mapFolding 0.3.3__py3-none-any.whl → 0.3.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,67 @@
1
+ from cffconvert.cli.create_citation import create_citation
2
+ from typing import Any, Dict
3
+ import cffconvert
4
+ import pathlib
5
+ import tomli
6
+ import inspect
7
+ import json
8
+
9
+ """
10
+ Tentative plan:
11
+ - Commit and push to GitHub
12
+ - GitHub Action gathers information from the sources of truth
13
+ - If the citation needs to be updated, write to both
14
+ - pathFilenameCitationSSOT
15
+ - pathFilenameCitationDOTcffRepo
16
+ - Commit and push to GitHub
17
+ - this complicates things
18
+ - I want the updated citation to be in the `commit` field of itself
19
+ """
20
+
21
+ """cffconvert.Citation fields and the source of truth
22
+ abstract: pathFilenameCitationSSOT
23
+ authors: pathFilenamePackageSSOT
24
+ cff-version: pathFilenameCitationSSOT
25
+ commit: workflows['Make GitHub Release']
26
+ contact: pathFilenamePackageSSOT
27
+ date-released: workflows['Make GitHub Release']
28
+ doi: pathFilenameCitationSSOT
29
+ identifiers: workflows['Make GitHub Release']
30
+ keywords: pathFilenamePackageSSOT
31
+ license: pathFilenamePackageSSOT
32
+ license-url: pathFilenamePackageSSOT
33
+ message: pathFilenameCitationSSOT
34
+ preferred-citation: pathFilenameCitationSSOT
35
+ references: to be determined
36
+ repository: pathFilenamePackageSSOT
37
+ repository-artifact: (https://pypi.org/pypi/{package_name}/json').json()['releases']
38
+ repository-code: workflows['Make GitHub Release']
39
+ title: pathFilenamePackageSSOT
40
+ type: pathFilenameCitationSSOT
41
+ url: pathFilenamePackageSSOT
42
+ version: pathFilenamePackageSSOT
43
+ """
44
+ # Prefer reliable, dynamic values over hardcoded ones
45
+ packageName: str = 'mapFolding'
46
+ pathRepoRoot = pathlib.Path(__file__).parent.parent.parent
47
+ pathFilenamePackageSSOT = pathRepoRoot / 'pyproject.toml'
48
+
49
+ filenameGitHubAction = 'updateCitation.yml'
50
+ pathFilenameGitHubAction = pathRepoRoot / '.github' / 'workflows' / filenameGitHubAction
51
+
52
+ filenameCitationDOTcff = 'CITATION.cff'
53
+ pathCitations = pathRepoRoot / packageName / 'citations'
54
+ pathFilenameCitationSSOT = pathCitations / filenameCitationDOTcff
55
+ pathFilenameCitationDOTcffRepo = pathRepoRoot / filenameCitationDOTcff
56
+
57
+ tomlPackageData: Dict[str, Any] = tomli.loads(pathFilenamePackageSSOT.read_text())['project']
58
+
59
+ citationObject: cffconvert.Citation = create_citation(infile=pathFilenameCitationSSOT, url=None)
60
+
61
+ path_cffconvert = pathlib.Path(inspect.getfile(cffconvert)).parent
62
+ pathFilenameSchema = path_cffconvert / "schemas/1.2.0/schema.json"
63
+ scheme: Dict[str, Any] = json.loads(pathFilenameSchema.read_text())
64
+ schemaSpecifications: Dict[str, Any] = scheme['properties']
65
+
66
+ for property, subProperties in schemaSpecifications.items():
67
+ print(property, subProperties.get('items', None))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mapFolding
3
- Version: 0.3.3
3
+ Version: 0.3.5
4
4
  Summary: Count distinct ways to fold a map (or a strip of stamps)
5
5
  Author-email: Hunter Hogan <HunterHogan@pm.me>
6
6
  License: CC-BY-NC-4.0
@@ -29,12 +29,14 @@ Requires-Dist: jupyter; extra == "benchmark"
29
29
  Requires-Dist: pandas; extra == "benchmark"
30
30
  Requires-Dist: tqdm; extra == "benchmark"
31
31
  Provides-Extra: testing
32
+ Requires-Dist: cffconvert; extra == "testing"
32
33
  Requires-Dist: more_itertools; extra == "testing"
33
34
  Requires-Dist: pytest; extra == "testing"
34
35
  Requires-Dist: pytest-cov; extra == "testing"
35
36
  Requires-Dist: pytest-env; extra == "testing"
36
37
  Requires-Dist: pytest-xdist; extra == "testing"
37
38
  Requires-Dist: python_minifier; extra == "testing"
39
+ Requires-Dist: tomli; extra == "testing"
38
40
 
39
41
  # Algorithm(s) for counting distinct ways to fold a map (or a strip of stamps)
40
42
 
@@ -0,0 +1,26 @@
1
+ benchmarks/benchmarking.py,sha256=HD_0NSvuabblg94ftDre6LFnXShTe8MYj3hIodW-zV0,3076
2
+ citations/updateCitation.py,sha256=3AUPo9_4SfH8AwQBMRl7KygAXoMRjQSqFl3ERWxtrtk,2541
3
+ reference/flattened.py,sha256=6blZ2Y9G8mu1F3gV8SKndPE398t2VVFlsgKlyeJ765A,16538
4
+ reference/hunterNumba.py,sha256=HWndRgsajOf76rbb2LDNEZ6itsdYbyV-k3wgOFjeR6c,7104
5
+ reference/irvineJavaPort.py,sha256=Sj-63Z-OsGuDoEBXuxyjRrNmmyl0d7Yz_XuY7I47Oyg,4250
6
+ reference/jax.py,sha256=rojyK80lOATtbzxjGOHWHZngQa47CXCLJHZwIdN2MwI,14955
7
+ reference/lunnan.py,sha256=XEcql_gxvCCghb6Or3qwmPbn4IZUbZTaSmw_fUjRxZE,5037
8
+ reference/lunnanNumpy.py,sha256=HqDgSwTOZA-G0oophOEfc4zs25Mv4yw2aoF1v8miOLk,4653
9
+ reference/lunnanWhile.py,sha256=7NY2IKO5XBgol0aWWF_Fi-7oTL9pvu_z6lB0TF1uVHk,4063
10
+ reference/rotatedEntryPoint.py,sha256=z0QyDQtnMvXNj5ntWzzJUQUMFm1-xHGLVhtYzwmczUI,11530
11
+ reference/total_countPlus1vsPlusN.py,sha256=usenM8Yn_G1dqlPl7NKKkcnbohBZVZBXTQRm2S3_EDA,8106
12
+ someAssemblyRequired/__init__.py,sha256=7iODZE6dM4h52spgivUvAuVsvYdSx-_YcSTz1gX82Vw,89
13
+ someAssemblyRequired/generalizeSourceCode.py,sha256=qyJD0ZdG0t-SYTItL_JjaIXm3-joWt3e-2nMSAH4Dbg,6392
14
+ someAssemblyRequired/getLLVMforNoReason.py,sha256=FtJzw2pZS3A4NimWdZsegXaU-vKeCw8m67kcfb5wvGM,894
15
+ someAssemblyRequired/makeJob.py,sha256=iaLjr-FhFloTF6wSuwOpurgpqJulZht9CxNo9MDidbg,949
16
+ someAssemblyRequired/synthesizeModuleJob.py,sha256=xLak-ZZ1zQ92jBobhJqbnA1Fua9ofiRvLdK1fmD8s_s,7271
17
+ someAssemblyRequired/synthesizeModules.py,sha256=6aXlCjvObg28-zxjA1EUnqnLWOnY9nnbJQjUoWHGIcg,12386
18
+ syntheticModules/__init__.py,sha256=nDtS5UFMKN-F5pTp0qKA0J0I-XR3n3OFxV2bosieBu8,131
19
+ syntheticModules/countInitialize.py,sha256=6lau9X-1isrp4r0ujBzU0kZRA-0EoSet1y0VkUjDuO0,4239
20
+ syntheticModules/countParallel.py,sha256=fZEExMrepcNaH7pxfLKPAzHDegHYErT2v1J7wXJrv1Y,5340
21
+ syntheticModules/countSequential.py,sha256=1lYp9_0oYs3W_-2vRrDmeXc2MxjTQeQZ2IFdJW5FOIU,3640
22
+ mapFolding-0.3.5.dist-info/METADATA,sha256=NlyubESEbm95_tv3g2Uwr9U1imEkSlv8WXXnM7fLV_8,7617
23
+ mapFolding-0.3.5.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
24
+ mapFolding-0.3.5.dist-info/entry_points.txt,sha256=F3OUeZR1XDTpoH7k3wXuRb3KF_kXTTeYhu5AGK1SiOQ,146
25
+ mapFolding-0.3.5.dist-info/top_level.txt,sha256=yVG9dNZywoaddcsUdEDg7o0XOBzJd_4Z-sDaXGHpiMY,69
26
+ mapFolding-0.3.5.dist-info/RECORD,,
@@ -1,4 +1,5 @@
1
1
  benchmarks
2
+ citations
2
3
  reference
3
4
  someAssemblyRequired
4
5
  syntheticModules
@@ -1,2 +1,2 @@
1
1
  from .makeJob import makeStateJob
2
- from .generalizeSourceCode import makeInlineFunction
2
+ # from .generalizeSourceCode import makeInlineFunction
@@ -1,16 +1,17 @@
1
1
  from mapFolding import datatypeLargeDEFAULT, datatypeMediumDEFAULT, datatypeSmallDEFAULT
2
+ from typing import Dict, Optional, List, Set, Union
2
3
  import ast
3
4
 
4
5
  class RecursiveInlinerWithEnum(ast.NodeTransformer):
5
6
  """Process AST nodes to inline functions and substitute enum values.
6
7
  Also handles function decorators during inlining."""
7
8
 
8
- def __init__(self, dictionaryFunctions, dictionaryEnumValues):
9
+ def __init__(self, dictionaryFunctions: Dict[str, ast.FunctionDef], dictionaryEnumValues: Dict[str, int]) -> None:
9
10
  self.dictionaryFunctions = dictionaryFunctions
10
11
  self.dictionaryEnumValues = dictionaryEnumValues
11
12
  self.processed = set()
12
13
 
13
- def inlineFunctionBody(self, functionName):
14
+ def inlineFunctionBody(self, functionName: str) -> Optional[ast.FunctionDef]:
14
15
  if functionName in self.processed:
15
16
  return None
16
17
 
@@ -21,7 +22,7 @@ class RecursiveInlinerWithEnum(ast.NodeTransformer):
21
22
  self.visit(node)
22
23
  return inlineDefinition
23
24
 
24
- def visit_Attribute(self, node):
25
+ def visit_Attribute(self, node: ast.Attribute) -> ast.AST:
25
26
  # Substitute enum identifiers (e.g., indexMy.leaf1ndex.value)
26
27
  if isinstance(node.value, ast.Attribute) and isinstance(node.value.value, ast.Name):
27
28
  enumPath = f"{node.value.value.id}.{node.value.attr}.{node.attr}"
@@ -29,7 +30,7 @@ class RecursiveInlinerWithEnum(ast.NodeTransformer):
29
30
  return ast.Constant(value=self.dictionaryEnumValues[enumPath])
30
31
  return self.generic_visit(node)
31
32
 
32
- def visit_Call(self, node):
33
+ def visit_Call(self, node: ast.Call) -> ast.AST:
33
34
  callNode = self.generic_visit(node)
34
35
  if isinstance(callNode, ast.Call) and isinstance(callNode.func, ast.Name) and callNode.func.id in self.dictionaryFunctions:
35
36
  inlineDefinition = self.inlineFunctionBody(callNode.func.id)
@@ -39,10 +40,10 @@ class RecursiveInlinerWithEnum(ast.NodeTransformer):
39
40
  return self.visit(lastStmt.value)
40
41
  elif isinstance(lastStmt, ast.Expr) and lastStmt.value is not None:
41
42
  return self.visit(lastStmt.value)
42
- return None
43
+ return ast.Constant(value=None)
43
44
  return callNode
44
45
 
45
- def visit_Expr(self, node):
46
+ def visit_Expr(self, node: ast.Expr) -> Union[ast.AST, List[ast.AST]]:
46
47
  if isinstance(node.value, ast.Call):
47
48
  if isinstance(node.value.func, ast.Name) and node.value.func.id in self.dictionaryFunctions:
48
49
  inlineDefinition = self.inlineFunctionBody(node.value.func.id)
@@ -50,18 +51,18 @@ class RecursiveInlinerWithEnum(ast.NodeTransformer):
50
51
  return [self.visit(stmt) for stmt in inlineDefinition.body]
51
52
  return self.generic_visit(node)
52
53
 
53
- def findRequiredImports(node):
54
+ def findRequiredImports(node: ast.AST) -> Set[str]:
54
55
  """Find all modules that need to be imported based on AST analysis.
55
56
  NOTE: due to hardcoding, this is a glorified regex. No, wait, this is less versatile than regex."""
56
57
  requiredImports = set()
57
58
 
58
59
  class ImportFinder(ast.NodeVisitor):
59
- def visit_Name(self, node):
60
+ def visit_Name(self, node: ast.Name) -> None:
60
61
  if node.id in {'numba'}:
61
62
  requiredImports.add(node.id)
62
63
  self.generic_visit(node)
63
64
 
64
- def visitDecorator(self, node):
65
+ def visitDecorator(self, node: ast.AST) -> None:
65
66
  if isinstance(node, ast.Call) and isinstance(node.func, ast.Name):
66
67
  if node.func.id == 'jit':
67
68
  requiredImports.add('numba')
@@ -70,7 +71,7 @@ def findRequiredImports(node):
70
71
  ImportFinder().visit(node)
71
72
  return requiredImports
72
73
 
73
- def generateImports(requiredImports):
74
+ def generateImports(requiredImports: Set[str]) -> str:
74
75
  """Generate import statements based on required modules."""
75
76
  importStatements = {'import numba', 'from mapFolding import indexMy, indexTrack'}
76
77
 
@@ -84,7 +85,7 @@ def generateImports(requiredImports):
84
85
 
85
86
  return '\n'.join(importStatements)
86
87
 
87
- def makeInlineFunction(sourceCode, targetFunctionName, dictionaryEnumValues, skipEnum=False, **keywordArguments):
88
+ def makeInlineFunction(sourceCode: str, targetFunctionName: str, dictionaryEnumValues: Dict[str, int], skipEnum: bool=False, **keywordArguments: Optional[str]):
88
89
  datatypeLarge = keywordArguments.get('datatypeLarge', datatypeLargeDEFAULT)
89
90
  datatypeMedium = keywordArguments.get('datatypeMedium', datatypeMediumDEFAULT)
90
91
  datatypeSmall = keywordArguments.get('datatypeSmall', datatypeSmallDEFAULT)
@@ -5,8 +5,10 @@ import pathlib
5
5
  import pickle
6
6
 
7
7
  def makeStateJob(listDimensions: Sequence[int], **keywordArguments: Optional[Type[Any]]) -> pathlib.Path:
8
- from syntheticModules import countInitialize
8
+
9
9
  stateUniversal = outfitCountFolds(listDimensions, computationDivisions=None, CPUlimit=None, **keywordArguments)
10
+
11
+ from syntheticModules import countInitialize
10
12
  countInitialize(stateUniversal['connectionGraph'], stateUniversal['gapsWhere'], stateUniversal['my'], stateUniversal['track'])
11
13
 
12
14
  pathFilenameChopChop = getPathFilenameFoldsTotal(stateUniversal['mapShape'])
@@ -1,78 +1,244 @@
1
- from mapFolding import indexMy, indexTrack, getAlgorithmSource
2
- from mapFolding import datatypeLargeDEFAULT, datatypeMediumDEFAULT, datatypeSmallDEFAULT
3
- from someAssemblyRequired import makeInlineFunction
1
+ from mapFolding import indexMy, indexTrack, getAlgorithmSource, ParametersNumba, parametersNumbaDEFAULT, hackSSOTdtype
2
+ from mapFolding import datatypeLargeDEFAULT, datatypeMediumDEFAULT, datatypeSmallDEFAULT, EnumIndices
4
3
  import pathlib
5
4
  import inspect
5
+ import numpy
6
+ import numba
7
+ from typing import Dict, Optional, List, Union, Sequence, Type, cast
8
+ import ast
6
9
 
7
10
  algorithmSource = getAlgorithmSource()
8
11
 
9
- def getDictionaryEnumValues():
12
+ class RecursiveInliner(ast.NodeTransformer):
13
+ def __init__(self, dictionaryFunctions: Dict[str, ast.FunctionDef]):
14
+ self.dictionaryFunctions = dictionaryFunctions
15
+ self.processed = set()
16
+
17
+ def inlineFunctionBody(self, functionName: str) -> Optional[ast.FunctionDef]:
18
+ if (functionName in self.processed):
19
+ return None
20
+
21
+ self.processed.add(functionName)
22
+ inlineDefinition = self.dictionaryFunctions[functionName]
23
+ # Recursively process the function body
24
+ for node in ast.walk(inlineDefinition):
25
+ self.visit(node)
26
+ return inlineDefinition
27
+
28
+ def visit_Call(self, node: ast.Call) -> ast.AST:
29
+ callNode = self.generic_visit(node)
30
+ if (isinstance(callNode, ast.Call) and isinstance(callNode.func, ast.Name) and callNode.func.id in self.dictionaryFunctions):
31
+ inlineDefinition = self.inlineFunctionBody(callNode.func.id)
32
+ if (inlineDefinition and inlineDefinition.body):
33
+ lastStmt = inlineDefinition.body[-1]
34
+ if (isinstance(lastStmt, ast.Return) and lastStmt.value is not None):
35
+ return self.visit(lastStmt.value)
36
+ elif (isinstance(lastStmt, ast.Expr) and lastStmt.value is not None):
37
+ return self.visit(lastStmt.value)
38
+ return ast.Constant(value=None)
39
+ return callNode
40
+
41
+ def visit_Expr(self, node: ast.Expr) -> Union[ast.AST, List[ast.AST]]:
42
+ if (isinstance(node.value, ast.Call)):
43
+ if (isinstance(node.value.func, ast.Name) and node.value.func.id in self.dictionaryFunctions):
44
+ inlineDefinition = self.inlineFunctionBody(node.value.func.id)
45
+ if (inlineDefinition):
46
+ return [self.visit(stmt) for stmt in inlineDefinition.body]
47
+ return self.generic_visit(node)
48
+
49
+ def decorateCallableWithNumba(astCallable: ast.FunctionDef, parallel: bool=False, **keywordArguments: Optional[str]) -> ast.FunctionDef:
50
+ def makeNumbaParameterSignatureElement(signatureElement: ast.arg):
51
+ if isinstance(signatureElement.annotation, ast.Subscript) and isinstance(signatureElement.annotation.slice, ast.Tuple):
52
+ annotationShape = signatureElement.annotation.slice.elts[0]
53
+ if isinstance(annotationShape, ast.Subscript) and isinstance(annotationShape.slice, ast.Tuple):
54
+ shapeAsListSlices: Sequence[ast.expr] = [ast.Slice() for axis in range(len(annotationShape.slice.elts))]
55
+ shapeAsListSlices[-1] = ast.Slice(step=ast.Constant(value=1))
56
+ shapeAST = ast.Tuple(elts=list(shapeAsListSlices), ctx=ast.Load())
57
+ else:
58
+ shapeAST = ast.Slice(step=ast.Constant(value=1))
59
+
60
+ annotationDtype = signatureElement.annotation.slice.elts[1]
61
+ if (isinstance(annotationDtype, ast.Subscript) and isinstance(annotationDtype.slice, ast.Attribute)):
62
+ datatypeAST = annotationDtype.slice.attr
63
+ else:
64
+ datatypeAST = None
65
+
66
+ ndarrayName = signatureElement.arg
67
+ Z0Z_hackyStr = hackSSOTdtype[ndarrayName]
68
+ Z0Z_hackyStr = Z0Z_hackyStr[0] + 'ata' + Z0Z_hackyStr[1:]
69
+ datatype_attr = keywordArguments.get(Z0Z_hackyStr, None) or datatypeAST or eval(Z0Z_hackyStr+'DEFAULT')
70
+
71
+ datatypeNumba = ast.Attribute(value=ast.Name(id='numba', ctx=ast.Load()), attr=datatype_attr, ctx=ast.Load())
72
+
73
+ return ast.Subscript(value=datatypeNumba, slice=shapeAST, ctx=ast.Load())
74
+
75
+ # callableSourceDecorators = [decorator for decorator in callableInlined.decorator_list]
76
+
77
+ listNumbaParameterSignature: Sequence[ast.expr] = []
78
+ for parameter in astCallable.args.args:
79
+ signatureElement = makeNumbaParameterSignatureElement(parameter)
80
+ if (signatureElement):
81
+ listNumbaParameterSignature.append(signatureElement)
82
+
83
+ astArgsNumbaSignature = ast.Tuple(elts=listNumbaParameterSignature, ctx=ast.Load())
84
+
85
+ parametersNumba = parametersNumbaDEFAULT if not parallel else ParametersNumba({**parametersNumbaDEFAULT, 'parallel': True})
86
+ listKeywordsNumbaSignature = [ast.keyword(arg=parameterName, value=ast.Constant(value=parameterValue)) for parameterName, parameterValue in parametersNumba.items()]
87
+
88
+ astDecoratorNumba = ast.Call(func=ast.Attribute(value=ast.Name(id='numba', ctx=ast.Load()), attr='jit', ctx=ast.Load()), args=[astArgsNumbaSignature], keywords=listKeywordsNumbaSignature)
89
+
90
+ astCallable.decorator_list = [astDecoratorNumba]
91
+ return astCallable
92
+
93
+ class UnpackArrayAccesses(ast.NodeTransformer):
94
+ """AST transformer that replaces array accesses with simpler variables."""
95
+
96
+ def __init__(self, enumIndexClass: Type[EnumIndices], arrayName: str):
97
+ self.enumIndexClass = enumIndexClass
98
+ self.arrayName = arrayName
99
+ self.substitutions = {}
100
+
101
+ def extract_member_name(self, node: ast.AST) -> Optional[str]:
102
+ """Recursively extract enum member name from any node in the AST."""
103
+ if isinstance(node, ast.Attribute) and node.attr == 'value':
104
+ innerAttribute = node.value
105
+ while isinstance(innerAttribute, ast.Attribute):
106
+ if (isinstance(innerAttribute.value, ast.Name) and innerAttribute.value.id == self.enumIndexClass.__name__):
107
+ return innerAttribute.attr
108
+ innerAttribute = innerAttribute.value
109
+ return None
110
+
111
+ def transform_slice_element(self, node: ast.AST) -> ast.AST:
112
+ """Transform any enum references within a slice element."""
113
+ if isinstance(node, ast.Subscript):
114
+ if isinstance(node.slice, ast.Attribute):
115
+ member_name = self.extract_member_name(node.slice)
116
+ if member_name:
117
+ return ast.Name(id=member_name, ctx=node.ctx)
118
+ elif isinstance(node, ast.Tuple):
119
+ # Handle tuple slices by transforming each element
120
+ return ast.Tuple(
121
+ elts=cast(List[ast.expr], [self.transform_slice_element(elt) for elt in node.elts]),
122
+ ctx=node.ctx
123
+ )
124
+ elif isinstance(node, ast.Attribute):
125
+ member_name = self.extract_member_name(node)
126
+ if member_name:
127
+ return ast.Name(id=member_name, ctx=ast.Load())
128
+ return node
129
+
130
+ def visit_Subscript(self, node: ast.Subscript) -> ast.AST:
131
+ # Recursively visit any nested subscripts in value or slice
132
+ node.value = self.visit(node.value)
133
+ node.slice = self.visit(node.slice)
134
+
135
+ # If node.value is not our arrayName, just return node
136
+ if not (isinstance(node.value, ast.Name) and node.value.id == self.arrayName):
137
+ return node
138
+
139
+ # Handle scalar array access
140
+ if isinstance(node.slice, ast.Attribute):
141
+ memberName = self.extract_member_name(node.slice)
142
+ if memberName:
143
+ self.substitutions[memberName] = ('scalar', node)
144
+ return ast.Name(id=memberName, ctx=ast.Load())
145
+
146
+ # Handle array slice access
147
+ if isinstance(node.slice, ast.Tuple) and node.slice.elts:
148
+ firstElement = node.slice.elts[0]
149
+ memberName = self.extract_member_name(firstElement)
150
+ sliceRemainder = [self.visit(elem) for elem in node.slice.elts[1:]]
151
+ if memberName:
152
+ self.substitutions[memberName] = ('array', node)
153
+ if len(sliceRemainder) == 0:
154
+ return ast.Name(id=memberName, ctx=ast.Load())
155
+ return ast.Subscript(
156
+ value=ast.Name(id=memberName, ctx=ast.Load()),
157
+ slice=ast.Tuple(elts=sliceRemainder, ctx=ast.Load()) if len(sliceRemainder) > 1 else sliceRemainder[0],
158
+ ctx=ast.Load()
159
+ )
160
+
161
+ # If single-element tuple, unwrap
162
+ if isinstance(node.slice, ast.Tuple) and len(node.slice.elts) == 1:
163
+ node.slice = node.slice.elts[0]
164
+
165
+ return node
166
+
167
+ def visit_FunctionDef(self, node: ast.FunctionDef) -> ast.FunctionDef:
168
+ node = cast(ast.FunctionDef, self.generic_visit(node))
169
+
170
+ initializations = []
171
+ for name, (kind, original_node) in self.substitutions.items():
172
+ if kind == 'scalar':
173
+ initializations.append(
174
+ ast.Assign(
175
+ targets=[ast.Name(id=name, ctx=ast.Store())],
176
+ value=original_node
177
+ )
178
+ )
179
+ else: # array
180
+ initializations.append(
181
+ ast.Assign(
182
+ targets=[ast.Name(id=name, ctx=ast.Store())],
183
+ value=ast.Subscript(
184
+ value=ast.Name(id=self.arrayName, ctx=ast.Load()),
185
+ slice=ast.Attribute(
186
+ value=ast.Attribute(
187
+ value=ast.Name(id=self.enumIndexClass.__name__, ctx=ast.Load()),
188
+ attr=name,
189
+ ctx=ast.Load()
190
+ ),
191
+ attr='value',
192
+ ctx=ast.Load()
193
+ ),
194
+ ctx=ast.Load()
195
+ )
196
+ )
197
+ )
198
+
199
+ node.body = initializations + node.body
200
+ return node
201
+
202
+ def getDictionaryEnumValues() -> Dict[str, int]:
10
203
  dictionaryEnumValues = {}
11
204
  for enumIndex in [indexMy, indexTrack]:
12
205
  for memberName, memberValue in enumIndex._member_map_.items():
13
206
  dictionaryEnumValues[f"{enumIndex.__name__}.{memberName}.value"] = memberValue.value
14
207
  return dictionaryEnumValues
15
208
 
16
- def unpackArrays(codeInlined: str, callableTarget: str) -> str:
17
- dictionaryReplaceScalars = {
18
- 'my[indexMy.dimensionsTotal.value]': 'dimensionsTotal',
19
- 'my[indexMy.dimensionsUnconstrained.value]': 'dimensionsUnconstrained',
20
- 'my[indexMy.gap1ndex.value]': 'gap1ndex',
21
- 'my[indexMy.gap1ndexCeiling.value]': 'gap1ndexCeiling',
22
- 'my[indexMy.indexDimension.value]': 'indexDimension',
23
- # 'my[indexMy.indexLeaf.value]': 'indexLeaf',
24
- 'my[indexMy.indexMiniGap.value]': 'indexMiniGap',
25
- 'my[indexMy.leaf1ndex.value]': 'leaf1ndex',
26
- 'my[indexMy.leafConnectee.value]': 'leafConnectee',
27
- # 'my[indexMy.taskDivisions.value]': 'taskDivisions',
28
- 'my[indexMy.taskIndex.value]': 'taskIndex',
29
- # 'foldGroups[-1]': 'leavesTotal',
30
- }
31
-
32
- dictionaryReplaceArrays = {
33
- "track[indexTrack.leafAbove.value, ": 'leafAbove[',
34
- "track[indexTrack.leafBelow.value, ": 'leafBelow[',
35
- 'track[indexTrack.countDimensionsGapped.value, ': 'countDimensionsGapped[',
36
- 'track[indexTrack.gapRangeStart.value, ': 'gapRangeStart[',
37
- }
38
-
39
- ImaIndent = " "
40
- linesInitialize = """"""
41
-
42
- for find, replace in dictionaryReplaceScalars.items():
43
- linesInitialize += f"{ImaIndent}{replace} = {find}\n"
44
- codeInlined = codeInlined.replace(find, replace)
45
-
46
- for find, replace in dictionaryReplaceArrays.items():
47
- linesInitialize += f"{ImaIndent}{replace[0:-1]} = {find[0:-2]}]\n"
48
- codeInlined = codeInlined.replace(find, replace)
49
-
50
- ourGuyOnTheInside = " doFindGaps = True\n"
51
- linesInitialize = ourGuyOnTheInside + linesInitialize
52
-
53
- codeInlined = codeInlined.replace(ourGuyOnTheInside, linesInitialize)
54
-
55
- return codeInlined
56
-
57
- def inlineMapFoldingNumba(**keywordArguments):
58
- datatypeLarge = keywordArguments.get('datatypeLarge', datatypeLargeDEFAULT)
59
- datatypeMedium = keywordArguments.get('datatypeMedium', datatypeMediumDEFAULT)
60
- datatypeSmall = keywordArguments.get('datatypeSmall', datatypeSmallDEFAULT)
209
+ def inlineMapFoldingNumba(**keywordArguments: Optional[str]):
61
210
  dictionaryEnumValues = getDictionaryEnumValues()
62
211
  codeSource = inspect.getsource(algorithmSource)
63
212
  pathFilenameAlgorithm = pathlib.Path(inspect.getfile(algorithmSource))
64
213
 
65
- listCallables = [ 'countInitialize', 'countParallel', 'countSequential', ]
66
-
67
214
  listPathFilenamesDestination: list[pathlib.Path] = []
215
+ listCallables = [ 'countInitialize', 'countParallel', 'countSequential', ]
68
216
  for callableTarget in listCallables:
69
- skipEnum = (callableTarget == 'countInitialize')
70
- skipEnum = (callableTarget == 'countSequential')
71
- pathFilenameDestination = pathFilenameAlgorithm.parent / "syntheticModules" / pathFilenameAlgorithm.with_stem(callableTarget).name
72
- codeInlined, callableInlinedDecorators, importsRequired = makeInlineFunction(codeSource, callableTarget, dictionaryEnumValues, skipEnum, datatypeLarge=datatypeLarge, datatypeMedium=datatypeMedium, datatypeSmall=datatypeSmall)
73
- codeUnpacked = unpackArrays(codeInlined, callableTarget)
74
- pathFilenameDestination.write_text(importsRequired + "\n" + codeUnpacked)
75
- listPathFilenamesDestination.append(pathFilenameDestination)
217
+ codeParsed: ast.Module = ast.parse(codeSource, type_comments=True)
218
+ codeSourceImportStatements = {statement for statement in codeParsed.body if isinstance(statement, (ast.Import, ast.ImportFrom))}
219
+ dictionaryFunctions = {statement.name: statement for statement in codeParsed.body if isinstance(statement, ast.FunctionDef)}
220
+ callableInlinerWorkhorse = RecursiveInliner(dictionaryFunctions)
221
+ parallel = callableTarget == 'countParallel'
222
+ callableInlined = callableInlinerWorkhorse.inlineFunctionBody(callableTarget)
223
+ if callableInlined:
224
+ ast.fix_missing_locations(callableInlined)
225
+ callableDecorated = decorateCallableWithNumba(callableInlined, parallel, **keywordArguments)
226
+
227
+ if callableTarget == 'countSequential':
228
+ myUnpacker = UnpackArrayAccesses(indexMy, 'my')
229
+ callableDecorated = cast(ast.FunctionDef, myUnpacker.visit(callableDecorated))
230
+ ast.fix_missing_locations(callableDecorated)
231
+
232
+ trackUnpacker = UnpackArrayAccesses(indexTrack, 'track')
233
+ callableDecorated = cast(ast.FunctionDef, trackUnpacker.visit(callableDecorated))
234
+ ast.fix_missing_locations(callableDecorated)
235
+
236
+ callableInlined = ast.unparse(callableDecorated)
237
+ importsRequired = "\n".join([ast.unparse(importStatement) for importStatement in codeSourceImportStatements])
238
+
239
+ pathFilenameDestination = pathFilenameAlgorithm.parent / "syntheticModules" / pathFilenameAlgorithm.with_stem(callableTarget).name
240
+ pathFilenameDestination.write_text(importsRequired + "\n" + callableInlined)
241
+ listPathFilenamesDestination.append(pathFilenameDestination)
76
242
 
77
243
  if __name__ == '__main__':
78
244
  inlineMapFoldingNumba()
@@ -1,44 +1,47 @@
1
+ import numpy
2
+ from typing import Any, Tuple
1
3
  from mapFolding import indexMy, indexTrack
2
4
  import numba
3
- @numba.jit((numba.uint8[:,:,::1], numba.uint8[::1], numba.uint8[::1], numba.uint8[:,::1]), parallel=False, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)
4
- def countInitialize(connectionGraph, gapsWhere, my, track):
5
- while my[7] > 0:
6
- if my[7] <= 1 or track[1, 0] == 1:
7
- my[1] = my[0]
8
- my[3] = track[3, my[7] - 1]
9
- my[4] = 0
10
- while my[4] < my[0]:
11
- if connectionGraph[my[4], my[7], my[7]] == my[7]:
12
- my[1] -= 1
5
+ from numpy import integer
6
+ @numba.jit((numba.uint8[:, :, ::1], numba.uint8[::1], numba.uint8[::1], numba.uint8[:, ::1]), _nrt=True, boundscheck=False, cache=True, error_model='numpy', fastmath=True, forceinline=False, inline='never', looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nopython=True, parallel=False)
7
+ def countInitialize(connectionGraph: numpy.ndarray[Tuple[int, int, int], numpy.dtype[integer[Any]]], gapsWhere: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], my: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], track: numpy.ndarray[Tuple[int, int], numpy.dtype[integer[Any]]]):
8
+ while my[indexMy.leaf1ndex.value] > 0:
9
+ if my[indexMy.leaf1ndex.value] <= 1 or track[indexTrack.leafBelow.value, 0] == 1:
10
+ my[indexMy.dimensionsUnconstrained.value] = my[indexMy.dimensionsTotal.value]
11
+ my[indexMy.gap1ndexCeiling.value] = track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
12
+ my[indexMy.indexDimension.value] = 0
13
+ while my[indexMy.indexDimension.value] < my[indexMy.dimensionsTotal.value]:
14
+ if connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]] == my[indexMy.leaf1ndex.value]:
15
+ my[indexMy.dimensionsUnconstrained.value] -= 1
13
16
  else:
14
- my[8] = connectionGraph[my[4], my[7], my[7]]
15
- while my[8] != my[7]:
16
- gapsWhere[my[3]] = my[8]
17
- if track[2, my[8]] == 0:
18
- my[3] += 1
19
- track[2, my[8]] += 1
20
- my[8] = connectionGraph[my[4], my[7], track[1, my[8]]]
21
- my[4] += 1
22
- if not my[1]:
23
- my[5] = 0
24
- while my[5] < my[7]:
25
- gapsWhere[my[3]] = my[5]
26
- my[3] += 1
27
- my[5] += 1
28
- my[6] = my[2]
29
- while my[6] < my[3]:
30
- gapsWhere[my[2]] = gapsWhere[my[6]]
31
- if track[2, gapsWhere[my[6]]] == my[1]:
32
- my[2] += 1
33
- track[2, gapsWhere[my[6]]] = 0
34
- my[6] += 1
35
- if my[7] > 0:
36
- my[2] -= 1
37
- track[0, my[7]] = gapsWhere[my[2]]
38
- track[1, my[7]] = track[1, track[0, my[7]]]
39
- track[1, track[0, my[7]]] = my[7]
40
- track[0, track[1, my[7]]] = my[7]
41
- track[3, my[7]] = my[2]
42
- my[7] += 1
43
- if my[2] > 0:
17
+ my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]]
18
+ while my[indexMy.leafConnectee.value] != my[indexMy.leaf1ndex.value]:
19
+ gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.leafConnectee.value]
20
+ if track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] == 0:
21
+ my[indexMy.gap1ndexCeiling.value] += 1
22
+ track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] += 1
23
+ my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], track[indexTrack.leafBelow.value, my[indexMy.leafConnectee.value]]]
24
+ my[indexMy.indexDimension.value] += 1
25
+ if not my[indexMy.dimensionsUnconstrained.value]:
26
+ my[indexMy.indexLeaf.value] = 0
27
+ while my[indexMy.indexLeaf.value] < my[indexMy.leaf1ndex.value]:
28
+ gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.indexLeaf.value]
29
+ my[indexMy.gap1ndexCeiling.value] += 1
30
+ my[indexMy.indexLeaf.value] += 1
31
+ my[indexMy.indexMiniGap.value] = my[indexMy.gap1ndex.value]
32
+ while my[indexMy.indexMiniGap.value] < my[indexMy.gap1ndexCeiling.value]:
33
+ gapsWhere[my[indexMy.gap1ndex.value]] = gapsWhere[my[indexMy.indexMiniGap.value]]
34
+ if track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] == my[indexMy.dimensionsUnconstrained.value]:
35
+ my[indexMy.gap1ndex.value] += 1
36
+ track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] = 0
37
+ my[indexMy.indexMiniGap.value] += 1
38
+ if my[indexMy.leaf1ndex.value] > 0:
39
+ my[indexMy.gap1ndex.value] -= 1
40
+ track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]] = gapsWhere[my[indexMy.gap1ndex.value]]
41
+ track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]] = track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]]
42
+ track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
43
+ track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
44
+ track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value]] = my[indexMy.gap1ndex.value]
45
+ my[indexMy.leaf1ndex.value] += 1
46
+ if my[indexMy.gap1ndex.value] > 0:
44
47
  return
@@ -1,51 +1,54 @@
1
- from mapFolding import indexMy, indexTrack
1
+ from numpy import integer
2
+ from typing import Any, Tuple
2
3
  import numba
3
- @numba.jit((numba.uint8[:,:,::1], numba.int64[::1], numba.uint8[::1], numba.uint8[::1], numba.uint8[:,::1]), parallel=True, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)
4
- def countParallel(connectionGraph, foldGroups, gapsWherePARALLEL, myPARALLEL, trackPARALLEL):
5
- for indexSherpa in numba.prange(myPARALLEL[9]):
4
+ from mapFolding import indexMy, indexTrack
5
+ import numpy
6
+ @numba.jit((numba.uint8[:, :, ::1], numba.int64[::1], numba.uint8[::1], numba.uint8[::1], numba.uint8[:, ::1]), _nrt=True, boundscheck=False, cache=True, error_model='numpy', fastmath=True, forceinline=False, inline='never', looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nopython=True, parallel=True)
7
+ def countParallel(connectionGraph: numpy.ndarray[Tuple[int, int, int], numpy.dtype[integer[Any]]], foldGroups: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], gapsWherePARALLEL: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], myPARALLEL: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], trackPARALLEL: numpy.ndarray[Tuple[int, int], numpy.dtype[integer[Any]]]):
8
+ for indexSherpa in numba.prange(myPARALLEL[indexMy.taskDivisions.value]):
9
+ groupsOfFolds: int = 0
6
10
  gapsWhere = gapsWherePARALLEL.copy()
7
11
  my = myPARALLEL.copy()
8
- my[10] = indexSherpa
12
+ my[indexMy.taskIndex.value] = indexSherpa
9
13
  track = trackPARALLEL.copy()
10
- groupsOfFolds: int = 0
11
- while my[7] > 0:
12
- if my[7] <= 1 or track[1, 0] == 1:
13
- if my[7] > foldGroups[-1]:
14
- groupsOfFolds = groupsOfFolds + 1
14
+ while my[indexMy.leaf1ndex.value] > 0:
15
+ if my[indexMy.leaf1ndex.value] <= 1 or track[indexTrack.leafBelow.value, 0] == 1:
16
+ if my[indexMy.leaf1ndex.value] > foldGroups[-1]:
17
+ groupsOfFolds += 1
15
18
  else:
16
- my[1] = my[0]
17
- my[3] = track[3, my[7] - 1]
18
- my[4] = 0
19
- while my[4] < my[0]:
20
- if connectionGraph[my[4], my[7], my[7]] == my[7]:
21
- my[1] -= 1
19
+ my[indexMy.dimensionsUnconstrained.value] = my[indexMy.dimensionsTotal.value]
20
+ my[indexMy.gap1ndexCeiling.value] = track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
21
+ my[indexMy.indexDimension.value] = 0
22
+ while my[indexMy.indexDimension.value] < my[indexMy.dimensionsTotal.value]:
23
+ if connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]] == my[indexMy.leaf1ndex.value]:
24
+ my[indexMy.dimensionsUnconstrained.value] -= 1
22
25
  else:
23
- my[8] = connectionGraph[my[4], my[7], my[7]]
24
- while my[8] != my[7]:
25
- if my[7] != my[9] or my[8] % my[9] == my[10]:
26
- gapsWhere[my[3]] = my[8]
27
- if track[2, my[8]] == 0:
28
- my[3] += 1
29
- track[2, my[8]] += 1
30
- my[8] = connectionGraph[my[4], my[7], track[1, my[8]]]
31
- my[4] += 1
32
- my[6] = my[2]
33
- while my[6] < my[3]:
34
- gapsWhere[my[2]] = gapsWhere[my[6]]
35
- if track[2, gapsWhere[my[6]]] == my[1]:
36
- my[2] += 1
37
- track[2, gapsWhere[my[6]]] = 0
38
- my[6] += 1
39
- while my[7] > 0 and my[2] == track[3, my[7] - 1]:
40
- my[7] -= 1
41
- track[1, track[0, my[7]]] = track[1, my[7]]
42
- track[0, track[1, my[7]]] = track[0, my[7]]
43
- if my[7] > 0:
44
- my[2] -= 1
45
- track[0, my[7]] = gapsWhere[my[2]]
46
- track[1, my[7]] = track[1, track[0, my[7]]]
47
- track[1, track[0, my[7]]] = my[7]
48
- track[0, track[1, my[7]]] = my[7]
49
- track[3, my[7]] = my[2]
50
- my[7] += 1
51
- foldGroups[my[10]] = groupsOfFolds
26
+ my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]]
27
+ while my[indexMy.leafConnectee.value] != my[indexMy.leaf1ndex.value]:
28
+ if my[indexMy.leaf1ndex.value] != my[indexMy.taskDivisions.value] or my[indexMy.leafConnectee.value] % my[indexMy.taskDivisions.value] == my[indexMy.taskIndex.value]:
29
+ gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.leafConnectee.value]
30
+ if track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] == 0:
31
+ my[indexMy.gap1ndexCeiling.value] += 1
32
+ track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] += 1
33
+ my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.indexDimension.value], my[indexMy.leaf1ndex.value], track[indexTrack.leafBelow.value, my[indexMy.leafConnectee.value]]]
34
+ my[indexMy.indexDimension.value] += 1
35
+ my[indexMy.indexMiniGap.value] = my[indexMy.gap1ndex.value]
36
+ while my[indexMy.indexMiniGap.value] < my[indexMy.gap1ndexCeiling.value]:
37
+ gapsWhere[my[indexMy.gap1ndex.value]] = gapsWhere[my[indexMy.indexMiniGap.value]]
38
+ if track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] == my[indexMy.dimensionsUnconstrained.value]:
39
+ my[indexMy.gap1ndex.value] += 1
40
+ track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] = 0
41
+ my[indexMy.indexMiniGap.value] += 1
42
+ while my[indexMy.leaf1ndex.value] > 0 and my[indexMy.gap1ndex.value] == track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]:
43
+ my[indexMy.leaf1ndex.value] -= 1
44
+ track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]
45
+ track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]
46
+ if my[indexMy.leaf1ndex.value] > 0:
47
+ my[indexMy.gap1ndex.value] -= 1
48
+ track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]] = gapsWhere[my[indexMy.gap1ndex.value]]
49
+ track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]] = track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]]
50
+ track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
51
+ track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
52
+ track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value]] = my[indexMy.gap1ndex.value]
53
+ my[indexMy.leaf1ndex.value] += 1
54
+ foldGroups[my[indexMy.taskIndex.value]] = groupsOfFolds
@@ -1,25 +1,28 @@
1
- from mapFolding import indexMy, indexTrack
1
+ from numpy import integer
2
+ from typing import Any, Tuple
2
3
  import numba
3
- @numba.jit((numba.uint8[:,:,::1], numba.int64[::1], numba.uint8[::1], numba.uint8[::1], numba.uint8[:,::1]), parallel=False, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)
4
- def countSequential(connectionGraph, foldGroups, gapsWhere, my, track):
5
- doFindGaps = True
6
- dimensionsTotal = my[indexMy.dimensionsTotal.value]
4
+ from mapFolding import indexMy, indexTrack
5
+ import numpy
6
+ @numba.jit((numba.uint8[:, :, ::1], numba.int64[::1], numba.uint8[::1], numba.uint8[::1], numba.uint8[:, ::1]), _nrt=True, boundscheck=False, cache=True, error_model='numpy', fastmath=True, forceinline=False, inline='never', looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nopython=True, parallel=False)
7
+ def countSequential(connectionGraph: numpy.ndarray[Tuple[int, int, int], numpy.dtype[integer[Any]]], foldGroups: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], gapsWhere: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], my: numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]], track: numpy.ndarray[Tuple[int, int], numpy.dtype[integer[Any]]]):
8
+ leafBelow = track[indexTrack.leafBelow.value]
9
+ gapRangeStart = track[indexTrack.gapRangeStart.value]
10
+ countDimensionsGapped = track[indexTrack.countDimensionsGapped.value]
11
+ leafAbove = track[indexTrack.leafAbove.value]
12
+ leaf1ndex = my[indexMy.leaf1ndex.value]
7
13
  dimensionsUnconstrained = my[indexMy.dimensionsUnconstrained.value]
8
- gap1ndex = my[indexMy.gap1ndex.value]
14
+ dimensionsTotal = my[indexMy.dimensionsTotal.value]
9
15
  gap1ndexCeiling = my[indexMy.gap1ndexCeiling.value]
10
16
  indexDimension = my[indexMy.indexDimension.value]
11
- indexMiniGap = my[indexMy.indexMiniGap.value]
12
- leaf1ndex = my[indexMy.leaf1ndex.value]
13
17
  leafConnectee = my[indexMy.leafConnectee.value]
18
+ indexMiniGap = my[indexMy.indexMiniGap.value]
19
+ gap1ndex = my[indexMy.gap1ndex.value]
14
20
  taskIndex = my[indexMy.taskIndex.value]
15
- leafAbove = track[indexTrack.leafAbove.value]
16
- leafBelow = track[indexTrack.leafBelow.value]
17
- countDimensionsGapped = track[indexTrack.countDimensionsGapped.value]
18
- gapRangeStart = track[indexTrack.gapRangeStart.value]
19
21
  groupsOfFolds: int = 0
22
+ doFindGaps = True
20
23
  while leaf1ndex > 0:
21
24
  if (doFindGaps := (leaf1ndex <= 1 or leafBelow[0] == 1)) and leaf1ndex > foldGroups[-1]:
22
- groupsOfFolds = groupsOfFolds + 1
25
+ groupsOfFolds += 1
23
26
  elif doFindGaps:
24
27
  dimensionsUnconstrained = dimensionsTotal
25
28
  gap1ndexCeiling = gapRangeStart[leaf1ndex - 1]
@@ -1,25 +0,0 @@
1
- benchmarks/benchmarking.py,sha256=HD_0NSvuabblg94ftDre6LFnXShTe8MYj3hIodW-zV0,3076
2
- reference/flattened.py,sha256=6blZ2Y9G8mu1F3gV8SKndPE398t2VVFlsgKlyeJ765A,16538
3
- reference/hunterNumba.py,sha256=HWndRgsajOf76rbb2LDNEZ6itsdYbyV-k3wgOFjeR6c,7104
4
- reference/irvineJavaPort.py,sha256=Sj-63Z-OsGuDoEBXuxyjRrNmmyl0d7Yz_XuY7I47Oyg,4250
5
- reference/jax.py,sha256=rojyK80lOATtbzxjGOHWHZngQa47CXCLJHZwIdN2MwI,14955
6
- reference/lunnan.py,sha256=XEcql_gxvCCghb6Or3qwmPbn4IZUbZTaSmw_fUjRxZE,5037
7
- reference/lunnanNumpy.py,sha256=HqDgSwTOZA-G0oophOEfc4zs25Mv4yw2aoF1v8miOLk,4653
8
- reference/lunnanWhile.py,sha256=7NY2IKO5XBgol0aWWF_Fi-7oTL9pvu_z6lB0TF1uVHk,4063
9
- reference/rotatedEntryPoint.py,sha256=z0QyDQtnMvXNj5ntWzzJUQUMFm1-xHGLVhtYzwmczUI,11530
10
- reference/total_countPlus1vsPlusN.py,sha256=usenM8Yn_G1dqlPl7NKKkcnbohBZVZBXTQRm2S3_EDA,8106
11
- someAssemblyRequired/__init__.py,sha256=iZpBslk8OnCmaUoqAivva7Hl7GJYrjwRV_owcBbgfcM,87
12
- someAssemblyRequired/generalizeSourceCode.py,sha256=6LsUe-5uqGXcrtXWrP70BrUgnjkJKrQo8y1KyFZdb-k,6024
13
- someAssemblyRequired/getLLVMforNoReason.py,sha256=FtJzw2pZS3A4NimWdZsegXaU-vKeCw8m67kcfb5wvGM,894
14
- someAssemblyRequired/makeJob.py,sha256=W85W7vWsNsu9mBsgU3Cx-FPYIdLLnyzR4GwdcYsWZv4,947
15
- someAssemblyRequired/synthesizeJob.py,sha256=xLak-ZZ1zQ92jBobhJqbnA1Fua9ofiRvLdK1fmD8s_s,7271
16
- someAssemblyRequired/synthesizeModules.py,sha256=yR9oFsZe3sbgDe2XoS9MbaIqNz-hOq6qOFzHMhPn4rc,3737
17
- syntheticModules/__init__.py,sha256=nDtS5UFMKN-F5pTp0qKA0J0I-XR3n3OFxV2bosieBu8,131
18
- syntheticModules/countInitialize.py,sha256=rRn1gtR1PWxpQ8Mw-_QRZT7ujRP_1H04QizJE9RlZ7o,1839
19
- syntheticModules/countParallel.py,sha256=aZQvSEeWeJ-47eyMyIisq1baAAl-H6W0RYIlVPv_D_U,2559
20
- syntheticModules/countSequential.py,sha256=Uf1Zd-r3wsmVoHOWyNOQQiFO6k6xmFG6Oo3dqwAqBQo,3216
21
- mapFolding-0.3.3.dist-info/METADATA,sha256=SfukFXyZtDIdmQ4Gzgl8ePyov_factyZ4Te7LSh0UYc,7530
22
- mapFolding-0.3.3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
23
- mapFolding-0.3.3.dist-info/entry_points.txt,sha256=F3OUeZR1XDTpoH7k3wXuRb3KF_kXTTeYhu5AGK1SiOQ,146
24
- mapFolding-0.3.3.dist-info/top_level.txt,sha256=tZHrMCdFq5ghJY_MAv_GhcpmQecelcIcoxgzLnF1-V4,59
25
- mapFolding-0.3.3.dist-info/RECORD,,