mapFolding 0.4.1__py3-none-any.whl → 0.4.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -13,67 +13,31 @@ def test_aOFn_calculate_value(oeisID: str) -> None:
13
13
  for n in settingsOEIS[oeisID]['valuesTestValidation']:
14
14
  standardizedEqualTo(settingsOEIS[oeisID]['valuesKnown'][n], oeisIDfor_n, oeisID, n)
15
15
 
16
- # Python doesn't want me to test this
17
- # @pytest.mark.parametrize('pathFilenameTmpTesting', ['.py'], indirect=True)
18
- # def test_writeJobNumba(listDimensionsTestCountFolds: List[int], foldsTotalKnown: Dict[Tuple[int, ...], int], pathFilenameTmpTesting: Path) -> None:
19
- # from mapFolding.syntheticModules import numba_countSequential
20
- # algorithmSourceHARDCODED: ModuleType = numba_countSequential
21
- # algorithmSource = algorithmSourceHARDCODED
22
- # pathFilenameModule = writeJobNumba(listDimensionsTestCountFolds, algorithmSource, pathFilenameWriteJob=pathFilenameTmpTesting.absolute())
23
-
24
- # Don_Lapre_Road_to_Self_Improvement = importlib.util.spec_from_file_location("__main__", pathFilenameModule)
25
- # if Don_Lapre_Road_to_Self_Improvement is None:
26
- # raise ImportError(f"Failed to create module specification from {pathFilenameModule}")
27
- # if Don_Lapre_Road_to_Self_Improvement.loader is None:
28
- # raise ImportError(f"Failed to get loader for module {pathFilenameModule}")
29
- # module = importlib.util.module_from_spec(Don_Lapre_Road_to_Self_Improvement)
30
-
31
- # module.__name__ = "__main__"
32
- # Don_Lapre_Road_to_Self_Improvement.loader.exec_module(module)
33
-
34
- # pathFilenameFoldsTotal = getPathFilenameFoldsTotal(listDimensionsTestCountFolds)
35
- # standardizedEqualTo(str(foldsTotalKnown[tuple(listDimensionsTestCountFolds)]), pathFilenameFoldsTotal.read_text().strip)
36
-
37
- # def test_makeFlowNumbaOptimized(pathTmpTesting: Path, useThisDispatcher):
38
- # def test_makeFlowNumbaOptimized(useThisDispatcher):
39
- # """To get this to work:
40
- # walk_up=True doesn't work on 3.10, so that has to go
41
- # the _logical_ import must be in the logical path of the package
42
- # fuck python
43
- # """
44
- # listCallablesInlineHARDCODED: List[str] = ['countInitialize', 'countParallel', 'countSequential']
45
- # listCallablesInline = listCallablesInlineHARDCODED
46
- # callableDispatcher = True
47
- # algorithmSource = None
48
- # relativePathWrite = None
49
- # # relativePathWrite = pathTmpTesting.absolute().relative_to(getPathPackage(), walk_up=True)
50
- # formatFilenameWrite = "pytest_{callableTarget}"
51
- # listSynthesizedModules: List[youOughtaKnow] = makeFlowNumbaOptimized(listCallablesInline, callableDispatcher, algorithmSource, relativePathWrite, formatFilenameWrite)
52
- # for stuff in listSynthesizedModules:
53
- # registrarRecordsTmpObject(stuff.pathFilenameForMe)
54
- # if stuff.callableSynthesized not in listCallablesInline:
55
- # dispatcherSynthetic: youOughtaKnow = stuff
56
- # if not dispatcherSynthetic: raise FREAKOUT
57
- # # dispatcherSynthetic: youOughtaKnow = next(filter(lambda x: x.callableSynthesized not in listCallablesInline, listSynthesizedModules))
58
-
59
- # # Import the synthetic dispatcher module to get the callable
60
- # dispatcherSpec = importlib.util.spec_from_file_location(
61
- # dispatcherSynthetic.callableSynthesized,
62
- # dispatcherSynthetic.pathFilenameForMe
63
- # )
64
- # if dispatcherSpec is None:
65
- # raise ImportError(f"Failed to create module specification from {dispatcherSynthetic.pathFilenameForMe}")
66
- # if dispatcherSpec.loader is None:
67
- # raise ImportError(f"Failed to get loader for module {dispatcherSynthetic.pathFilenameForMe}")
68
-
69
- # dispatcherModule = importlib.util.module_from_spec(dispatcherSpec)
70
- # dispatcherSpec.loader.exec_module(dispatcherModule)
71
- # callableDispatcherSynthetic = getattr(dispatcherModule, dispatcherSynthetic.callableSynthesized)
72
-
73
- # useThisDispatcher(callableDispatcherSynthetic)
74
-
75
- # def test_syntheticSequential(listDimensionsTestCountFolds: List[int], foldsTotalKnown: Dict[Tuple[int, ...], int]):
76
- # standardizedEqualTo(foldsTotalKnown[tuple(listDimensionsTestCountFolds)], countFolds, listDimensionsTestCountFolds)
16
+ @pytest.mark.parametrize('pathFilenameTmpTesting', ['.py'], indirect=True)
17
+ def test_writeJobNumba(listDimensionsTestCountFolds: List[int], foldsTotalKnown: Dict[Tuple[int, ...], int], pathFilenameTmpTesting: Path) -> None:
18
+ from mapFolding.syntheticModules import numbaCount
19
+ algorithmSourceHARDCODED: ModuleType = numbaCount
20
+ algorithmSource = algorithmSourceHARDCODED
21
+ callableTargetHARDCODED = 'countSequential'
22
+ callableTarget = callableTargetHARDCODED
23
+ pathFilenameModule = writeJobNumba(listDimensionsTestCountFolds, algorithmSource, callableTarget, pathFilenameWriteJob=pathFilenameTmpTesting.absolute())
24
+
25
+ Don_Lapre_Road_to_Self_Improvement = importlib.util.spec_from_file_location("__main__", pathFilenameModule)
26
+ if Don_Lapre_Road_to_Self_Improvement is None:
27
+ raise ImportError(f"Failed to create module specification from {pathFilenameModule}")
28
+ if Don_Lapre_Road_to_Self_Improvement.loader is None:
29
+ raise ImportError(f"Failed to get loader for module {pathFilenameModule}")
30
+ module = importlib.util.module_from_spec(Don_Lapre_Road_to_Self_Improvement)
31
+
32
+ module.__name__ = "__main__"
33
+ Don_Lapre_Road_to_Self_Improvement.loader.exec_module(module)
34
+
35
+ pathFilenameFoldsTotal = getPathFilenameFoldsTotal(listDimensionsTestCountFolds)
36
+ registrarRecordsTmpObject(pathFilenameFoldsTotal)
37
+ standardizedEqualTo(str(foldsTotalKnown[tuple(listDimensionsTestCountFolds)]), pathFilenameFoldsTotal.read_text().strip)
38
+
39
+ def test_syntheticParallel(syntheticDispatcherFixture, listDimensionsTestParallelization: List[int], foldsTotalKnown: Dict[Tuple[int, ...], int]):
40
+ standardizedEqualTo(foldsTotalKnown[tuple(listDimensionsTestParallelization)], countFolds, listDimensionsTestParallelization, None, 'maximum')
77
41
 
78
- # def test_syntheticParallel(listDimensionsTestParallelization: List[int], foldsTotalKnown: Dict[Tuple[int, ...], int]):
79
- # standardizedEqualTo(foldsTotalKnown[tuple(listDimensionsTestParallelization)], countFolds, listDimensionsTestParallelization, None, 'maximum')
42
+ def test_syntheticSequential(syntheticDispatcherFixture, listDimensionsTestCountFolds: List[int], foldsTotalKnown: Dict[Tuple[int, ...], int]):
43
+ standardizedEqualTo(foldsTotalKnown[tuple(listDimensionsTestCountFolds)], countFolds, listDimensionsTestCountFolds)
tests/test_oeis.py CHANGED
@@ -1,10 +1,7 @@
1
1
  from contextlib import redirect_stdout
2
- from datetime import datetime, timedelta
3
- from mapFolding.oeis import _getFilenameOEISbFile, _getOEISidValues, _parseBFileOEIS, _validateOEISid, _getOEISidInformation
4
2
  from tests.conftest import *
5
3
  from urllib.error import URLError
6
4
  import io
7
- import os
8
5
  import pathlib
9
6
  import pytest
10
7
  import random
@@ -16,18 +13,18 @@ import urllib.request
16
13
 
17
14
  @pytest.mark.parametrize("badID", ["A999999", " A999999 ", "A999999extra"])
18
15
  def test__validateOEISid_invalid_id(badID: str) -> None:
19
- standardizedEqualTo(KeyError, _validateOEISid, badID)
16
+ standardizedEqualTo(KeyError, validateOEISid, badID)
20
17
 
21
18
  def test__validateOEISid_partially_valid(oeisID_1random: str) -> None:
22
- standardizedEqualTo(KeyError, _validateOEISid, f"{oeisID_1random}extra")
19
+ standardizedEqualTo(KeyError, validateOEISid, f"{oeisID_1random}extra")
23
20
 
24
21
  def test__validateOEISid_valid_id(oeisID: str) -> None:
25
- standardizedEqualTo(oeisID, _validateOEISid, oeisID)
22
+ standardizedEqualTo(oeisID, validateOEISid, oeisID)
26
23
 
27
24
  def test__validateOEISid_valid_id_case_insensitive(oeisID: str) -> None:
28
- standardizedEqualTo(oeisID.upper(), _validateOEISid, oeisID.lower())
29
- standardizedEqualTo(oeisID.upper(), _validateOEISid, oeisID.upper())
30
- standardizedEqualTo(oeisID.upper(), _validateOEISid, oeisID.swapcase())
25
+ standardizedEqualTo(oeisID.upper(), validateOEISid, oeisID.lower())
26
+ standardizedEqualTo(oeisID.upper(), validateOEISid, oeisID.upper())
27
+ standardizedEqualTo(oeisID.upper(), validateOEISid, oeisID.swapcase())
31
28
 
32
29
  parameters_test_aOFn_invalid_n = [
33
30
  # (2, "ok"), # test the test template
@@ -68,7 +65,7 @@ def testNetworkError(monkeypatch: pytest.MonkeyPatch, pathCacheTesting: pathlib.
68
65
  raise URLError("Network error")
69
66
 
70
67
  monkeypatch.setattr(urllib.request, 'urlopen', mockUrlopen)
71
- standardizedEqualTo(URLError, _getOEISidValues, next(iter(settingsOEIS)))
68
+ standardizedEqualTo(URLError, getOEISidValues, next(iter(settingsOEIS)))
72
69
 
73
70
  # ===== Command Line Interface Tests =====
74
71
  def testHelpText() -> None:
@@ -1,52 +0,0 @@
1
- from mapFolding import indexMy
2
- from mapFolding import indexTrack
3
- from numba import jit
4
- from numba import uint8
5
- from numpy import ndarray
6
- from numpy import integer
7
- from numpy import dtype
8
- from typing import Tuple
9
- from typing import Any
10
-
11
- @jit((uint8[:, :, ::1], uint8[::1], uint8[::1], uint8[:, ::1]), _nrt=True, boundscheck=False, cache=True, error_model='numpy', fastmath=True, forceinline=True, inline='always', looplift=False, no_cfunc_wrapper=False, no_cpython_wrapper=False, nopython=True, parallel=False)
12
- def countInitialize(connectionGraph: ndarray[Tuple[int, int, int], dtype[integer[Any]]], gapsWhere: ndarray[Tuple[int], dtype[integer[Any]]], my: ndarray[Tuple[int], dtype[integer[Any]]], track: ndarray[Tuple[int, int], dtype[integer[Any]]]) -> None:
13
- while my[indexMy.leaf1ndex.value]:
14
- if my[indexMy.leaf1ndex.value] <= 1 or track[indexTrack.leafBelow.value, 0] == 1:
15
- my[indexMy.dimensionsUnconstrained.value] = my[indexMy.dimensionsTotal.value]
16
- my[indexMy.gap1ndexCeiling.value] = track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
17
- my[indexMy.indexDimension.value] = 0
18
- while my[indexMy.indexDimension.value] < my[indexMy.dimensionsTotal.value]:
19
- if connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]] == my[indexMy.leaf1ndex.value]:
20
- my[indexMy.dimensionsUnconstrained.value] -= 1
21
- else:
22
- my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]]
23
- while my[indexMy.leafConnectee.value] != my[indexMy.leaf1ndex.value]:
24
- gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.leafConnectee.value]
25
- if track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] == 0:
26
- my[indexMy.gap1ndexCeiling.value] += 1
27
- track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] += 1
28
- my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], track[indexTrack.leafBelow.value, my[indexMy.leafConnectee.value]]]
29
- my[indexMy.indexDimension.value] += 1
30
- if not my[indexMy.dimensionsUnconstrained.value]:
31
- my[indexMy.indexLeaf.value] = 0
32
- while my[indexMy.indexLeaf.value] < my[indexMy.leaf1ndex.value]:
33
- gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.indexLeaf.value]
34
- my[indexMy.gap1ndexCeiling.value] += 1
35
- my[indexMy.indexLeaf.value] += 1
36
- my[indexMy.indexMiniGap.value] = my[indexMy.gap1ndex.value]
37
- while my[indexMy.indexMiniGap.value] < my[indexMy.gap1ndexCeiling.value]:
38
- gapsWhere[my[indexMy.gap1ndex.value]] = gapsWhere[my[indexMy.indexMiniGap.value]]
39
- if track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] == my[indexMy.dimensionsUnconstrained.value]:
40
- my[indexMy.gap1ndex.value] += 1
41
- track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] = 0
42
- my[indexMy.indexMiniGap.value] += 1
43
- if my[indexMy.leaf1ndex.value]:
44
- my[indexMy.gap1ndex.value] -= 1
45
- track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]] = gapsWhere[my[indexMy.gap1ndex.value]]
46
- track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]] = track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]]
47
- track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
48
- track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
49
- track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value]] = my[indexMy.gap1ndex.value]
50
- my[indexMy.leaf1ndex.value] += 1
51
- if my[indexMy.gap1ndex.value] > 0:
52
- return
@@ -1,65 +0,0 @@
1
- from mapFolding import indexMy
2
- from mapFolding import indexTrack
3
- from numba import jit
4
- from numba import uint8
5
- from numba import int64
6
- from numba import prange
7
- from numpy import ndarray
8
- from numpy import integer
9
- from numpy import dtype
10
- from typing import Tuple
11
- from typing import Any
12
-
13
- @jit((uint8[:, :, ::1], int64[::1], uint8[::1], uint8[::1], uint8[:, ::1]), _nrt=True, boundscheck=False, cache=True, error_model='numpy', fastmath=True, forceinline=True, inline='always', looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nopython=True, parallel=True)
14
- def countParallel(connectionGraph: ndarray[Tuple[int, int, int], dtype[integer[Any]]], foldGroups: ndarray[Tuple[int], dtype[integer[Any]]], gapsWhere: ndarray[Tuple[int], dtype[integer[Any]]], my: ndarray[Tuple[int], dtype[integer[Any]]], track: ndarray[Tuple[int, int], dtype[integer[Any]]]) -> None:
15
- gapsWherePARALLEL = gapsWhere.copy()
16
- myPARALLEL = my.copy()
17
- trackPARALLEL = track.copy()
18
- taskDivisionsPrange = myPARALLEL[indexMy.taskDivisions.value]
19
- for indexSherpa in prange(taskDivisionsPrange):
20
- groupsOfFolds: int = 0
21
- gapsWhere = gapsWherePARALLEL.copy()
22
- my = myPARALLEL.copy()
23
- track = trackPARALLEL.copy()
24
- my[indexMy.taskIndex.value] = indexSherpa
25
- while my[indexMy.leaf1ndex.value]:
26
- if my[indexMy.leaf1ndex.value] <= 1 or track[indexTrack.leafBelow.value, 0] == 1:
27
- if my[indexMy.leaf1ndex.value] > foldGroups[-1]:
28
- groupsOfFolds += 1
29
- else:
30
- my[indexMy.dimensionsUnconstrained.value] = my[indexMy.dimensionsTotal.value]
31
- my[indexMy.gap1ndexCeiling.value] = track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
32
- my[indexMy.indexDimension.value] = 0
33
- while my[indexMy.indexDimension.value] < my[indexMy.dimensionsTotal.value]:
34
- if connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]] == my[indexMy.leaf1ndex.value]:
35
- my[indexMy.dimensionsUnconstrained.value] -= 1
36
- else:
37
- my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]]
38
- while my[indexMy.leafConnectee.value] != my[indexMy.leaf1ndex.value]:
39
- if my[indexMy.leaf1ndex.value] != my[indexMy.taskDivisions.value] or my[indexMy.leafConnectee.value] % my[indexMy.taskDivisions.value] == my[indexMy.taskIndex.value]:
40
- gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.leafConnectee.value]
41
- if track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] == 0:
42
- my[indexMy.gap1ndexCeiling.value] += 1
43
- track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] += 1
44
- my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], track[indexTrack.leafBelow.value, my[indexMy.leafConnectee.value]]]
45
- my[indexMy.indexDimension.value] += 1
46
- my[indexMy.indexMiniGap.value] = my[indexMy.gap1ndex.value]
47
- while my[indexMy.indexMiniGap.value] < my[indexMy.gap1ndexCeiling.value]:
48
- gapsWhere[my[indexMy.gap1ndex.value]] = gapsWhere[my[indexMy.indexMiniGap.value]]
49
- if track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] == my[indexMy.dimensionsUnconstrained.value]:
50
- my[indexMy.gap1ndex.value] += 1
51
- track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] = 0
52
- my[indexMy.indexMiniGap.value] += 1
53
- while my[indexMy.leaf1ndex.value] and my[indexMy.gap1ndex.value] == track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]:
54
- my[indexMy.leaf1ndex.value] -= 1
55
- track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]
56
- track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]
57
- if my[indexMy.leaf1ndex.value]:
58
- my[indexMy.gap1ndex.value] -= 1
59
- track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]] = gapsWhere[my[indexMy.gap1ndex.value]]
60
- track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]] = track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]]
61
- track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
62
- track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
63
- track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value]] = my[indexMy.gap1ndex.value]
64
- my[indexMy.leaf1ndex.value] += 1
65
- foldGroups[my[indexMy.taskIndex.value]] = groupsOfFolds
@@ -1,67 +0,0 @@
1
- from mapFolding import indexMy
2
- from mapFolding import indexTrack
3
- from numba import jit
4
- from numba import uint8
5
- from numba import int64
6
- from numpy import ndarray
7
- from numpy import integer
8
- from numpy import dtype
9
- from typing import Tuple
10
- from typing import Any
11
-
12
- @jit((uint8[:, :, ::1], int64[::1], uint8[::1], uint8[::1], uint8[:, ::1]), _nrt=True, boundscheck=False, cache=True, error_model='numpy', fastmath=True, forceinline=True, inline='always', looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nopython=True, parallel=False)
13
- def countSequential(connectionGraph: ndarray[Tuple[int, int, int], dtype[integer[Any]]], foldGroups: ndarray[Tuple[int], dtype[integer[Any]]], gapsWhere: ndarray[Tuple[int], dtype[integer[Any]]], my: ndarray[Tuple[int], dtype[integer[Any]]], track: ndarray[Tuple[int, int], dtype[integer[Any]]]) -> None:
14
- leafBelow = track[indexTrack.leafBelow.value]
15
- gapRangeStart = track[indexTrack.gapRangeStart.value]
16
- countDimensionsGapped = track[indexTrack.countDimensionsGapped.value]
17
- leafAbove = track[indexTrack.leafAbove.value]
18
- leaf1ndex = my[indexMy.leaf1ndex.value]
19
- dimensionsUnconstrained = my[indexMy.dimensionsUnconstrained.value]
20
- dimensionsTotal = my[indexMy.dimensionsTotal.value]
21
- gap1ndexCeiling = my[indexMy.gap1ndexCeiling.value]
22
- indexDimension = my[indexMy.indexDimension.value]
23
- leafConnectee = my[indexMy.leafConnectee.value]
24
- indexMiniGap = my[indexMy.indexMiniGap.value]
25
- gap1ndex = my[indexMy.gap1ndex.value]
26
- taskIndex = my[indexMy.taskIndex.value]
27
- groupsOfFolds: int = 0
28
- while leaf1ndex:
29
- if leaf1ndex <= 1 or leafBelow[0] == 1:
30
- if leaf1ndex > foldGroups[-1]:
31
- groupsOfFolds += 1
32
- else:
33
- dimensionsUnconstrained = dimensionsTotal
34
- gap1ndexCeiling = gapRangeStart[leaf1ndex - 1]
35
- indexDimension = 0
36
- while indexDimension < dimensionsTotal:
37
- if connectionGraph[indexDimension, leaf1ndex, leaf1ndex] == leaf1ndex:
38
- dimensionsUnconstrained -= 1
39
- else:
40
- leafConnectee = connectionGraph[indexDimension, leaf1ndex, leaf1ndex]
41
- while leafConnectee != leaf1ndex:
42
- gapsWhere[gap1ndexCeiling] = leafConnectee
43
- if countDimensionsGapped[leafConnectee] == 0:
44
- gap1ndexCeiling += 1
45
- countDimensionsGapped[leafConnectee] += 1
46
- leafConnectee = connectionGraph[indexDimension, leaf1ndex, leafBelow[leafConnectee]]
47
- indexDimension += 1
48
- indexMiniGap = gap1ndex
49
- while indexMiniGap < gap1ndexCeiling:
50
- gapsWhere[gap1ndex] = gapsWhere[indexMiniGap]
51
- if countDimensionsGapped[gapsWhere[indexMiniGap]] == dimensionsUnconstrained:
52
- gap1ndex += 1
53
- countDimensionsGapped[gapsWhere[indexMiniGap]] = 0
54
- indexMiniGap += 1
55
- while leaf1ndex and gap1ndex == gapRangeStart[leaf1ndex - 1]:
56
- leaf1ndex -= 1
57
- leafBelow[leafAbove[leaf1ndex]] = leafBelow[leaf1ndex]
58
- leafAbove[leafBelow[leaf1ndex]] = leafAbove[leaf1ndex]
59
- if leaf1ndex:
60
- gap1ndex -= 1
61
- leafAbove[leaf1ndex] = gapsWhere[gap1ndex]
62
- leafBelow[leaf1ndex] = leafBelow[leafAbove[leaf1ndex]]
63
- leafBelow[leafAbove[leaf1ndex]] = leaf1ndex
64
- leafAbove[leafBelow[leaf1ndex]] = leaf1ndex
65
- gapRangeStart[leaf1ndex] = gap1ndex
66
- leaf1ndex += 1
67
- foldGroups[taskIndex] = groupsOfFolds
@@ -1,132 +0,0 @@
1
- """I have so much truth, I need two files to contain it all!"""
2
- """TODO learn how to use this efficiently and effectively to solve problems, be DRY, and have SSOT."""
3
- from typing import Final, TYPE_CHECKING, Dict, Any, Union, Callable, Tuple, Any
4
- import numba
5
- import numba.core.compiler
6
- try:
7
- from typing import NotRequired
8
- except ImportError:
9
- from typing_extensions import NotRequired
10
-
11
- if TYPE_CHECKING:
12
- from typing import TypedDict
13
- else:
14
- TypedDict = dict
15
-
16
- """
17
- Old notes that are not entirely accurate.
18
-
19
- | **Option** | **Description** | **Why** | **Size** | **But** |
20
- | ----------------------- | --------------------------------------------------- | --------------------- | --------------- | ------------------------ |
21
- | `_dbg_extend_lifetimes` | Debug option to extend object lifetimes | Debugging | | |
22
- | `_dbg_optnone` | Disable optimization for debugging | Debugging | | |
23
- | `debug` | Enable debug mode with additional checks | Debugging | | |
24
- | `no_rewrites` | Disable AST rewrites optimization | Debugging | | |
25
- | `boundscheck` | Enable array bounds checking (slows execution) | Error checking | Larger | Slower |
26
- | `error_model` | Divide by zero: kill or chill? | Error checking | ? | |
27
- | `_nrt` | Enable No Runtime type checking | Startup speed | Smaller | No type protection |
28
- | `fastmath` | Reduce float potential precision | Float speed | Smaller | Discriminatory, untested |
29
- | `forceinline` | Force function inlining | Reduce function calls | Likely larger | |
30
- | `forceobj` | Force object mode compilation | Inclusiveness | Larger | Slower execution |
31
- | `inline` | Algorithmically choose inlining | Speed | Slightly larger | |
32
- | `looplift` | Enable loop lifting optimization | Speed (if applicable) | Larger | Exclusionary |
33
- | `no_cfunc_wrapper` | Disable C function wrapper generation | Size | Smaller | Exclusionary |
34
- | `no_cpython_wrapper` | Disable Python C-API wrapper generation | Size | Smallest | Exclusionary |
35
-
36
- """
37
- # NOTE Deepseek removed forceinline=True, inline='always'
38
- # TODO try to implement all possible parameters, but use `NotRequired` for the more esoteric ones
39
- class ParametersNumba(TypedDict):
40
- _dbg_extend_lifetimes: NotRequired[bool]
41
- _dbg_optnone: NotRequired[bool]
42
- _nrt: NotRequired[bool]
43
- boundscheck: NotRequired[bool]
44
- cache: bool
45
- debug: NotRequired[bool]
46
- error_model: str
47
- fastmath: bool
48
- forceinline: bool
49
- forceobj: NotRequired[bool]
50
- inline: str
51
- locals: NotRequired[Dict[str, Any]]
52
- looplift: bool
53
- no_cfunc_wrapper: bool
54
- no_cpython_wrapper: bool
55
- no_rewrites: NotRequired[bool]
56
- nogil: NotRequired[bool]
57
- nopython: bool
58
- parallel: bool
59
- pipeline_class: NotRequired[numba.core.compiler.CompilerBase]
60
- signature_or_function: NotRequired[Union[Any, Callable, str, Tuple]]
61
- target: NotRequired[str]
62
-
63
- parametersNumbaFailEarly: Final[ParametersNumba] = {
64
- '_nrt': True,
65
- 'boundscheck': True,
66
- 'cache': True,
67
- 'error_model': 'python',
68
- 'fastmath': False,
69
- 'forceinline': True,
70
- 'inline': 'always',
71
- 'looplift': False,
72
- 'no_cfunc_wrapper': False,
73
- 'no_cpython_wrapper': False,
74
- 'nopython': True,
75
- 'parallel': False,
76
- }
77
- """For a production function: speed is irrelevant, error discovery is paramount, must be compatible with anything downstream."""
78
-
79
- parametersNumbaDEFAULT: Final[ParametersNumba] = {
80
- '_nrt': True,
81
- 'boundscheck': False,
82
- 'cache': True,
83
- 'error_model': 'numpy',
84
- 'fastmath': True,
85
- 'forceinline': True,
86
- 'inline': 'always',
87
- 'looplift': False,
88
- 'no_cfunc_wrapper': False,
89
- 'no_cpython_wrapper': False,
90
- 'nopython': True,
91
- 'parallel': False,
92
- }
93
- """Middle of the road: fast, lean, but will talk to non-jitted functions."""
94
-
95
- parametersNumbaParallelDEFAULT: Final[ParametersNumba] = {
96
- **parametersNumbaDEFAULT,
97
- '_nrt': True,
98
- 'parallel': True,
99
- }
100
- """Middle of the road: fast, lean, but will talk to non-jitted functions."""
101
-
102
- parametersNumbaSuperJit: Final[ParametersNumba] = {
103
- **parametersNumbaDEFAULT,
104
- 'no_cfunc_wrapper': True,
105
- 'no_cpython_wrapper': True,
106
- }
107
- """Speed, no helmet, no talking to non-jitted functions."""
108
-
109
- parametersNumbaSuperJitParallel: Final[ParametersNumba] = {
110
- **parametersNumbaSuperJit,
111
- '_nrt': True,
112
- 'parallel': True,
113
- }
114
- """Speed, no helmet, concurrency, no talking to non-jitted functions.
115
- Claude says, "The NRT is Numba's memory management system that handles memory allocation and deallocation for array operations. Because of array copying, you need to have NRT enabled." IDK which AI assistant autocompleted this, but, "The NRT is a bit slower than the default memory management system, but it's necessary for certain operations."
116
- """
117
-
118
- parametersNumbaMinimum: Final[ParametersNumba] = {
119
- '_nrt': True,
120
- 'boundscheck': True,
121
- 'cache': True,
122
- 'error_model': 'numpy',
123
- 'fastmath': True,
124
- 'forceinline': False,
125
- 'inline': 'always',
126
- 'looplift': False,
127
- 'no_cfunc_wrapper': False,
128
- 'no_cpython_wrapper': False,
129
- 'nopython': False,
130
- 'forceobj': True,
131
- 'parallel': False,
132
- }
@@ -1,42 +0,0 @@
1
- mapFolding/__init__.py,sha256=_YjoypHXmWLmEWwhFVgKO83Uf28ksesT9F73oJoAIPE,1323
2
- mapFolding/basecamp.py,sha256=v0VCF_Zgm_XBHcz4bqblsxfHwAxZKgenW6um77quWLk,3751
3
- mapFolding/beDRY.py,sha256=XVtLraG9VnC4yG2HkaFwZRh2td4ZHMjTQvnbcD_W130,17133
4
- mapFolding/oeis.py,sha256=3hv71o8bhckjY0nsSY5JTJ2LrpJcuhZ9j3mP6LWLIQc,11124
5
- mapFolding/theDao.py,sha256=SmyTbP1iwRAnpuq2ngdJKooXUA1_PR0VRHQ4fcJskMY,12713
6
- mapFolding/theSSOT.py,sha256=QrEMPREjEbt1H8HcrM2Nm_hv7JsFWRG3lHdUU0Jrv-w,10238
7
- mapFolding/theSSOTnumba.py,sha256=zGq2zlZZeuxiNSO2Fs_AqV6UhybJAJuDw-2lMVvDS2w,5133
8
- mapFolding/reference/flattened.py,sha256=S6D9wiFTlbeoetEqaMLOcA-R22BHOzjqPRujffNxxUM,14875
9
- mapFolding/reference/hunterNumba.py,sha256=jDS0ORHkIhcJ1rzA5hT49sZHKf3rgJOoGesUCcbKFFY,6054
10
- mapFolding/reference/irvineJavaPort.py,sha256=7GvBU0tnS6wpFgkYad3465do9jBQW-2bYvbCYyABPHM,3341
11
- mapFolding/reference/jax.py,sha256=7ji9YWia6Kof0cjcNdiS1GG1rMbC5SBjcyVr_07AeUk,13845
12
- mapFolding/reference/lunnan.py,sha256=iAbJELfW6RKNMdPcBY9b6rGQ-z1zoRf-1XCurCRMOo8,3951
13
- mapFolding/reference/lunnanNumpy.py,sha256=rwVP3WIDXimpAuaxhRIuBYU56nVDTKlfGiclw_FkgUU,3765
14
- mapFolding/reference/lunnanWhile.py,sha256=uRrMT23jTJvoQDlD_FzeIQe_pfMXJG6_bRvs7uhC8z0,3271
15
- mapFolding/reference/rotatedEntryPoint.py,sha256=USZY3n3zwhSE68ATscUuN66t1qShuEbMI790Gz9JFTw,9352
16
- mapFolding/reference/total_countPlus1vsPlusN.py,sha256=wpgay-uqPOBd64Z4Pg6tg40j7-4pzWHGMM6v0bnmjhE,6288
17
- mapFolding/someAssemblyRequired/__init__.py,sha256=wtec_hIz-AKz0_hGdXsWnCKTcCxdMV9-WK6SiIriAeU,396
18
- mapFolding/someAssemblyRequired/getLLVMforNoReason.py,sha256=nX8tghZClYt7zJd6RpZBXhE_h-CGRHOS17biqiEdf-o,855
19
- mapFolding/someAssemblyRequired/makeJob.py,sha256=c9sTRUK90snTCcXCvs86VKBH6z_nt3OVFjNs_WgCoIg,2422
20
- mapFolding/someAssemblyRequired/synthesizeModuleJAX.py,sha256=jatvtYhK5ZJK-YmCKATt7w3icFXXO79cZDAYVrU9bgA,1258
21
- mapFolding/someAssemblyRequired/synthesizeNumba.py,sha256=mPCjp4N-dOJRC4TvZGkqAqFKDWEPhWH9v0Cq5AWHlBA,17279
22
- mapFolding/someAssemblyRequired/synthesizeNumbaGeneralized.py,sha256=k8IaCT74ZPhHyra0MbCRdt_5k0Ov3vJgXlN5tbLVnf4,13998
23
- mapFolding/someAssemblyRequired/synthesizeNumbaJob.py,sha256=2sKZgc5kyyz2KaoApcazj_37UgBqAkxORFeROWWU5tk,9038
24
- mapFolding/someAssemblyRequired/synthesizeNumbaModules.py,sha256=_iRXjMASB_BnYJeH8Rt7FlC-GE7lkZ1Hy292XTaUCu4,3785
25
- mapFolding/syntheticModules/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
- mapFolding/syntheticModules/numba_countInitialize.py,sha256=geHketfekZTgu5gbc8E3SShPmbW3gDybg5PCBpXdsa8,4274
27
- mapFolding/syntheticModules/numba_countParallel.py,sha256=kOI5PU90AExPvlWwU0BHVVFjlHlmUFp1KdtlmthQ71E,5517
28
- mapFolding/syntheticModules/numba_countSequential.py,sha256=zFFRv9oLtOih9TpbtARpVAPt-NfZxh0ygXuj-wfPjUg,3732
29
- mapFolding/syntheticModules/numba_doTheNeedful.py,sha256=6WuXKDMVa_C56dLlmXNvFl04MlU8-WVasqbAaxsgI-o,1368
30
- tests/__init__.py,sha256=eg9smg-6VblOr0kisM40CpGnuDtU2JgEEWGDTFVOlW8,57
31
- tests/conftest.py,sha256=7Ims3QcOzqBXu_k0kX9bt6PieC-OoIpc7OGxzdT2ELc,11826
32
- tests/test_computations.py,sha256=qBha4IggMfr6ZH06W3M66enTA6PWsx8vkDp5eqYFM9M,4765
33
- tests/test_oeis.py,sha256=31kdO1vnu2Lon43vM-YJVS4g40Ic03DWNER-cJcpxX4,4916
34
- tests/test_other.py,sha256=u0vINT5EyVsXTNTR2DZIMpWCg4FH471jjHLRzC2JX7U,8351
35
- tests/test_tasks.py,sha256=iq6_dh43JQkC2vAWXua0Xe915BKFGbvRJAkmbco854A,2389
36
- tests/test_types.py,sha256=58tmPG9WOeGGAQbdQK_h_7t4SnENnZugH4WXlI8-L-M,171
37
- mapFolding-0.4.1.dist-info/LICENSE,sha256=NxH5Y8BdC-gNU-WSMwim3uMbID2iNDXJz7fHtuTdXhk,19346
38
- mapFolding-0.4.1.dist-info/METADATA,sha256=iJiWfEzXVheLtyLLWT2BNis5xsisnhllS17hnPwiRws,7633
39
- mapFolding-0.4.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
40
- mapFolding-0.4.1.dist-info/entry_points.txt,sha256=F3OUeZR1XDTpoH7k3wXuRb3KF_kXTTeYhu5AGK1SiOQ,146
41
- mapFolding-0.4.1.dist-info/top_level.txt,sha256=1gP2vFaqPwHujGwb3UjtMlLEGN-943VSYFR7V4gDqW8,17
42
- mapFolding-0.4.1.dist-info/RECORD,,