mapFolding 0.3.6__py3-none-any.whl → 0.3.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- citations/constants.py +3 -0
- citations/updateCitation.py +319 -81
- {mapFolding-0.3.6.dist-info → mapFolding-0.3.8.dist-info}/METADATA +5 -4
- mapFolding-0.3.8.dist-info/RECORD +26 -0
- someAssemblyRequired/makeJob.py +35 -7
- someAssemblyRequired/{synthesizeModuleJob.py → synthesizeModuleJobNumba.py} +85 -30
- someAssemblyRequired/synthesizeModulesNumba.py +446 -0
- syntheticModules/__init__.py +3 -4
- syntheticModules/{Initialize.py → numbaInitialize.py} +8 -5
- syntheticModules/{Parallel.py → numbaParallel.py} +10 -6
- syntheticModules/{Sequential.py → numbaSequential.py} +4 -4
- citations/updateCitationgpt.py +0 -125
- mapFolding-0.3.6.dist-info/RECORD +0 -27
- someAssemblyRequired/generalizeSourceCode.py +0 -122
- someAssemblyRequired/synthesizeModules.py +0 -216
- {mapFolding-0.3.6.dist-info → mapFolding-0.3.8.dist-info}/WHEEL +0 -0
- {mapFolding-0.3.6.dist-info → mapFolding-0.3.8.dist-info}/entry_points.txt +0 -0
- {mapFolding-0.3.6.dist-info → mapFolding-0.3.8.dist-info}/top_level.txt +0 -0
|
@@ -1,13 +1,17 @@
|
|
|
1
|
-
from numpy import integer
|
|
2
1
|
from typing import Any, Tuple
|
|
3
|
-
import
|
|
4
|
-
from mapFolding import indexMy, indexTrack
|
|
2
|
+
from numpy import integer
|
|
5
3
|
import numpy
|
|
4
|
+
from mapFolding import indexMy, indexTrack
|
|
5
|
+
import numba
|
|
6
6
|
|
|
7
7
|
@numba.jit((numba.uint8[:, :, ::1], numba.int64[::1], numba.uint8[::1], numba.uint8[::1], numba.uint8[:, ::1]), _nrt=True, boundscheck=False, cache=True, error_model='numpy', fastmath=True, forceinline=False, inline='never', looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nopython=True, parallel=True)
|
|
8
|
-
def countParallel(connectionGraph: numpy.ndarray[Tuple[int, int, int], numpy.dtype[integer[Any]]], foldGroups: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]],
|
|
9
|
-
|
|
10
|
-
|
|
8
|
+
def countParallel(connectionGraph: numpy.ndarray[Tuple[int, int, int], numpy.dtype[integer[Any]]], foldGroups: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], gapsWhere: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], my: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], track: numpy.ndarray[Tuple[int, int], numpy.dtype[integer[Any]]]):
|
|
9
|
+
gapsWherePARALLEL = gapsWhere.copy()
|
|
10
|
+
myPARALLEL = my.copy()
|
|
11
|
+
trackPARALLEL = track.copy()
|
|
12
|
+
taskDivisionsPrange = myPARALLEL[indexMy.taskDivisions.value]
|
|
13
|
+
for indexSherpa in numba.prange(taskDivisionsPrange):
|
|
14
|
+
groupsOfFolds: int = 0
|
|
11
15
|
gapsWhere = gapsWherePARALLEL.copy()
|
|
12
16
|
my = myPARALLEL.copy()
|
|
13
17
|
my[indexMy.taskIndex.value] = indexSherpa
|
|
@@ -1,8 +1,8 @@
|
|
|
1
|
-
from numpy import integer
|
|
2
|
-
import numba
|
|
3
1
|
from typing import Any, Tuple
|
|
4
|
-
from
|
|
2
|
+
from numpy import integer
|
|
5
3
|
import numpy
|
|
4
|
+
from mapFolding import indexMy, indexTrack
|
|
5
|
+
import numba
|
|
6
6
|
|
|
7
7
|
@numba.jit((numba.uint8[:, :, ::1], numba.int64[::1], numba.uint8[::1], numba.uint8[::1], numba.uint8[:, ::1]), _nrt=True, boundscheck=False, cache=True, error_model='numpy', fastmath=True, forceinline=False, inline='never', looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nopython=True, parallel=False)
|
|
8
8
|
def countSequential(connectionGraph: numpy.ndarray[Tuple[int, int, int], numpy.dtype[integer[Any]]], foldGroups: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], gapsWhere: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], my: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], track: numpy.ndarray[Tuple[int, int], numpy.dtype[integer[Any]]]):
|
|
@@ -19,7 +19,7 @@ def countSequential(connectionGraph: numpy.ndarray[Tuple[int, int, int], numpy.d
|
|
|
19
19
|
indexMiniGap = my[indexMy.indexMiniGap.value]
|
|
20
20
|
gap1ndex = my[indexMy.gap1ndex.value]
|
|
21
21
|
taskIndex = my[indexMy.taskIndex.value]
|
|
22
|
-
groupsOfFolds =
|
|
22
|
+
groupsOfFolds: int = 0
|
|
23
23
|
doFindGaps = True
|
|
24
24
|
while leaf1ndex:
|
|
25
25
|
if (doFindGaps := (leaf1ndex <= 1 or leafBelow[0] == 1)) and leaf1ndex > foldGroups[-1]:
|
citations/updateCitationgpt.py
DELETED
|
@@ -1,125 +0,0 @@
|
|
|
1
|
-
from cffconvert.cli.create_citation import create_citation
|
|
2
|
-
from cffconvert.cli.validate_or_write_output import validate_or_write_output
|
|
3
|
-
from typing import Any, Dict
|
|
4
|
-
import cffconvert
|
|
5
|
-
import pathlib
|
|
6
|
-
import packaging.metadata
|
|
7
|
-
import tomli
|
|
8
|
-
import ruamel.yaml
|
|
9
|
-
import packaging
|
|
10
|
-
from packaging.metadata import Metadata as PyPAMetadata
|
|
11
|
-
import packaging.utils
|
|
12
|
-
import packaging.version
|
|
13
|
-
|
|
14
|
-
def addPypaMetadata(citation: cffconvert.Citation, metadata: PyPAMetadata) -> cffconvert.Citation:
|
|
15
|
-
"""
|
|
16
|
-
Map the PyPA metadata to the citation's internal representation.
|
|
17
|
-
|
|
18
|
-
Mapping:
|
|
19
|
-
- title: metadata.name
|
|
20
|
-
- version: metadata.version (converted to string)
|
|
21
|
-
- keywords: metadata.keywords
|
|
22
|
-
- license: metadata.license_expression
|
|
23
|
-
- url: from project URLs (homepage)
|
|
24
|
-
- repository: from project URLs (repository)
|
|
25
|
-
"""
|
|
26
|
-
# Access the internal dictionary (used for conversion)
|
|
27
|
-
citationData: Dict[str, Any] = citation._cffobj
|
|
28
|
-
|
|
29
|
-
# Update title from PyPA metadata name
|
|
30
|
-
if metadata.name:
|
|
31
|
-
citationData["title"] = metadata.name
|
|
32
|
-
|
|
33
|
-
# Update version from PyPA metadata version
|
|
34
|
-
if metadata.version:
|
|
35
|
-
citationData["version"] = str(metadata.version)
|
|
36
|
-
|
|
37
|
-
# Update keywords from PyPA metadata keywords
|
|
38
|
-
if metadata.keywords:
|
|
39
|
-
citationData["keywords"] = metadata.keywords
|
|
40
|
-
|
|
41
|
-
# Update license from PyPA metadata license_expression
|
|
42
|
-
if metadata.license_expression:
|
|
43
|
-
citationData["license"] = metadata.license_expression
|
|
44
|
-
|
|
45
|
-
# Retrieve the project URLs that were attached in getPypaMetadata
|
|
46
|
-
projectURLs: Dict[str, str] = getattr(metadata, "_project_urls", {})
|
|
47
|
-
|
|
48
|
-
# Update the homepage URL
|
|
49
|
-
if "homepage" in projectURLs:
|
|
50
|
-
citationData["url"] = projectURLs["homepage"]
|
|
51
|
-
|
|
52
|
-
# Update the repository URL
|
|
53
|
-
if "repository" in projectURLs:
|
|
54
|
-
citationData["repository"] = projectURLs["repository"]
|
|
55
|
-
|
|
56
|
-
return citation
|
|
57
|
-
|
|
58
|
-
def getPypaMetadata(packageData: Dict[str, Any]) -> PyPAMetadata:
|
|
59
|
-
"""
|
|
60
|
-
Create a PyPA metadata object (version 2.4) from packageData.
|
|
61
|
-
|
|
62
|
-
Mapping for project URLs:
|
|
63
|
-
- 'homepage' and 'repository' are accepted from packageData['urls'].
|
|
64
|
-
"""
|
|
65
|
-
dictionaryProjectURLs: Dict[str, str] = {}
|
|
66
|
-
for urlKey, urlValue in packageData.get("urls", {}).items():
|
|
67
|
-
lowerUrlKey = urlKey.lower()
|
|
68
|
-
if lowerUrlKey in ("homepage", "repository"):
|
|
69
|
-
dictionaryProjectURLs[lowerUrlKey] = urlValue
|
|
70
|
-
|
|
71
|
-
metadataRaw = packaging.metadata.RawMetadata(
|
|
72
|
-
keywords=packageData.get("keywords", []),
|
|
73
|
-
license_expression=packageData.get("license", {}).get("text", ""),
|
|
74
|
-
metadata_version="2.4",
|
|
75
|
-
name=packaging.utils.canonicalize_name(packageData.get("name", None), validate=True),
|
|
76
|
-
project_urls=dictionaryProjectURLs,
|
|
77
|
-
version=packageData.get("version", None),
|
|
78
|
-
)
|
|
79
|
-
|
|
80
|
-
metadata = PyPAMetadata().from_raw(metadataRaw)
|
|
81
|
-
# Attach the project URLs dictionary so it can be used later.
|
|
82
|
-
setattr(metadata, "_project_urls", dictionaryProjectURLs)
|
|
83
|
-
return metadata
|
|
84
|
-
|
|
85
|
-
def logistics():
|
|
86
|
-
# Determine paths from your SSOT.
|
|
87
|
-
packageName: str = "mapFolding"
|
|
88
|
-
pathRepoRoot = pathlib.Path(__file__).parent.parent.parent
|
|
89
|
-
pathFilenamePackageSSOT = pathRepoRoot / "pyproject.toml"
|
|
90
|
-
filenameGitHubAction = "updateCitation.yml"
|
|
91
|
-
pathFilenameGitHubAction = pathRepoRoot / ".github" / "workflows" / filenameGitHubAction
|
|
92
|
-
|
|
93
|
-
filenameCitationDOTcff = "CITATION.cff"
|
|
94
|
-
pathCitations = pathRepoRoot / packageName / "citations"
|
|
95
|
-
pathFilenameCitationSSOT = pathCitations / filenameCitationDOTcff
|
|
96
|
-
pathFilenameCitationDOTcffRepo = pathRepoRoot / filenameCitationDOTcff
|
|
97
|
-
|
|
98
|
-
# Create a citation object from the SSOT citation file.
|
|
99
|
-
citationObject: cffconvert.Citation = create_citation(infile=pathFilenameCitationSSOT, url=None)
|
|
100
|
-
# Print the current citation in CFF format (for debugging) using the as_cff method.
|
|
101
|
-
print(citationObject.as_cff())
|
|
102
|
-
|
|
103
|
-
# Load package metadata from pyproject.toml.
|
|
104
|
-
tomlPackageData: Dict[str, Any] = tomli.loads(pathFilenamePackageSSOT.read_text())["project"]
|
|
105
|
-
pypaMetadata: PyPAMetadata = getPypaMetadata(tomlPackageData)
|
|
106
|
-
|
|
107
|
-
# Map the PyPA metadata into the citation's internal representation.
|
|
108
|
-
citationObject = addPypaMetadata(citation=citationObject, metadata=pypaMetadata)
|
|
109
|
-
|
|
110
|
-
# Validate and write out the updated citation file in both locations.
|
|
111
|
-
# validate_or_write_output(
|
|
112
|
-
# outfile=pathFilenameCitationSSOT,
|
|
113
|
-
# outputformat="cff",
|
|
114
|
-
# validate_only=False,
|
|
115
|
-
# citation=citationObject,
|
|
116
|
-
# )
|
|
117
|
-
validate_or_write_output(
|
|
118
|
-
outfile=pathFilenameCitationDOTcffRepo,
|
|
119
|
-
outputformat="cff",
|
|
120
|
-
validate_only=False,
|
|
121
|
-
citation=citationObject,
|
|
122
|
-
)
|
|
123
|
-
|
|
124
|
-
if __name__ == "__main__":
|
|
125
|
-
logistics()
|
|
@@ -1,27 +0,0 @@
|
|
|
1
|
-
benchmarks/benchmarking.py,sha256=HD_0NSvuabblg94ftDre6LFnXShTe8MYj3hIodW-zV0,3076
|
|
2
|
-
citations/updateCitation.py,sha256=PPxOERlYnw9b9xydiZL8utTU-sC2B4rBfOgjXc1S0OY,5264
|
|
3
|
-
citations/updateCitationgpt.py,sha256=NtgSP4BCO5YcaYcYYb31vOxXcp3hmooug8VYpbhTc_w,4751
|
|
4
|
-
reference/flattened.py,sha256=6blZ2Y9G8mu1F3gV8SKndPE398t2VVFlsgKlyeJ765A,16538
|
|
5
|
-
reference/hunterNumba.py,sha256=HWndRgsajOf76rbb2LDNEZ6itsdYbyV-k3wgOFjeR6c,7104
|
|
6
|
-
reference/irvineJavaPort.py,sha256=Sj-63Z-OsGuDoEBXuxyjRrNmmyl0d7Yz_XuY7I47Oyg,4250
|
|
7
|
-
reference/jax.py,sha256=rojyK80lOATtbzxjGOHWHZngQa47CXCLJHZwIdN2MwI,14955
|
|
8
|
-
reference/lunnan.py,sha256=XEcql_gxvCCghb6Or3qwmPbn4IZUbZTaSmw_fUjRxZE,5037
|
|
9
|
-
reference/lunnanNumpy.py,sha256=HqDgSwTOZA-G0oophOEfc4zs25Mv4yw2aoF1v8miOLk,4653
|
|
10
|
-
reference/lunnanWhile.py,sha256=7NY2IKO5XBgol0aWWF_Fi-7oTL9pvu_z6lB0TF1uVHk,4063
|
|
11
|
-
reference/rotatedEntryPoint.py,sha256=z0QyDQtnMvXNj5ntWzzJUQUMFm1-xHGLVhtYzwmczUI,11530
|
|
12
|
-
reference/total_countPlus1vsPlusN.py,sha256=usenM8Yn_G1dqlPl7NKKkcnbohBZVZBXTQRm2S3_EDA,8106
|
|
13
|
-
someAssemblyRequired/__init__.py,sha256=3JnAKXfaYPtmxV_4AnZ6KpCosT_0GFV5Nw7K8sz4-Uo,34
|
|
14
|
-
someAssemblyRequired/generalizeSourceCode.py,sha256=qyJD0ZdG0t-SYTItL_JjaIXm3-joWt3e-2nMSAH4Dbg,6392
|
|
15
|
-
someAssemblyRequired/getLLVMforNoReason.py,sha256=FtJzw2pZS3A4NimWdZsegXaU-vKeCw8m67kcfb5wvGM,894
|
|
16
|
-
someAssemblyRequired/makeJob.py,sha256=RTC80FhDrR19GqHtEeo6GpmlWZQESuf8FXqBqVzdOpk,1465
|
|
17
|
-
someAssemblyRequired/synthesizeModuleJob.py,sha256=uyODwdI1_a76Pu21JsCNEapVW78yUD-CfInX-vg8U-w,7419
|
|
18
|
-
someAssemblyRequired/synthesizeModules.py,sha256=foxk-mG-HGVap2USiA3ppCyWWXUmkLFzQiKacp5DD9M,11569
|
|
19
|
-
syntheticModules/Initialize.py,sha256=KIAxLSyblzDTL8QJYINmdRjk2iRVYzXOWeqY8P6wPgw,4024
|
|
20
|
-
syntheticModules/Parallel.py,sha256=Kq1uo5kfeeczk871yxaagsaNz8zaM8GWy0S3hZAEQz4,5343
|
|
21
|
-
syntheticModules/Sequential.py,sha256=JwpHNFt_w77J0RBVoBji-OLnYNSTMnusRlYU-6b4P2w,3643
|
|
22
|
-
syntheticModules/__init__.py,sha256=lUDBXOiislfP2sIxT13_GZgElaytoYqk0ODUsucMYew,117
|
|
23
|
-
mapFolding-0.3.6.dist-info/METADATA,sha256=ViqnejEpnb4391VOp-nqnGXqyAwaXiqwUx3wpZbqyxM,7688
|
|
24
|
-
mapFolding-0.3.6.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
|
25
|
-
mapFolding-0.3.6.dist-info/entry_points.txt,sha256=F3OUeZR1XDTpoH7k3wXuRb3KF_kXTTeYhu5AGK1SiOQ,146
|
|
26
|
-
mapFolding-0.3.6.dist-info/top_level.txt,sha256=yVG9dNZywoaddcsUdEDg7o0XOBzJd_4Z-sDaXGHpiMY,69
|
|
27
|
-
mapFolding-0.3.6.dist-info/RECORD,,
|
|
@@ -1,122 +0,0 @@
|
|
|
1
|
-
from mapFolding import datatypeLargeDEFAULT, datatypeMediumDEFAULT, datatypeSmallDEFAULT
|
|
2
|
-
from typing import Dict, Optional, List, Set, Union
|
|
3
|
-
import ast
|
|
4
|
-
|
|
5
|
-
class RecursiveInlinerWithEnum(ast.NodeTransformer):
|
|
6
|
-
"""Process AST nodes to inline functions and substitute enum values.
|
|
7
|
-
Also handles function decorators during inlining."""
|
|
8
|
-
|
|
9
|
-
def __init__(self, dictionaryFunctions: Dict[str, ast.FunctionDef], dictionaryEnumValues: Dict[str, int]) -> None:
|
|
10
|
-
self.dictionaryFunctions = dictionaryFunctions
|
|
11
|
-
self.dictionaryEnumValues = dictionaryEnumValues
|
|
12
|
-
self.processed = set()
|
|
13
|
-
|
|
14
|
-
def inlineFunctionBody(self, functionName: str) -> Optional[ast.FunctionDef]:
|
|
15
|
-
if functionName in self.processed:
|
|
16
|
-
return None
|
|
17
|
-
|
|
18
|
-
self.processed.add(functionName)
|
|
19
|
-
inlineDefinition = self.dictionaryFunctions[functionName]
|
|
20
|
-
# Recursively process the function body
|
|
21
|
-
for node in ast.walk(inlineDefinition):
|
|
22
|
-
self.visit(node)
|
|
23
|
-
return inlineDefinition
|
|
24
|
-
|
|
25
|
-
def visit_Attribute(self, node: ast.Attribute) -> ast.AST:
|
|
26
|
-
# Substitute enum identifiers (e.g., indexMy.leaf1ndex.value)
|
|
27
|
-
if isinstance(node.value, ast.Attribute) and isinstance(node.value.value, ast.Name):
|
|
28
|
-
enumPath = f"{node.value.value.id}.{node.value.attr}.{node.attr}"
|
|
29
|
-
if enumPath in self.dictionaryEnumValues:
|
|
30
|
-
return ast.Constant(value=self.dictionaryEnumValues[enumPath])
|
|
31
|
-
return self.generic_visit(node)
|
|
32
|
-
|
|
33
|
-
def visit_Call(self, node: ast.Call) -> ast.AST:
|
|
34
|
-
callNode = self.generic_visit(node)
|
|
35
|
-
if isinstance(callNode, ast.Call) and isinstance(callNode.func, ast.Name) and callNode.func.id in self.dictionaryFunctions:
|
|
36
|
-
inlineDefinition = self.inlineFunctionBody(callNode.func.id)
|
|
37
|
-
if (inlineDefinition and inlineDefinition.body):
|
|
38
|
-
lastStmt = inlineDefinition.body[-1]
|
|
39
|
-
if isinstance(lastStmt, ast.Return) and lastStmt.value is not None:
|
|
40
|
-
return self.visit(lastStmt.value)
|
|
41
|
-
elif isinstance(lastStmt, ast.Expr) and lastStmt.value is not None:
|
|
42
|
-
return self.visit(lastStmt.value)
|
|
43
|
-
return ast.Constant(value=None)
|
|
44
|
-
return callNode
|
|
45
|
-
|
|
46
|
-
def visit_Expr(self, node: ast.Expr) -> Union[ast.AST, List[ast.AST]]:
|
|
47
|
-
if isinstance(node.value, ast.Call):
|
|
48
|
-
if isinstance(node.value.func, ast.Name) and node.value.func.id in self.dictionaryFunctions:
|
|
49
|
-
inlineDefinition = self.inlineFunctionBody(node.value.func.id)
|
|
50
|
-
if inlineDefinition:
|
|
51
|
-
return [self.visit(stmt) for stmt in inlineDefinition.body]
|
|
52
|
-
return self.generic_visit(node)
|
|
53
|
-
|
|
54
|
-
def findRequiredImports(node: ast.AST) -> Set[str]:
|
|
55
|
-
"""Find all modules that need to be imported based on AST analysis.
|
|
56
|
-
NOTE: due to hardcoding, this is a glorified regex. No, wait, this is less versatile than regex."""
|
|
57
|
-
requiredImports = set()
|
|
58
|
-
|
|
59
|
-
class ImportFinder(ast.NodeVisitor):
|
|
60
|
-
def visit_Name(self, node: ast.Name) -> None:
|
|
61
|
-
if node.id in {'numba'}:
|
|
62
|
-
requiredImports.add(node.id)
|
|
63
|
-
self.generic_visit(node)
|
|
64
|
-
|
|
65
|
-
def visitDecorator(self, node: ast.AST) -> None:
|
|
66
|
-
if isinstance(node, ast.Call) and isinstance(node.func, ast.Name):
|
|
67
|
-
if node.func.id == 'jit':
|
|
68
|
-
requiredImports.add('numba')
|
|
69
|
-
self.generic_visit(node)
|
|
70
|
-
|
|
71
|
-
ImportFinder().visit(node)
|
|
72
|
-
return requiredImports
|
|
73
|
-
|
|
74
|
-
def generateImports(requiredImports: Set[str]) -> str:
|
|
75
|
-
"""Generate import statements based on required modules."""
|
|
76
|
-
importStatements = {'import numba', 'from mapFolding import indexMy, indexTrack'}
|
|
77
|
-
|
|
78
|
-
importMapping = {
|
|
79
|
-
'numba': 'import numba',
|
|
80
|
-
}
|
|
81
|
-
|
|
82
|
-
for moduleName in sorted(requiredImports):
|
|
83
|
-
if moduleName in importMapping:
|
|
84
|
-
importStatements.add(importMapping[moduleName])
|
|
85
|
-
|
|
86
|
-
return '\n'.join(importStatements)
|
|
87
|
-
|
|
88
|
-
def makeInlineFunction(sourceCode: str, targetFunctionName: str, dictionaryEnumValues: Dict[str, int], skipEnum: bool=False, **keywordArguments: Optional[str]):
|
|
89
|
-
datatypeLarge = keywordArguments.get('datatypeLarge', datatypeLargeDEFAULT)
|
|
90
|
-
datatypeMedium = keywordArguments.get('datatypeMedium', datatypeMediumDEFAULT)
|
|
91
|
-
datatypeSmall = keywordArguments.get('datatypeSmall', datatypeSmallDEFAULT)
|
|
92
|
-
if skipEnum:
|
|
93
|
-
dictionaryEnumValues = {}
|
|
94
|
-
dictionaryParsed = ast.parse(sourceCode)
|
|
95
|
-
dictionaryFunctions = {
|
|
96
|
-
element.name: element
|
|
97
|
-
for element in dictionaryParsed.body
|
|
98
|
-
if isinstance(element, ast.FunctionDef)
|
|
99
|
-
}
|
|
100
|
-
nodeTarget = dictionaryFunctions[targetFunctionName]
|
|
101
|
-
nodeInliner = RecursiveInlinerWithEnum(dictionaryFunctions, dictionaryEnumValues)
|
|
102
|
-
nodeInlined = nodeInliner.visit(nodeTarget)
|
|
103
|
-
ast.fix_missing_locations(nodeInlined)
|
|
104
|
-
callableInlinedDecorators = [decorator for decorator in nodeInlined.decorator_list]
|
|
105
|
-
|
|
106
|
-
requiredImports = findRequiredImports(nodeInlined)
|
|
107
|
-
importStatements = generateImports(requiredImports)
|
|
108
|
-
importsRequired = importStatements
|
|
109
|
-
dictionaryDecoratorsNumba={
|
|
110
|
-
'countInitialize':
|
|
111
|
-
f'@numba.jit((numba.{datatypeSmall}[:,:,::1], numba.{datatypeMedium}[::1], numba.{datatypeSmall}[::1], numba.{datatypeMedium}[:,::1]), parallel=False, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)\n',
|
|
112
|
-
'countParallel':
|
|
113
|
-
f'@numba.jit((numba.{datatypeSmall}[:,:,::1], numba.{datatypeLarge}[::1], numba.{datatypeMedium}[::1], numba.{datatypeSmall}[::1], numba.{datatypeMedium}[:,::1]), parallel=True, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)\n',
|
|
114
|
-
'countSequential':
|
|
115
|
-
f'@numba.jit((numba.{datatypeSmall}[:,:,::1], numba.{datatypeLarge}[::1], numba.{datatypeMedium}[::1], numba.{datatypeSmall}[::1], numba.{datatypeMedium}[:,::1]), parallel=False, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)\n',
|
|
116
|
-
}
|
|
117
|
-
|
|
118
|
-
lineNumbaDecorator = dictionaryDecoratorsNumba[targetFunctionName]
|
|
119
|
-
|
|
120
|
-
# inlinedCode = ast.unparse(ast.Module(body=[nodeInlined], type_ignores=[]))
|
|
121
|
-
callableInlined = lineNumbaDecorator + ast.unparse(nodeInlined)
|
|
122
|
-
return (callableInlined, callableInlinedDecorators, importsRequired)
|
|
@@ -1,216 +0,0 @@
|
|
|
1
|
-
from mapFolding import indexMy, indexTrack, getAlgorithmSource, ParametersNumba, parametersNumbaDEFAULT, hackSSOTdtype
|
|
2
|
-
from mapFolding import datatypeLargeDEFAULT, datatypeMediumDEFAULT, datatypeSmallDEFAULT, EnumIndices
|
|
3
|
-
import pathlib
|
|
4
|
-
import inspect
|
|
5
|
-
import numpy
|
|
6
|
-
import numba
|
|
7
|
-
from typing import Dict, Optional, List, Union, Sequence, Type, cast
|
|
8
|
-
import ast
|
|
9
|
-
|
|
10
|
-
algorithmSource = getAlgorithmSource()
|
|
11
|
-
|
|
12
|
-
class RecursiveInliner(ast.NodeTransformer):
|
|
13
|
-
def __init__(self, dictionaryFunctions: Dict[str, ast.FunctionDef]):
|
|
14
|
-
self.dictionaryFunctions = dictionaryFunctions
|
|
15
|
-
self.processed = set()
|
|
16
|
-
|
|
17
|
-
def inlineFunctionBody(self, functionName: str) -> Optional[ast.FunctionDef]:
|
|
18
|
-
if (functionName in self.processed):
|
|
19
|
-
return None
|
|
20
|
-
|
|
21
|
-
self.processed.add(functionName)
|
|
22
|
-
inlineDefinition = self.dictionaryFunctions[functionName]
|
|
23
|
-
# Recursively process the function body
|
|
24
|
-
for node in ast.walk(inlineDefinition):
|
|
25
|
-
self.visit(node)
|
|
26
|
-
return inlineDefinition
|
|
27
|
-
|
|
28
|
-
def visit_Call(self, node: ast.Call) -> ast.AST:
|
|
29
|
-
callNode = self.generic_visit(node)
|
|
30
|
-
if (isinstance(callNode, ast.Call) and isinstance(callNode.func, ast.Name) and callNode.func.id in self.dictionaryFunctions):
|
|
31
|
-
inlineDefinition = self.inlineFunctionBody(callNode.func.id)
|
|
32
|
-
if (inlineDefinition and inlineDefinition.body):
|
|
33
|
-
lastStmt = inlineDefinition.body[-1]
|
|
34
|
-
if (isinstance(lastStmt, ast.Return) and lastStmt.value is not None):
|
|
35
|
-
return self.visit(lastStmt.value)
|
|
36
|
-
elif (isinstance(lastStmt, ast.Expr) and lastStmt.value is not None):
|
|
37
|
-
return self.visit(lastStmt.value)
|
|
38
|
-
return ast.Constant(value=None)
|
|
39
|
-
return callNode
|
|
40
|
-
|
|
41
|
-
def visit_Expr(self, node: ast.Expr) -> Union[ast.AST, List[ast.AST]]:
|
|
42
|
-
if (isinstance(node.value, ast.Call)):
|
|
43
|
-
if (isinstance(node.value.func, ast.Name) and node.value.func.id in self.dictionaryFunctions):
|
|
44
|
-
inlineDefinition = self.inlineFunctionBody(node.value.func.id)
|
|
45
|
-
if (inlineDefinition):
|
|
46
|
-
return [self.visit(stmt) for stmt in inlineDefinition.body]
|
|
47
|
-
return self.generic_visit(node)
|
|
48
|
-
|
|
49
|
-
def decorateCallableWithNumba(astCallable: ast.FunctionDef, parallel: bool=False, **keywordArguments: Optional[str]) -> ast.FunctionDef:
|
|
50
|
-
def makeNumbaParameterSignatureElement(signatureElement: ast.arg):
|
|
51
|
-
if isinstance(signatureElement.annotation, ast.Subscript) and isinstance(signatureElement.annotation.slice, ast.Tuple):
|
|
52
|
-
annotationShape = signatureElement.annotation.slice.elts[0]
|
|
53
|
-
if isinstance(annotationShape, ast.Subscript) and isinstance(annotationShape.slice, ast.Tuple):
|
|
54
|
-
shapeAsListSlices: Sequence[ast.expr] = [ast.Slice() for axis in range(len(annotationShape.slice.elts))]
|
|
55
|
-
shapeAsListSlices[-1] = ast.Slice(step=ast.Constant(value=1))
|
|
56
|
-
shapeAST = ast.Tuple(elts=list(shapeAsListSlices), ctx=ast.Load())
|
|
57
|
-
else:
|
|
58
|
-
shapeAST = ast.Slice(step=ast.Constant(value=1))
|
|
59
|
-
|
|
60
|
-
annotationDtype = signatureElement.annotation.slice.elts[1]
|
|
61
|
-
if (isinstance(annotationDtype, ast.Subscript) and isinstance(annotationDtype.slice, ast.Attribute)):
|
|
62
|
-
datatypeAST = annotationDtype.slice.attr
|
|
63
|
-
else:
|
|
64
|
-
datatypeAST = None
|
|
65
|
-
|
|
66
|
-
ndarrayName = signatureElement.arg
|
|
67
|
-
Z0Z_hackyStr = hackSSOTdtype[ndarrayName]
|
|
68
|
-
Z0Z_hackyStr = Z0Z_hackyStr[0] + 'ata' + Z0Z_hackyStr[1:]
|
|
69
|
-
datatype_attr = keywordArguments.get(Z0Z_hackyStr, None) or datatypeAST or eval(Z0Z_hackyStr+'DEFAULT')
|
|
70
|
-
|
|
71
|
-
datatypeNumba = ast.Attribute(value=ast.Name(id='numba', ctx=ast.Load()), attr=datatype_attr, ctx=ast.Load())
|
|
72
|
-
|
|
73
|
-
return ast.Subscript(value=datatypeNumba, slice=shapeAST, ctx=ast.Load())
|
|
74
|
-
|
|
75
|
-
# callableSourceDecorators = [decorator for decorator in callableInlined.decorator_list]
|
|
76
|
-
|
|
77
|
-
listNumbaParameterSignature: Sequence[ast.expr] = []
|
|
78
|
-
for parameter in astCallable.args.args:
|
|
79
|
-
signatureElement = makeNumbaParameterSignatureElement(parameter)
|
|
80
|
-
if (signatureElement):
|
|
81
|
-
listNumbaParameterSignature.append(signatureElement)
|
|
82
|
-
|
|
83
|
-
astArgsNumbaSignature = ast.Tuple(elts=listNumbaParameterSignature, ctx=ast.Load())
|
|
84
|
-
|
|
85
|
-
if astCallable.name == 'countInitialize':
|
|
86
|
-
parametersNumba = {}
|
|
87
|
-
else:
|
|
88
|
-
parametersNumba = parametersNumbaDEFAULT if not parallel else ParametersNumba({**parametersNumbaDEFAULT, 'parallel': True})
|
|
89
|
-
listKeywordsNumbaSignature = [ast.keyword(arg=parameterName, value=ast.Constant(value=parameterValue)) for parameterName, parameterValue in parametersNumba.items()]
|
|
90
|
-
|
|
91
|
-
astDecoratorNumba = ast.Call(func=ast.Attribute(value=ast.Name(id='numba', ctx=ast.Load()), attr='jit', ctx=ast.Load()), args=[astArgsNumbaSignature], keywords=listKeywordsNumbaSignature)
|
|
92
|
-
|
|
93
|
-
astCallable.decorator_list = [astDecoratorNumba]
|
|
94
|
-
return astCallable
|
|
95
|
-
|
|
96
|
-
class UnpackArrayAccesses(ast.NodeTransformer):
|
|
97
|
-
"""AST transformer that replaces array accesses with simpler variables."""
|
|
98
|
-
|
|
99
|
-
def __init__(self, enumIndexClass: Type[EnumIndices], arrayName: str):
|
|
100
|
-
self.enumIndexClass = enumIndexClass
|
|
101
|
-
self.arrayName = arrayName
|
|
102
|
-
self.substitutions = {}
|
|
103
|
-
|
|
104
|
-
def extract_member_name(self, node: ast.AST) -> Optional[str]:
|
|
105
|
-
"""Recursively extract enum member name from any node in the AST."""
|
|
106
|
-
if isinstance(node, ast.Attribute) and node.attr == 'value':
|
|
107
|
-
innerAttribute = node.value
|
|
108
|
-
while isinstance(innerAttribute, ast.Attribute):
|
|
109
|
-
if (isinstance(innerAttribute.value, ast.Name) and innerAttribute.value.id == self.enumIndexClass.__name__):
|
|
110
|
-
return innerAttribute.attr
|
|
111
|
-
innerAttribute = innerAttribute.value
|
|
112
|
-
return None
|
|
113
|
-
|
|
114
|
-
def transform_slice_element(self, node: ast.AST) -> ast.AST:
|
|
115
|
-
"""Transform any enum references within a slice element."""
|
|
116
|
-
if isinstance(node, ast.Subscript):
|
|
117
|
-
if isinstance(node.slice, ast.Attribute):
|
|
118
|
-
member_name = self.extract_member_name(node.slice)
|
|
119
|
-
if member_name:
|
|
120
|
-
return ast.Name(id=member_name, ctx=node.ctx)
|
|
121
|
-
elif isinstance(node, ast.Tuple):
|
|
122
|
-
# Handle tuple slices by transforming each element
|
|
123
|
-
return ast.Tuple(elts=cast(List[ast.expr], [self.transform_slice_element(elt) for elt in node.elts]), ctx=node.ctx)
|
|
124
|
-
elif isinstance(node, ast.Attribute):
|
|
125
|
-
member_name = self.extract_member_name(node)
|
|
126
|
-
if member_name:
|
|
127
|
-
return ast.Name(id=member_name, ctx=ast.Load())
|
|
128
|
-
return node
|
|
129
|
-
|
|
130
|
-
def visit_Subscript(self, node: ast.Subscript) -> ast.AST:
|
|
131
|
-
# Recursively visit any nested subscripts in value or slice
|
|
132
|
-
node.value = self.visit(node.value)
|
|
133
|
-
node.slice = self.visit(node.slice)
|
|
134
|
-
# If node.value is not our arrayName, just return node
|
|
135
|
-
if not (isinstance(node.value, ast.Name) and node.value.id == self.arrayName):
|
|
136
|
-
return node
|
|
137
|
-
|
|
138
|
-
# Handle scalar array access
|
|
139
|
-
if isinstance(node.slice, ast.Attribute):
|
|
140
|
-
memberName = self.extract_member_name(node.slice)
|
|
141
|
-
if memberName:
|
|
142
|
-
self.substitutions[memberName] = ('scalar', node)
|
|
143
|
-
return ast.Name(id=memberName, ctx=ast.Load())
|
|
144
|
-
|
|
145
|
-
# Handle array slice access
|
|
146
|
-
if isinstance(node.slice, ast.Tuple) and node.slice.elts:
|
|
147
|
-
firstElement = node.slice.elts[0]
|
|
148
|
-
memberName = self.extract_member_name(firstElement)
|
|
149
|
-
sliceRemainder = [self.visit(elem) for elem in node.slice.elts[1:]]
|
|
150
|
-
if memberName:
|
|
151
|
-
self.substitutions[memberName] = ('array', node)
|
|
152
|
-
if len(sliceRemainder) == 0:
|
|
153
|
-
return ast.Name(id=memberName, ctx=ast.Load())
|
|
154
|
-
return ast.Subscript(value=ast.Name(id=memberName, ctx=ast.Load()), slice=ast.Tuple(elts=sliceRemainder, ctx=ast.Load()) if len(sliceRemainder) > 1 else sliceRemainder[0], ctx=ast.Load())
|
|
155
|
-
|
|
156
|
-
# If single-element tuple, unwrap
|
|
157
|
-
if isinstance(node.slice, ast.Tuple) and len(node.slice.elts) == 1:
|
|
158
|
-
node.slice = node.slice.elts[0]
|
|
159
|
-
|
|
160
|
-
return node
|
|
161
|
-
|
|
162
|
-
def visit_FunctionDef(self, node: ast.FunctionDef) -> ast.FunctionDef:
|
|
163
|
-
node = cast(ast.FunctionDef, self.generic_visit(node))
|
|
164
|
-
|
|
165
|
-
initializations = []
|
|
166
|
-
for name, (kind, original_node) in self.substitutions.items():
|
|
167
|
-
if kind == 'scalar':
|
|
168
|
-
initializations.append(ast.Assign(targets=[ast.Name(id=name, ctx=ast.Store())], value=original_node))
|
|
169
|
-
else: # array
|
|
170
|
-
initializations.append(
|
|
171
|
-
ast.Assign(
|
|
172
|
-
targets=[ast.Name(id=name, ctx=ast.Store())],
|
|
173
|
-
value=ast.Subscript(value=ast.Name(id=self.arrayName, ctx=ast.Load()),
|
|
174
|
-
slice=ast.Attribute(value=ast.Attribute(
|
|
175
|
-
value=ast.Name(id=self.enumIndexClass.__name__, ctx=ast.Load()),
|
|
176
|
-
attr=name, ctx=ast.Load()), attr='value', ctx=ast.Load()), ctx=ast.Load())))
|
|
177
|
-
|
|
178
|
-
node.body = initializations + node.body
|
|
179
|
-
return node
|
|
180
|
-
|
|
181
|
-
def inlineMapFoldingNumba(**keywordArguments: Optional[str]):
|
|
182
|
-
codeSource = inspect.getsource(algorithmSource)
|
|
183
|
-
pathFilenameAlgorithm = pathlib.Path(inspect.getfile(algorithmSource))
|
|
184
|
-
|
|
185
|
-
listPathFilenamesDestination: list[pathlib.Path] = []
|
|
186
|
-
listCallables = [ 'countInitialize', 'countParallel', 'countSequential', ]
|
|
187
|
-
for callableTarget in listCallables:
|
|
188
|
-
codeParsed: ast.Module = ast.parse(codeSource, type_comments=True)
|
|
189
|
-
codeSourceImportStatements = {statement for statement in codeParsed.body if isinstance(statement, (ast.Import, ast.ImportFrom))}
|
|
190
|
-
dictionaryFunctions = {statement.name: statement for statement in codeParsed.body if isinstance(statement, ast.FunctionDef)}
|
|
191
|
-
callableInlinerWorkhorse = RecursiveInliner(dictionaryFunctions)
|
|
192
|
-
parallel = callableTarget == 'countParallel'
|
|
193
|
-
callableInlined = callableInlinerWorkhorse.inlineFunctionBody(callableTarget)
|
|
194
|
-
if callableInlined:
|
|
195
|
-
ast.fix_missing_locations(callableInlined)
|
|
196
|
-
callableDecorated = decorateCallableWithNumba(callableInlined, parallel, **keywordArguments)
|
|
197
|
-
|
|
198
|
-
if callableTarget == 'countSequential':
|
|
199
|
-
myUnpacker = UnpackArrayAccesses(indexMy, 'my')
|
|
200
|
-
callableDecorated = cast(ast.FunctionDef, myUnpacker.visit(callableDecorated))
|
|
201
|
-
ast.fix_missing_locations(callableDecorated)
|
|
202
|
-
|
|
203
|
-
trackUnpacker = UnpackArrayAccesses(indexTrack, 'track')
|
|
204
|
-
callableDecorated = cast(ast.FunctionDef, trackUnpacker.visit(callableDecorated))
|
|
205
|
-
ast.fix_missing_locations(callableDecorated)
|
|
206
|
-
|
|
207
|
-
moduleAST = ast.Module(body=cast(List[ast.stmt], list(codeSourceImportStatements) + [callableDecorated]), type_ignores=[])
|
|
208
|
-
ast.fix_missing_locations(moduleAST)
|
|
209
|
-
moduleSource = ast.unparse(moduleAST)
|
|
210
|
-
|
|
211
|
-
pathFilenameDestination = pathFilenameAlgorithm.parent / "syntheticModules" / pathFilenameAlgorithm.with_stem(callableTarget).name[5:None]
|
|
212
|
-
pathFilenameDestination.write_text(moduleSource)
|
|
213
|
-
listPathFilenamesDestination.append(pathFilenameDestination)
|
|
214
|
-
|
|
215
|
-
if __name__ == '__main__':
|
|
216
|
-
inlineMapFoldingNumba()
|
|
File without changes
|
|
File without changes
|
|
File without changes
|