer
|
|
12
5
|
from typing import Any
|
|
13
6
|
|
|
14
|
-
@jit((
|
|
15
|
-
def doTheNeedful(connectionGraph: ndarray[
|
|
7
|
+
@jit((uint16[:, :, ::1], int64[::1], uint16[::1], uint16[::1], uint16[::1], uint16[:, ::1]), _nrt=True, boundscheck=False, cache=True, error_model='numpy', fastmath=True, forceinline=True, inline='always', looplift=False, no_cfunc_wrapper=False, no_cpython_wrapper=False, nopython=True, parallel=False)
|
|
8
|
+
def doTheNeedful(connectionGraph: ndarray[tuple[int, int, int], dtype[integer[Any]]], foldGroups: ndarray[tuple[int], dtype[integer[Any]]], gapsWhere: ndarray[tuple[int], dtype[integer[Any]]], mapShape: ndarray[tuple[int], dtype[integer[Any]]], my: ndarray[tuple[int], dtype[integer[Any]]], track: ndarray[tuple[int, int], dtype[integer[Any]]]) -> None:
|
|
16
9
|
countInitialize(connectionGraph, gapsWhere, my, track)
|
|
17
10
|
if my[indexMy.taskDivisions.value] > 0:
|
|
18
11
|
countParallel(connectionGraph, foldGroups, gapsWhere, my, track)
|