mapFolding 0.3.12__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mapFolding/__init__.py +40 -38
- mapFolding/basecamp.py +50 -50
- mapFolding/beDRY.py +336 -336
- mapFolding/oeis.py +262 -262
- mapFolding/reference/flattened.py +294 -293
- mapFolding/reference/hunterNumba.py +126 -126
- mapFolding/reference/irvineJavaPort.py +99 -99
- mapFolding/reference/jax.py +153 -153
- mapFolding/reference/lunnan.py +148 -148
- mapFolding/reference/lunnanNumpy.py +115 -115
- mapFolding/reference/lunnanWhile.py +114 -114
- mapFolding/reference/rotatedEntryPoint.py +183 -183
- mapFolding/reference/total_countPlus1vsPlusN.py +203 -203
- mapFolding/someAssemblyRequired/__init__.py +5 -1
- mapFolding/someAssemblyRequired/getLLVMforNoReason.py +12 -12
- mapFolding/someAssemblyRequired/makeJob.py +46 -52
- mapFolding/someAssemblyRequired/synthesizeModuleJAX.py +17 -17
- mapFolding/someAssemblyRequired/synthesizeNumba.py +343 -633
- mapFolding/someAssemblyRequired/synthesizeNumbaGeneralized.py +325 -0
- mapFolding/someAssemblyRequired/synthesizeNumbaJob.py +173 -0
- mapFolding/someAssemblyRequired/synthesizeNumbaModules.py +77 -0
- mapFolding/syntheticModules/__init__.py +0 -0
- mapFolding/syntheticModules/numba_countInitialize.py +4 -4
- mapFolding/syntheticModules/numba_countParallel.py +4 -4
- mapFolding/syntheticModules/numba_countSequential.py +4 -4
- mapFolding/syntheticModules/numba_doTheNeedful.py +7 -7
- mapFolding/theDao.py +165 -165
- mapFolding/theSSOT.py +177 -173
- mapFolding/theSSOTnumba.py +90 -74
- mapFolding-0.4.1.dist-info/METADATA +154 -0
- mapFolding-0.4.1.dist-info/RECORD +42 -0
- tests/conftest.py +253 -129
- tests/test_computations.py +79 -0
- tests/test_oeis.py +76 -85
- tests/test_other.py +136 -224
- tests/test_tasks.py +19 -23
- tests/test_types.py +2 -2
- mapFolding/someAssemblyRequired/synthesizeNumbaHardcoding.py +0 -188
- mapFolding-0.3.12.dist-info/METADATA +0 -155
- mapFolding-0.3.12.dist-info/RECORD +0 -40
- tests/conftest_tmpRegistry.py +0 -62
- tests/conftest_uniformTests.py +0 -53
- {mapFolding-0.3.12.dist-info → mapFolding-0.4.1.dist-info}/LICENSE +0 -0
- {mapFolding-0.3.12.dist-info → mapFolding-0.4.1.dist-info}/WHEEL +0 -0
- {mapFolding-0.3.12.dist-info → mapFolding-0.4.1.dist-info}/entry_points.txt +0 -0
- {mapFolding-0.3.12.dist-info → mapFolding-0.4.1.dist-info}/top_level.txt +0 -0
mapFolding/reference/lunnan.py
CHANGED
|
@@ -3,151 +3,151 @@ An unnecessarily literal translation of the original Atlas Autocode code by W. F
|
|
|
3
3
|
W. F. Lunnon, Multi-dimensional map-folding, The Computer Journal, Volume 14, Issue 1, 1971, Pages 75-80, https://doi.org/10.1093/comjnl/14.1.75
|
|
4
4
|
"""# NOTE not functional yet
|
|
5
5
|
def foldings(p, job=None):
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
6
|
+
"""An unnecessarily literal translation of the original Atlas Autocode code."""
|
|
7
|
+
p = list(p)
|
|
8
|
+
p.append(None) # NOTE mimics Atlas `array` type
|
|
9
|
+
p.insert(0, None) # NOTE mimics Atlas `array` type
|
|
10
|
+
|
|
11
|
+
if job is None:
|
|
12
|
+
global G
|
|
13
|
+
G = 0
|
|
14
|
+
def job(A, B):
|
|
15
|
+
global G
|
|
16
|
+
G = G + 1
|
|
17
|
+
return foldings(p, job)
|
|
18
|
+
# perform job (A, B) on each folding of a p[1] x ... x p[d] map,
|
|
19
|
+
# where A and B are the above and below vectors. p[d + 1] < 0 terminates p;
|
|
20
|
+
|
|
21
|
+
d: int
|
|
22
|
+
n: int
|
|
23
|
+
j: int
|
|
24
|
+
i: int
|
|
25
|
+
m: int
|
|
26
|
+
l: int
|
|
27
|
+
g: int
|
|
28
|
+
gg: int
|
|
29
|
+
dd: int
|
|
30
|
+
|
|
31
|
+
n = 1
|
|
32
|
+
i, d = 0, 0
|
|
33
|
+
|
|
34
|
+
while (i := i + 1) and p[i] is not None:
|
|
35
|
+
d = i
|
|
36
|
+
n = n * p[i]
|
|
37
|
+
|
|
38
|
+
# d dimensions and n leaves;
|
|
39
|
+
|
|
40
|
+
# A: list[int] = [None] * (n + 1) # type: ignore
|
|
41
|
+
# B: list[int] = [None] * (n + 1) # type: ignore
|
|
42
|
+
# count: list[int] = [None] * (n + 1) # type: ignore
|
|
43
|
+
# gapter: list[int] = [None] * (n + 1) # type: ignore
|
|
44
|
+
# gap: list[int] = [None] * (n * n + 1) # type: ignore
|
|
45
|
+
A: list[int] = [0] * (n + 1) # type: ignore
|
|
46
|
+
B: list[int] = [0] * (n + 1) # type: ignore
|
|
47
|
+
count: list[int] = [0] * (n + 1) # type: ignore
|
|
48
|
+
gapter: list[int] = [0] * (n + 1) # type: ignore
|
|
49
|
+
gap: list[int] = [0] * (n * n + 1) # type: ignore
|
|
50
|
+
|
|
51
|
+
# B[m] is the leaf below leaf m in the current folding,
|
|
52
|
+
# A[m] the leaf above. count[m] is the no. of sections in which
|
|
53
|
+
# there is a gap for the new leaf l below leaf m,
|
|
54
|
+
# gap[gapter[l - 1] + j] is the j-th (possible or actual) gap for leaf l,
|
|
55
|
+
# and later gap[gapter[l]] is the gap where leaf l is currently inserted;
|
|
56
|
+
|
|
57
|
+
P: list[int] = [0] * (d + 1) # type: ignore
|
|
58
|
+
C: list[list[int]] = [[0] * (n + 1) for dimension1 in range(d + 1)] # type: ignore
|
|
59
|
+
# D: list[list[list[int]]] = [[[None] * (n + 1) for dimension2 in range(n + 1)] for dimension1 in range(d + 1)] # type: ignore
|
|
60
|
+
D: list[list[list[int]]] = [[[0] * (n + 1) for dimension2 in range(n + 1)] for dimension1 in range(d + 1)]
|
|
61
|
+
|
|
62
|
+
P[0] = 1
|
|
63
|
+
for i in range(1, d + 1):
|
|
64
|
+
P[i] = P[i - 1] * p[i]
|
|
65
|
+
|
|
66
|
+
for i in range(1, d + 1):
|
|
67
|
+
for m in range(1, n + 1):
|
|
68
|
+
C[i][m] = ((m - 1) // P[i - 1]) - ((m - 1) // P[i]) * p[i] + 1
|
|
69
|
+
|
|
70
|
+
for i in range(1, d + 1):
|
|
71
|
+
for l in range(1, n + 1):
|
|
72
|
+
for m in range(1, l + 1):
|
|
73
|
+
D[i][l][m] = (0 if m == 0
|
|
74
|
+
else
|
|
75
|
+
((m if C[i][m] == 1
|
|
76
|
+
else m - P[i - 1])
|
|
77
|
+
if C[i][l] - C[i][m] == (C[i][l] - C[i][m]) // 2 * 2
|
|
78
|
+
else
|
|
79
|
+
(m if C[i][m] == p[i] or m + P[i - 1] > l
|
|
80
|
+
else m + P[i - 1])))
|
|
81
|
+
# P[i] = p[1] x ... x p[i], C[i][m] = i-th co-ordinate of leaf m,
|
|
82
|
+
# D[i][l][m] = leaf connected to m in section i when inserting l;
|
|
83
|
+
|
|
84
|
+
for m in range(n + 1):
|
|
85
|
+
count[m] = 0
|
|
86
|
+
|
|
87
|
+
A[0], B[0], g, l = 0, 0, 0, 0
|
|
88
|
+
|
|
89
|
+
state = 'entry'
|
|
90
|
+
while True:
|
|
91
|
+
if state == 'entry':
|
|
92
|
+
gapter[l] = g
|
|
93
|
+
l = l + 1
|
|
94
|
+
if l <= n:
|
|
95
|
+
state = 'down'
|
|
96
|
+
continue
|
|
97
|
+
else:
|
|
98
|
+
job(A, B)
|
|
99
|
+
state = 'up'
|
|
100
|
+
continue
|
|
101
|
+
|
|
102
|
+
elif state == 'down':
|
|
103
|
+
dd = 0
|
|
104
|
+
gg = gapter[l - 1]
|
|
105
|
+
g = gg
|
|
106
|
+
for i in range(1, d + 1):
|
|
107
|
+
if D[i][l][l] == l:
|
|
108
|
+
dd = dd + 1
|
|
109
|
+
else:
|
|
110
|
+
m = D[i][l][l]
|
|
111
|
+
while m != l:
|
|
112
|
+
gap[gg] = m
|
|
113
|
+
if count[m] == 0:
|
|
114
|
+
gg = gg + 1
|
|
115
|
+
count[m] = count[m] + 1
|
|
116
|
+
m = D[i][l][B[m]]
|
|
117
|
+
|
|
118
|
+
if dd == d:
|
|
119
|
+
for m in range(l):
|
|
120
|
+
gap[gg] = m
|
|
121
|
+
gg = gg + 1
|
|
122
|
+
|
|
123
|
+
for j in range(g, gg):
|
|
124
|
+
gap[g] = gap[j]
|
|
125
|
+
if count[gap[j]] == d - dd:
|
|
126
|
+
g = g + 1
|
|
127
|
+
count[gap[j]] = 0
|
|
128
|
+
state = 'along'
|
|
129
|
+
continue
|
|
130
|
+
|
|
131
|
+
elif state == 'along':
|
|
132
|
+
if g == gapter[l - 1]:
|
|
133
|
+
state = 'up'
|
|
134
|
+
continue
|
|
135
|
+
g = g - 1
|
|
136
|
+
A[l] = gap[g]
|
|
137
|
+
B[l] = B[A[l]]
|
|
138
|
+
B[A[l]] = l
|
|
139
|
+
A[B[l]] = l
|
|
140
|
+
state = 'entry'
|
|
141
|
+
continue
|
|
142
|
+
|
|
143
|
+
elif state == 'up':
|
|
144
|
+
l = l - 1
|
|
145
|
+
B[A[l]] = B[l]
|
|
146
|
+
A[B[l]] = A[l]
|
|
147
|
+
if l > 0:
|
|
148
|
+
state = 'along'
|
|
149
|
+
continue
|
|
150
|
+
else:
|
|
151
|
+
break
|
|
152
|
+
|
|
153
|
+
return G #if job.__closure__ else None
|
|
@@ -6,118 +6,118 @@ from typing import List
|
|
|
6
6
|
import numpy
|
|
7
7
|
|
|
8
8
|
def foldings(p: List[int]) -> int:
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
9
|
+
"""
|
|
10
|
+
Run loop with (A, B) on each folding of a p[1] x ... x p[d] map, where A and B are the above and below vectors.
|
|
11
|
+
|
|
12
|
+
Parameters:
|
|
13
|
+
p: A list of integers representing the dimensions of the map.
|
|
14
|
+
|
|
15
|
+
Returns:
|
|
16
|
+
G: The number of distinct foldings for the given map dimensions.
|
|
17
|
+
|
|
18
|
+
NOTE If there are fewer than two dimensions, any dimensions are not positive, or any dimensions are not integers, the output will be unreliable.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
g: int = 0
|
|
22
|
+
d: int = len(p)
|
|
23
|
+
n: int = 1
|
|
24
|
+
for i in range(d):
|
|
25
|
+
n = n * p[i]
|
|
26
|
+
|
|
27
|
+
# d dimensions and n leaves
|
|
28
|
+
|
|
29
|
+
A = numpy.zeros(n + 1, dtype=int)
|
|
30
|
+
B = numpy.zeros(n + 1, dtype=int)
|
|
31
|
+
count = numpy.zeros(n + 1, dtype=int)
|
|
32
|
+
gapter = numpy.zeros(n + 1, dtype=int)
|
|
33
|
+
gap = numpy.zeros(n * n + 1, dtype=int)
|
|
34
|
+
|
|
35
|
+
# B[m] is the leaf below leaf m in the current folding,
|
|
36
|
+
# A[m] the leaf above. count[m] is the no. of sections in which
|
|
37
|
+
# there is a gap for the new leaf l below leaf m,
|
|
38
|
+
# gap[gapter[l - 1] + j] is the j-th (possible or actual) gap for leaf l,
|
|
39
|
+
# and later gap[gapter[l]] is the gap where leaf l is currently inserted
|
|
40
|
+
|
|
41
|
+
P = numpy.ones(d + 1, dtype=int)
|
|
42
|
+
C = numpy.zeros((d + 1, n + 1), dtype=int)
|
|
43
|
+
D = numpy.zeros((d + 1, n + 1, n + 1), dtype=int)
|
|
44
|
+
|
|
45
|
+
for i in range(1, d + 1):
|
|
46
|
+
P[i] = P[i - 1] * p[i - 1]
|
|
47
|
+
|
|
48
|
+
for i in range(1, d + 1):
|
|
49
|
+
for m in range(1, n + 1):
|
|
50
|
+
C[i][m] = ((m - 1) // P[i - 1]) % p[i - 1] + 1 # NOTE Because modulo is available, this statement is simpler.
|
|
51
|
+
|
|
52
|
+
for i in range(1, d + 1):
|
|
53
|
+
for l in range(1, n + 1):
|
|
54
|
+
for m in range(1, l + 1):
|
|
55
|
+
if C[i][l] - C[i][m] == (C[i][l] - C[i][m]) // 2 * 2:
|
|
56
|
+
if C[i][m] == 1:
|
|
57
|
+
D[i][l][m] = m
|
|
58
|
+
else:
|
|
59
|
+
D[i][l][m] = m - P[i - 1]
|
|
60
|
+
else:
|
|
61
|
+
if C[i][m] == p[i - 1] or m + P[i - 1] > l:
|
|
62
|
+
D[i][l][m] = m
|
|
63
|
+
else:
|
|
64
|
+
D[i][l][m] = m + P[i - 1]
|
|
65
|
+
# P[i] = p[1] x ... x p[i], C[i][m] = i-th co-ordinate of leaf m,
|
|
66
|
+
# D[i][l][m] = leaf connected to m in section i when inserting l;
|
|
67
|
+
|
|
68
|
+
G: int = 0
|
|
69
|
+
l: int = 1
|
|
70
|
+
|
|
71
|
+
# kick off with null folding
|
|
72
|
+
while l > 0:
|
|
73
|
+
if l <= 1 or B[0] == 1: # NOTE This statement is part of a significant divergence from the 1971 paper. As a result, this version is greater than one order of magnitude faster.
|
|
74
|
+
if l > n:
|
|
75
|
+
G = G + n # NOTE Due to `B[0] == 1`, this implementation increments the counted foldings in batches of `n`-many foldings, rather than immediately incrementing when a folding is found, i.e. `G = G + 1`
|
|
76
|
+
else:
|
|
77
|
+
dd: int = 0
|
|
78
|
+
gg: int = gapter[l - 1]
|
|
79
|
+
g = gg
|
|
80
|
+
# dd is the no. of sections in which l is unconstrained,
|
|
81
|
+
# gg the no. of possible and g the no. of actual gaps for l, + gapter[l - 1]
|
|
82
|
+
|
|
83
|
+
# find the possible gaps for leaf l in each section,
|
|
84
|
+
# then discard those not common to all. All possible if dd = d
|
|
85
|
+
for i in range(1, d + 1):
|
|
86
|
+
if D[i][l][l] == l:
|
|
87
|
+
dd = dd + 1
|
|
88
|
+
else:
|
|
89
|
+
m: int = D[i][l][l]
|
|
90
|
+
while m != l:
|
|
91
|
+
gap[gg] = m
|
|
92
|
+
if count[m] == 0:
|
|
93
|
+
gg = gg + 1
|
|
94
|
+
count[m] += 1
|
|
95
|
+
m = D[i][l][B[m]]
|
|
96
|
+
|
|
97
|
+
if dd == d:
|
|
98
|
+
for m in range(l):
|
|
99
|
+
gap[gg] = m
|
|
100
|
+
gg = gg + 1
|
|
101
|
+
|
|
102
|
+
for j in range(g, gg):
|
|
103
|
+
gap[g] = gap[j]
|
|
104
|
+
if count[gap[j]] == d - dd:
|
|
105
|
+
g = g + 1
|
|
106
|
+
count[gap[j]] = 0
|
|
107
|
+
|
|
108
|
+
# for each gap insert leaf l, [the main while loop shall progress],
|
|
109
|
+
# remove leaf l
|
|
110
|
+
while l > 0 and g == gapter[l - 1]:
|
|
111
|
+
l = l - 1
|
|
112
|
+
B[A[l]] = B[l]
|
|
113
|
+
A[B[l]] = A[l]
|
|
114
|
+
|
|
115
|
+
if l > 0:
|
|
116
|
+
g = g - 1
|
|
117
|
+
A[l] = gap[g]
|
|
118
|
+
B[l] = B[A[l]]
|
|
119
|
+
B[A[l]] = l
|
|
120
|
+
A[B[l]] = l
|
|
121
|
+
gapter[l] = g
|
|
122
|
+
l = l + 1
|
|
123
|
+
return G
|