mapFolding 0.3.2__py3-none-any.whl → 0.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mapFolding
3
- Version: 0.3.2
3
+ Version: 0.3.3
4
4
  Summary: Count distinct ways to fold a map (or a strip of stamps)
5
5
  Author-email: Hunter Hogan <HunterHogan@pm.me>
6
6
  License: CC-BY-NC-4.0
@@ -52,7 +52,7 @@ The directory [mapFolding/reference](https://github.com/hunterhogan/mapFolding/b
52
52
  - [hunterNumba.py](https://github.com/hunterhogan/mapFolding/blob/main/mapFolding/reference), a one-size-fits-all, self-contained, reasonably fast, contemporary algorithm that is nevertheless infected by _noobaceae ignorancium_, and
53
53
  - miscellaneous notes.
54
54
 
55
- [![pip install mapFolding](https://img.shields.io/badge/pip%20install-mapFolding-gray.svg?colorB=3b434b)](https://pypi.org/project/mapFolding/) [![Python Tests](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml/badge.svg)](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml) [![Static Badge](https://img.shields.io/badge/stinkin'%20badges-don't%20need-b98e5e)](https://youtu.be/g6f_miE91mk&t=4) ![PyPI - Downloads](https://img.shields.io/pypi/dd/mapFolding) ![Static Badge](https://img.shields.io/badge/issues-I%20have%20them-brightgreen) ![GitHub repo size](https://img.shields.io/github/repo-size/hunterhogan/mapFolding)
55
+ [![pip install mapFolding](https://img.shields.io/badge/pip%20install-mapFolding-gray.svg?colorB=3b434b)](https://pypi.org/project/mapFolding/) [![Python Tests](https://github.com/hunterhogan/mapFolding/actions/workflows/pythonTests.yml/badge.svg)](https://github.com/hunterhogan/mapFolding/actions/workflows/pythonTests.yml) [![Static Badge](https://img.shields.io/badge/stinkin'%20badges-don't%20need-b98e5e)](https://youtu.be/g6f_miE91mk&t=4) ![PyPI - Downloads](https://img.shields.io/pypi/dd/mapFolding) ![Static Badge](https://img.shields.io/badge/issues-I%20have%20them-brightgreen) ![GitHub repo size](https://img.shields.io/github/repo-size/hunterhogan/mapFolding)
56
56
 
57
57
  ## Simple, easy usage based on OEIS IDs
58
58
 
@@ -0,0 +1,25 @@
1
+ benchmarks/benchmarking.py,sha256=HD_0NSvuabblg94ftDre6LFnXShTe8MYj3hIodW-zV0,3076
2
+ reference/flattened.py,sha256=6blZ2Y9G8mu1F3gV8SKndPE398t2VVFlsgKlyeJ765A,16538
3
+ reference/hunterNumba.py,sha256=HWndRgsajOf76rbb2LDNEZ6itsdYbyV-k3wgOFjeR6c,7104
4
+ reference/irvineJavaPort.py,sha256=Sj-63Z-OsGuDoEBXuxyjRrNmmyl0d7Yz_XuY7I47Oyg,4250
5
+ reference/jax.py,sha256=rojyK80lOATtbzxjGOHWHZngQa47CXCLJHZwIdN2MwI,14955
6
+ reference/lunnan.py,sha256=XEcql_gxvCCghb6Or3qwmPbn4IZUbZTaSmw_fUjRxZE,5037
7
+ reference/lunnanNumpy.py,sha256=HqDgSwTOZA-G0oophOEfc4zs25Mv4yw2aoF1v8miOLk,4653
8
+ reference/lunnanWhile.py,sha256=7NY2IKO5XBgol0aWWF_Fi-7oTL9pvu_z6lB0TF1uVHk,4063
9
+ reference/rotatedEntryPoint.py,sha256=z0QyDQtnMvXNj5ntWzzJUQUMFm1-xHGLVhtYzwmczUI,11530
10
+ reference/total_countPlus1vsPlusN.py,sha256=usenM8Yn_G1dqlPl7NKKkcnbohBZVZBXTQRm2S3_EDA,8106
11
+ someAssemblyRequired/__init__.py,sha256=iZpBslk8OnCmaUoqAivva7Hl7GJYrjwRV_owcBbgfcM,87
12
+ someAssemblyRequired/generalizeSourceCode.py,sha256=6LsUe-5uqGXcrtXWrP70BrUgnjkJKrQo8y1KyFZdb-k,6024
13
+ someAssemblyRequired/getLLVMforNoReason.py,sha256=FtJzw2pZS3A4NimWdZsegXaU-vKeCw8m67kcfb5wvGM,894
14
+ someAssemblyRequired/makeJob.py,sha256=W85W7vWsNsu9mBsgU3Cx-FPYIdLLnyzR4GwdcYsWZv4,947
15
+ someAssemblyRequired/synthesizeJob.py,sha256=xLak-ZZ1zQ92jBobhJqbnA1Fua9ofiRvLdK1fmD8s_s,7271
16
+ someAssemblyRequired/synthesizeModules.py,sha256=yR9oFsZe3sbgDe2XoS9MbaIqNz-hOq6qOFzHMhPn4rc,3737
17
+ syntheticModules/__init__.py,sha256=nDtS5UFMKN-F5pTp0qKA0J0I-XR3n3OFxV2bosieBu8,131
18
+ syntheticModules/countInitialize.py,sha256=rRn1gtR1PWxpQ8Mw-_QRZT7ujRP_1H04QizJE9RlZ7o,1839
19
+ syntheticModules/countParallel.py,sha256=aZQvSEeWeJ-47eyMyIisq1baAAl-H6W0RYIlVPv_D_U,2559
20
+ syntheticModules/countSequential.py,sha256=Uf1Zd-r3wsmVoHOWyNOQQiFO6k6xmFG6Oo3dqwAqBQo,3216
21
+ mapFolding-0.3.3.dist-info/METADATA,sha256=SfukFXyZtDIdmQ4Gzgl8ePyov_factyZ4Te7LSh0UYc,7530
22
+ mapFolding-0.3.3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
23
+ mapFolding-0.3.3.dist-info/entry_points.txt,sha256=F3OUeZR1XDTpoH7k3wXuRb3KF_kXTTeYhu5AGK1SiOQ,146
24
+ mapFolding-0.3.3.dist-info/top_level.txt,sha256=tZHrMCdFq5ghJY_MAv_GhcpmQecelcIcoxgzLnF1-V4,59
25
+ mapFolding-0.3.3.dist-info/RECORD,,
@@ -1,3 +1,4 @@
1
1
  benchmarks
2
2
  reference
3
3
  someAssemblyRequired
4
+ syntheticModules
@@ -1,3 +1,2 @@
1
- from .countSequential import countSequential
2
- from .countParallel import countParallel
3
- from .countInitialize import countInitialize
1
+ from .makeJob import makeStateJob
2
+ from .generalizeSourceCode import makeInlineFunction
@@ -0,0 +1,121 @@
1
+ from mapFolding import datatypeLargeDEFAULT, datatypeMediumDEFAULT, datatypeSmallDEFAULT
2
+ import ast
3
+
4
+ class RecursiveInlinerWithEnum(ast.NodeTransformer):
5
+ """Process AST nodes to inline functions and substitute enum values.
6
+ Also handles function decorators during inlining."""
7
+
8
+ def __init__(self, dictionaryFunctions, dictionaryEnumValues):
9
+ self.dictionaryFunctions = dictionaryFunctions
10
+ self.dictionaryEnumValues = dictionaryEnumValues
11
+ self.processed = set()
12
+
13
+ def inlineFunctionBody(self, functionName):
14
+ if functionName in self.processed:
15
+ return None
16
+
17
+ self.processed.add(functionName)
18
+ inlineDefinition = self.dictionaryFunctions[functionName]
19
+ # Recursively process the function body
20
+ for node in ast.walk(inlineDefinition):
21
+ self.visit(node)
22
+ return inlineDefinition
23
+
24
+ def visit_Attribute(self, node):
25
+ # Substitute enum identifiers (e.g., indexMy.leaf1ndex.value)
26
+ if isinstance(node.value, ast.Attribute) and isinstance(node.value.value, ast.Name):
27
+ enumPath = f"{node.value.value.id}.{node.value.attr}.{node.attr}"
28
+ if enumPath in self.dictionaryEnumValues:
29
+ return ast.Constant(value=self.dictionaryEnumValues[enumPath])
30
+ return self.generic_visit(node)
31
+
32
+ def visit_Call(self, node):
33
+ callNode = self.generic_visit(node)
34
+ if isinstance(callNode, ast.Call) and isinstance(callNode.func, ast.Name) and callNode.func.id in self.dictionaryFunctions:
35
+ inlineDefinition = self.inlineFunctionBody(callNode.func.id)
36
+ if (inlineDefinition and inlineDefinition.body):
37
+ lastStmt = inlineDefinition.body[-1]
38
+ if isinstance(lastStmt, ast.Return) and lastStmt.value is not None:
39
+ return self.visit(lastStmt.value)
40
+ elif isinstance(lastStmt, ast.Expr) and lastStmt.value is not None:
41
+ return self.visit(lastStmt.value)
42
+ return None
43
+ return callNode
44
+
45
+ def visit_Expr(self, node):
46
+ if isinstance(node.value, ast.Call):
47
+ if isinstance(node.value.func, ast.Name) and node.value.func.id in self.dictionaryFunctions:
48
+ inlineDefinition = self.inlineFunctionBody(node.value.func.id)
49
+ if inlineDefinition:
50
+ return [self.visit(stmt) for stmt in inlineDefinition.body]
51
+ return self.generic_visit(node)
52
+
53
+ def findRequiredImports(node):
54
+ """Find all modules that need to be imported based on AST analysis.
55
+ NOTE: due to hardcoding, this is a glorified regex. No, wait, this is less versatile than regex."""
56
+ requiredImports = set()
57
+
58
+ class ImportFinder(ast.NodeVisitor):
59
+ def visit_Name(self, node):
60
+ if node.id in {'numba'}:
61
+ requiredImports.add(node.id)
62
+ self.generic_visit(node)
63
+
64
+ def visitDecorator(self, node):
65
+ if isinstance(node, ast.Call) and isinstance(node.func, ast.Name):
66
+ if node.func.id == 'jit':
67
+ requiredImports.add('numba')
68
+ self.generic_visit(node)
69
+
70
+ ImportFinder().visit(node)
71
+ return requiredImports
72
+
73
+ def generateImports(requiredImports):
74
+ """Generate import statements based on required modules."""
75
+ importStatements = {'import numba', 'from mapFolding import indexMy, indexTrack'}
76
+
77
+ importMapping = {
78
+ 'numba': 'import numba',
79
+ }
80
+
81
+ for moduleName in sorted(requiredImports):
82
+ if moduleName in importMapping:
83
+ importStatements.add(importMapping[moduleName])
84
+
85
+ return '\n'.join(importStatements)
86
+
87
+ def makeInlineFunction(sourceCode, targetFunctionName, dictionaryEnumValues, skipEnum=False, **keywordArguments):
88
+ datatypeLarge = keywordArguments.get('datatypeLarge', datatypeLargeDEFAULT)
89
+ datatypeMedium = keywordArguments.get('datatypeMedium', datatypeMediumDEFAULT)
90
+ datatypeSmall = keywordArguments.get('datatypeSmall', datatypeSmallDEFAULT)
91
+ if skipEnum:
92
+ dictionaryEnumValues = {}
93
+ dictionaryParsed = ast.parse(sourceCode)
94
+ dictionaryFunctions = {
95
+ element.name: element
96
+ for element in dictionaryParsed.body
97
+ if isinstance(element, ast.FunctionDef)
98
+ }
99
+ nodeTarget = dictionaryFunctions[targetFunctionName]
100
+ nodeInliner = RecursiveInlinerWithEnum(dictionaryFunctions, dictionaryEnumValues)
101
+ nodeInlined = nodeInliner.visit(nodeTarget)
102
+ ast.fix_missing_locations(nodeInlined)
103
+ callableInlinedDecorators = [decorator for decorator in nodeInlined.decorator_list]
104
+
105
+ requiredImports = findRequiredImports(nodeInlined)
106
+ importStatements = generateImports(requiredImports)
107
+ importsRequired = importStatements
108
+ dictionaryDecoratorsNumba={
109
+ 'countInitialize':
110
+ f'@numba.jit((numba.{datatypeSmall}[:,:,::1], numba.{datatypeMedium}[::1], numba.{datatypeSmall}[::1], numba.{datatypeMedium}[:,::1]), parallel=False, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)\n',
111
+ 'countParallel':
112
+ f'@numba.jit((numba.{datatypeSmall}[:,:,::1], numba.{datatypeLarge}[::1], numba.{datatypeMedium}[::1], numba.{datatypeSmall}[::1], numba.{datatypeMedium}[:,::1]), parallel=True, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)\n',
113
+ 'countSequential':
114
+ f'@numba.jit((numba.{datatypeSmall}[:,:,::1], numba.{datatypeLarge}[::1], numba.{datatypeMedium}[::1], numba.{datatypeSmall}[::1], numba.{datatypeMedium}[:,::1]), parallel=False, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)\n',
115
+ }
116
+
117
+ lineNumbaDecorator = dictionaryDecoratorsNumba[targetFunctionName]
118
+
119
+ # inlinedCode = ast.unparse(ast.Module(body=[nodeInlined], type_ignores=[]))
120
+ callableInlined = lineNumbaDecorator + ast.unparse(nodeInlined)
121
+ return (callableInlined, callableInlinedDecorators, importsRequired)
@@ -0,0 +1,19 @@
1
+ from mapFolding import getPathFilenameFoldsTotal
2
+ from mapFolding import outfitCountFolds
3
+ from typing import Any, Optional, Sequence, Type
4
+ import pathlib
5
+ import pickle
6
+
7
+ def makeStateJob(listDimensions: Sequence[int], **keywordArguments: Optional[Type[Any]]) -> pathlib.Path:
8
+ from syntheticModules import countInitialize
9
+ stateUniversal = outfitCountFolds(listDimensions, computationDivisions=None, CPUlimit=None, **keywordArguments)
10
+ countInitialize(stateUniversal['connectionGraph'], stateUniversal['gapsWhere'], stateUniversal['my'], stateUniversal['track'])
11
+
12
+ pathFilenameChopChop = getPathFilenameFoldsTotal(stateUniversal['mapShape'])
13
+ suffix = pathFilenameChopChop.suffix
14
+ pathJob = pathlib.Path(str(pathFilenameChopChop)[0:-len(suffix)])
15
+ pathJob.mkdir(parents=True, exist_ok=True)
16
+ pathFilenameJob = pathJob / 'stateJob.pkl'
17
+
18
+ pathFilenameJob.write_bytes(pickle.dumps(stateUniversal))
19
+ return pathFilenameJob
@@ -1,10 +1,12 @@
1
- from mapFolding import getPathFilenameFoldsTotal, dtypeNumpyDefaults, thisSeemsVeryComplicated
2
- from mapFolding import make_dtype, datatypeLarge, dtypeLarge, datatypeMedium, dtypeMedium, datatypeSmall, dtypeSmall
3
- from mapFolding import outfitCountFolds, computationState, indexMy, indexTrack
4
- from someAssemblyRequired import countInitialize, countSequential
5
- from typing import Any, Optional, Sequence, Type
1
+ from mapFolding import getPathFilenameFoldsTotal
2
+ from mapFolding import make_dtype, datatypeLargeDEFAULT, datatypeMediumDEFAULT, datatypeSmallDEFAULT, datatypeModuleDEFAULT
3
+ from mapFolding import computationState
4
+ from someAssemblyRequired import makeStateJob
5
+ from typing import Optional
6
6
  import more_itertools
7
7
  import inspect
8
+ import importlib
9
+ import importlib.util
8
10
  import numpy
9
11
  import pathlib
10
12
  import pickle
@@ -12,20 +14,7 @@ import python_minifier
12
14
 
13
15
  identifierCallableLaunch = "goGoGadgetAbsurdity"
14
16
 
15
- def makeStateJob(listDimensions: Sequence[int], **keywordArguments: Optional[Type[Any]]):
16
- stateUniversal = outfitCountFolds(listDimensions, computationDivisions=None, CPUlimit=None, **keywordArguments)
17
- countInitialize(stateUniversal['connectionGraph'], stateUniversal['gapsWhere'], stateUniversal['my'], stateUniversal['track'])
18
-
19
- pathFilenameChopChop = getPathFilenameFoldsTotal(stateUniversal['mapShape'])
20
- suffix = pathFilenameChopChop.suffix
21
- pathJob = pathlib.Path(str(pathFilenameChopChop)[0:-len(suffix)])
22
- pathJob.mkdir(parents=True, exist_ok=True)
23
- pathFilenameJob = pathJob / 'stateJob.pkl'
24
-
25
- pathFilenameJob.write_bytes(pickle.dumps(stateUniversal))
26
- return pathFilenameJob
27
-
28
- def convertNDArrayToStr(arrayTarget: numpy.ndarray, identifierName: str) -> str:
17
+ def makeStrRLEcompacted(arrayTarget: numpy.ndarray, identifierName: str) -> str:
29
18
  def process_nested_array(arraySlice):
30
19
  if isinstance(arraySlice, numpy.ndarray) and arraySlice.ndim > 1:
31
20
  return [process_nested_array(arraySlice[index]) for index in range(arraySlice.shape[0])]
@@ -54,22 +43,25 @@ def convertNDArrayToStr(arrayTarget: numpy.ndarray, identifierName: str) -> str:
54
43
  return f"{identifierName} = numpy.array({stringMinimized}, dtype=numpy.{arrayTarget.dtype})"
55
44
 
56
45
  def writeModuleWithNumba(listDimensions, **keywordArguments: Optional[str]) -> pathlib.Path:
57
- datatypeLargeAsStr = keywordArguments.get('datatypeLarge', thisSeemsVeryComplicated.datatypeLarge)
58
- datatypeMediumAsStr = keywordArguments.get('datatypeMedium', thisSeemsVeryComplicated.datatypeMedium)
59
- datatypeSmallAsStr = keywordArguments.get('datatypeSmall', thisSeemsVeryComplicated.datatypeSmall)
46
+ datatypeLarge = keywordArguments.get('datatypeLarge', datatypeLargeDEFAULT)
47
+ datatypeMedium = keywordArguments.get('datatypeMedium', datatypeMediumDEFAULT)
48
+ datatypeSmall = keywordArguments.get('datatypeSmall', datatypeSmallDEFAULT)
49
+ datatypeModule = keywordArguments.get('datatypeModule', datatypeModuleDEFAULT)
60
50
 
61
- numpy_dtypeLarge = make_dtype(datatypeLargeAsStr) # type: ignore
62
- numpy_dtypeMedium = make_dtype(datatypeMediumAsStr) # type: ignore
63
- numpy_dtypeSmall = make_dtype(datatypeSmallAsStr) # type: ignore
51
+ dtypeLarge = make_dtype(datatypeLarge, datatypeModule) # type: ignore
52
+ dtypeMedium = make_dtype(datatypeMedium, datatypeModule) # type: ignore
53
+ dtypeSmall = make_dtype(datatypeSmall, datatypeModule) # type: ignore
64
54
 
65
- pathFilenameJob = makeStateJob(listDimensions, dtypeLarge = numpy_dtypeLarge, dtypeMedium = numpy_dtypeMedium, dtypeSmall = numpy_dtypeSmall)
55
+ pathFilenameJob = makeStateJob(listDimensions, dtypeLarge = dtypeLarge, dtypeMedium = dtypeMedium, dtypeSmall = dtypeSmall)
66
56
  stateJob: computationState = pickle.loads(pathFilenameJob.read_bytes())
67
57
  pathFilenameFoldsTotal = getPathFilenameFoldsTotal(stateJob['mapShape'], pathFilenameJob.parent)
68
58
 
69
- codeSource = inspect.getsource(countSequential)
59
+ from syntheticModules import countSequential
60
+ algorithmSource = countSequential
61
+ codeSource = inspect.getsource(algorithmSource)
70
62
 
71
63
  # forceinline=True might actually be useful
72
- parametersNumba = f"numba.types.{datatypeLargeAsStr}(), \
64
+ parametersNumba = f"numba.types.{datatypeLarge}(), \
73
65
  cache=True, \
74
66
  nopython=True, \
75
67
  fastmath=True, \
@@ -96,14 +88,14 @@ no_cpython_wrapper=False, \
96
88
  ImaIndent = ' '
97
89
  linesDataDynamic = """"""
98
90
  linesDataDynamic = "\n".join([linesDataDynamic
99
- , ImaIndent + f"foldsTotal = numba.types.{datatypeLargeAsStr}(0)"
100
- , ImaIndent + convertNDArrayToStr(stateJob['foldGroups'], 'foldGroups')
101
- , ImaIndent + convertNDArrayToStr(stateJob['gapsWhere'], 'gapsWhere')
91
+ , ImaIndent + f"foldsTotal = numba.types.{datatypeLarge}(0)"
92
+ , ImaIndent + makeStrRLEcompacted(stateJob['foldGroups'], 'foldGroups')
93
+ , ImaIndent + makeStrRLEcompacted(stateJob['gapsWhere'], 'gapsWhere')
102
94
  ])
103
95
 
104
96
  linesDataStatic = """"""
105
97
  linesDataStatic = "\n".join([linesDataStatic
106
- , ImaIndent + convertNDArrayToStr(stateJob['connectionGraph'], 'connectionGraph')
98
+ , ImaIndent + makeStrRLEcompacted(stateJob['connectionGraph'], 'connectionGraph')
107
99
  ])
108
100
 
109
101
  my = stateJob['my']
@@ -127,7 +119,7 @@ no_cpython_wrapper=False, \
127
119
  elif 'track[indexTrack.' in lineSource:
128
120
  # leafAbove = track[indexTrack.leafAbove.value]
129
121
  identifier, statement = lineSource.split('=')
130
- lineSource = ImaIndent + convertNDArrayToStr(eval(statement.strip()), identifier.strip())
122
+ lineSource = ImaIndent + makeStrRLEcompacted(eval(statement.strip()), identifier.strip())
131
123
 
132
124
  linesAlgorithm = "\n".join([linesAlgorithm
133
125
  , lineSource
@@ -163,8 +155,16 @@ if __name__ == '__main__':
163
155
  return pathFilenameDestination
164
156
 
165
157
  if __name__ == '__main__':
166
- listDimensions = [3,15]
158
+ listDimensions = [6,6]
167
159
  datatypeLarge = 'int64'
168
160
  datatypeMedium = 'uint8'
169
161
  datatypeSmall = datatypeMedium
170
- writeModuleWithNumba(listDimensions, datatypeLarge=datatypeLarge, datatypeMedium=datatypeMedium, datatypeSmall=datatypeSmall)
162
+ pathFilenameModule = writeModuleWithNumba(listDimensions, datatypeLarge=datatypeLarge, datatypeMedium=datatypeMedium, datatypeSmall=datatypeSmall)
163
+ # Induce numba.jit compilation
164
+ moduleSpec = importlib.util.spec_from_file_location(pathFilenameModule.stem, pathFilenameModule)
165
+ if moduleSpec is None:
166
+ raise ImportError(f"Could not load module specification from {pathFilenameModule}")
167
+ module = importlib.util.module_from_spec(moduleSpec)
168
+ if moduleSpec.loader is None:
169
+ raise ImportError(f"Could not load module from {moduleSpec}")
170
+ moduleSpec.loader.exec_module(module)
@@ -1,18 +1,10 @@
1
- from mapFolding import indexMy, indexTrack, theDao, datatypeMedium, datatypeLarge, datatypeSmall
2
- import ast
1
+ from mapFolding import indexMy, indexTrack, getAlgorithmSource
2
+ from mapFolding import datatypeLargeDEFAULT, datatypeMediumDEFAULT, datatypeSmallDEFAULT
3
+ from someAssemblyRequired import makeInlineFunction
3
4
  import pathlib
4
5
  import inspect
5
6
 
6
- algorithmSource = theDao
7
-
8
- dictionaryDecorators={
9
- 'countInitialize':
10
- f'@numba.jit((numba.{datatypeSmall}[:,:,::1], numba.{datatypeMedium}[::1], numba.{datatypeSmall}[::1], numba.{datatypeMedium}[:,::1]), parallel=False, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)\n',
11
- 'countParallel':
12
- f'@numba.jit((numba.{datatypeSmall}[:,:,::1], numba.{datatypeLarge}[::1], numba.{datatypeMedium}[::1], numba.{datatypeSmall}[::1], numba.{datatypeMedium}[:,::1]), parallel=True, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)\n',
13
- 'countSequential':
14
- f'@numba.jit((numba.{datatypeSmall}[:,:,::1], numba.{datatypeLarge}[::1], numba.{datatypeMedium}[::1], numba.{datatypeSmall}[::1], numba.{datatypeMedium}[:,::1]), parallel=False, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)\n',
15
- }
7
+ algorithmSource = getAlgorithmSource()
16
8
 
17
9
  def getDictionaryEnumValues():
18
10
  dictionaryEnumValues = {}
@@ -21,110 +13,6 @@ def getDictionaryEnumValues():
21
13
  dictionaryEnumValues[f"{enumIndex.__name__}.{memberName}.value"] = memberValue.value
22
14
  return dictionaryEnumValues
23
15
 
24
- class RecursiveInlinerWithEnum(ast.NodeTransformer):
25
- """Process AST nodes to inline functions and substitute enum values.
26
- Also handles function decorators during inlining."""
27
-
28
- def __init__(self, dictionaryFunctions, dictionaryEnumValues):
29
- self.dictionaryFunctions = dictionaryFunctions
30
- self.dictionaryEnumValues = dictionaryEnumValues
31
- self.processed = set()
32
-
33
- def inlineFunctionBody(self, functionName):
34
- if functionName in self.processed:
35
- return None
36
-
37
- self.processed.add(functionName)
38
- inlineDefinition = self.dictionaryFunctions[functionName]
39
- # Recursively process the function body
40
- for node in ast.walk(inlineDefinition):
41
- self.visit(node)
42
- return inlineDefinition
43
-
44
- def visit_Attribute(self, node):
45
- # Substitute enum identifiers (e.g., indexMy.leaf1ndex.value)
46
- if isinstance(node.value, ast.Attribute) and isinstance(node.value.value, ast.Name):
47
- enumPath = f"{node.value.value.id}.{node.value.attr}.{node.attr}"
48
- if enumPath in self.dictionaryEnumValues:
49
- return ast.Constant(value=self.dictionaryEnumValues[enumPath])
50
- return self.generic_visit(node)
51
-
52
- def visit_Call(self, node):
53
- callNode = self.generic_visit(node)
54
- if isinstance(callNode, ast.Call) and isinstance(callNode.func, ast.Name) and callNode.func.id in self.dictionaryFunctions:
55
- inlineDefinition = self.inlineFunctionBody(callNode.func.id)
56
- if (inlineDefinition and inlineDefinition.body):
57
- lastStmt = inlineDefinition.body[-1]
58
- if isinstance(lastStmt, ast.Return) and lastStmt.value is not None:
59
- return self.visit(lastStmt.value)
60
- elif isinstance(lastStmt, ast.Expr) and lastStmt.value is not None:
61
- return self.visit(lastStmt.value)
62
- return None
63
- return callNode
64
-
65
- def visit_Expr(self, node):
66
- if isinstance(node.value, ast.Call):
67
- if isinstance(node.value.func, ast.Name) and node.value.func.id in self.dictionaryFunctions:
68
- inlineDefinition = self.inlineFunctionBody(node.value.func.id)
69
- if inlineDefinition:
70
- return [self.visit(stmt) for stmt in inlineDefinition.body]
71
- return self.generic_visit(node)
72
-
73
- def findRequiredImports(node):
74
- """Find all modules that need to be imported based on AST analysis.
75
- NOTE: due to hardcoding, this is a glorified regex. No, wait, this is less versatile than regex."""
76
- requiredImports = set()
77
-
78
- class ImportFinder(ast.NodeVisitor):
79
- def visit_Name(self, node):
80
- if node.id in {'numba'}:
81
- requiredImports.add(node.id)
82
- self.generic_visit(node)
83
-
84
- def visitDecorator(self, node):
85
- if isinstance(node, ast.Call) and isinstance(node.func, ast.Name):
86
- if node.func.id == 'jit':
87
- requiredImports.add('numba')
88
- self.generic_visit(node)
89
-
90
- ImportFinder().visit(node)
91
- return requiredImports
92
-
93
- def generateImports(requiredImports):
94
- """Generate import statements based on required modules."""
95
- importStatements = {'import numba', 'from mapFolding import indexMy, indexTrack'}
96
-
97
- importMapping = {
98
- 'numba': 'import numba',
99
- }
100
-
101
- for moduleName in sorted(requiredImports):
102
- if moduleName in importMapping:
103
- importStatements.add(importMapping[moduleName])
104
-
105
- return '\n'.join(importStatements)
106
-
107
- def inlineFunctions(sourceCode, targetFunctionName, dictionaryEnumValues, skipEnum=False):
108
- if skipEnum:
109
- dictionaryEnumValues = {}
110
- dictionaryParsed = ast.parse(sourceCode)
111
- dictionaryFunctions = {
112
- element.name: element
113
- for element in dictionaryParsed.body
114
- if isinstance(element, ast.FunctionDef)
115
- }
116
- nodeTarget = dictionaryFunctions[targetFunctionName]
117
- nodeInliner = RecursiveInlinerWithEnum(dictionaryFunctions, dictionaryEnumValues)
118
- nodeInlined = nodeInliner.visit(nodeTarget)
119
- ast.fix_missing_locations(nodeInlined)
120
-
121
- requiredImports = findRequiredImports(nodeInlined)
122
- importStatements = generateImports(requiredImports)
123
-
124
- lineNumbaDecorator = dictionaryDecorators[targetFunctionName]
125
- inlinedCode = importStatements + '\n\n' + lineNumbaDecorator + ast.unparse(ast.Module(body=[nodeInlined], type_ignores=[]))
126
- return inlinedCode
127
-
128
16
  def unpackArrays(codeInlined: str, callableTarget: str) -> str:
129
17
  dictionaryReplaceScalars = {
130
18
  'my[indexMy.dimensionsTotal.value]': 'dimensionsTotal',
@@ -166,7 +54,10 @@ def unpackArrays(codeInlined: str, callableTarget: str) -> str:
166
54
 
167
55
  return codeInlined
168
56
 
169
- def Z0Z_inlineMapFolding():
57
+ def inlineMapFoldingNumba(**keywordArguments):
58
+ datatypeLarge = keywordArguments.get('datatypeLarge', datatypeLargeDEFAULT)
59
+ datatypeMedium = keywordArguments.get('datatypeMedium', datatypeMediumDEFAULT)
60
+ datatypeSmall = keywordArguments.get('datatypeSmall', datatypeSmallDEFAULT)
170
61
  dictionaryEnumValues = getDictionaryEnumValues()
171
62
  codeSource = inspect.getsource(algorithmSource)
172
63
  pathFilenameAlgorithm = pathlib.Path(inspect.getfile(algorithmSource))
@@ -177,11 +68,11 @@ def Z0Z_inlineMapFolding():
177
68
  for callableTarget in listCallables:
178
69
  skipEnum = (callableTarget == 'countInitialize')
179
70
  skipEnum = (callableTarget == 'countSequential')
180
- pathFilenameDestination = pathFilenameAlgorithm.parent / "someAssemblyRequired" / pathFilenameAlgorithm.with_stem(callableTarget).name
181
- codeInlined = inlineFunctions(codeSource, callableTarget, dictionaryEnumValues, skipEnum)
71
+ pathFilenameDestination = pathFilenameAlgorithm.parent / "syntheticModules" / pathFilenameAlgorithm.with_stem(callableTarget).name
72
+ codeInlined, callableInlinedDecorators, importsRequired = makeInlineFunction(codeSource, callableTarget, dictionaryEnumValues, skipEnum, datatypeLarge=datatypeLarge, datatypeMedium=datatypeMedium, datatypeSmall=datatypeSmall)
182
73
  codeUnpacked = unpackArrays(codeInlined, callableTarget)
183
- pathFilenameDestination.write_text(codeUnpacked)
74
+ pathFilenameDestination.write_text(importsRequired + "\n" + codeUnpacked)
184
75
  listPathFilenamesDestination.append(pathFilenameDestination)
185
76
 
186
77
  if __name__ == '__main__':
187
- Z0Z_inlineMapFolding()
78
+ inlineMapFoldingNumba()
@@ -0,0 +1,3 @@
1
+ from .countSequential import countSequential
2
+ from .countParallel import countParallel
3
+ from .countInitialize import countInitialize
@@ -1,6 +1,5 @@
1
1
  from mapFolding import indexMy, indexTrack
2
2
  import numba
3
-
4
3
  @numba.jit((numba.uint8[:,:,::1], numba.uint8[::1], numba.uint8[::1], numba.uint8[:,::1]), parallel=False, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)
5
4
  def countInitialize(connectionGraph, gapsWhere, my, track):
6
5
  while my[7] > 0:
@@ -1,6 +1,5 @@
1
1
  from mapFolding import indexMy, indexTrack
2
2
  import numba
3
-
4
3
  @numba.jit((numba.uint8[:,:,::1], numba.int64[::1], numba.uint8[::1], numba.uint8[::1], numba.uint8[:,::1]), parallel=True, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)
5
4
  def countParallel(connectionGraph, foldGroups, gapsWherePARALLEL, myPARALLEL, trackPARALLEL):
6
5
  for indexSherpa in numba.prange(myPARALLEL[9]):
@@ -1,6 +1,5 @@
1
1
  from mapFolding import indexMy, indexTrack
2
2
  import numba
3
-
4
3
  @numba.jit((numba.uint8[:,:,::1], numba.int64[::1], numba.uint8[::1], numba.uint8[::1], numba.uint8[:,::1]), parallel=False, boundscheck=False, cache=True, error_model="numpy", fastmath=True, looplift=False, nogil=True, nopython=True)
5
4
  def countSequential(connectionGraph, foldGroups, gapsWhere, my, track):
6
5
  doFindGaps = True
@@ -1,22 +0,0 @@
1
- benchmarks/benchmarking.py,sha256=HD_0NSvuabblg94ftDre6LFnXShTe8MYj3hIodW-zV0,3076
2
- reference/flattened.py,sha256=6blZ2Y9G8mu1F3gV8SKndPE398t2VVFlsgKlyeJ765A,16538
3
- reference/hunterNumba.py,sha256=HWndRgsajOf76rbb2LDNEZ6itsdYbyV-k3wgOFjeR6c,7104
4
- reference/irvineJavaPort.py,sha256=Sj-63Z-OsGuDoEBXuxyjRrNmmyl0d7Yz_XuY7I47Oyg,4250
5
- reference/jax.py,sha256=rojyK80lOATtbzxjGOHWHZngQa47CXCLJHZwIdN2MwI,14955
6
- reference/lunnan.py,sha256=XEcql_gxvCCghb6Or3qwmPbn4IZUbZTaSmw_fUjRxZE,5037
7
- reference/lunnanNumpy.py,sha256=HqDgSwTOZA-G0oophOEfc4zs25Mv4yw2aoF1v8miOLk,4653
8
- reference/lunnanWhile.py,sha256=7NY2IKO5XBgol0aWWF_Fi-7oTL9pvu_z6lB0TF1uVHk,4063
9
- reference/rotatedEntryPoint.py,sha256=z0QyDQtnMvXNj5ntWzzJUQUMFm1-xHGLVhtYzwmczUI,11530
10
- reference/total_countPlus1vsPlusN.py,sha256=usenM8Yn_G1dqlPl7NKKkcnbohBZVZBXTQRm2S3_EDA,8106
11
- someAssemblyRequired/__init__.py,sha256=nDtS5UFMKN-F5pTp0qKA0J0I-XR3n3OFxV2bosieBu8,131
12
- someAssemblyRequired/countInitialize.py,sha256=hwo9SW_IvB-bgKNfaGvjl40yayFEmZZmeywiEMDSQDw,1840
13
- someAssemblyRequired/countParallel.py,sha256=4MfRYLBA2IBxRiXb04voNcxSDAtmZOe7lrji1c3kFls,2560
14
- someAssemblyRequired/countSequential.py,sha256=8YILeL3rflOhW1ts78ZSgYkPYXMPfusYOPkPtf8Xa3M,3217
15
- someAssemblyRequired/getLLVMforNoReason.py,sha256=FtJzw2pZS3A4NimWdZsegXaU-vKeCw8m67kcfb5wvGM,894
16
- someAssemblyRequired/synthesizeJob.py,sha256=xrcEW-QQPKogYh3O0TaRBSZEd8HgMLtXBTeS0Ps_pns,7500
17
- someAssemblyRequired/synthesizeModules.py,sha256=4mDgzfhm36zIDT8LlcPZzfGfoxRi1Z5rb4rgkAWVtkQ,8625
18
- mapFolding-0.3.2.dist-info/METADATA,sha256=ejEa_RncO5HszEWrbPK7VdUPEvJaufxfQVVsLm46fdA,7526
19
- mapFolding-0.3.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
20
- mapFolding-0.3.2.dist-info/entry_points.txt,sha256=F3OUeZR1XDTpoH7k3wXuRb3KF_kXTTeYhu5AGK1SiOQ,146
21
- mapFolding-0.3.2.dist-info/top_level.txt,sha256=yHhQq-bIJhB4pZcof5hXDTIjan0nxcFuOEWb7gy1DuU,42
22
- mapFolding-0.3.2.dist-info/RECORD,,