mapFolding 0.3.12__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mapFolding/__init__.py +40 -38
- mapFolding/basecamp.py +50 -50
- mapFolding/beDRY.py +336 -336
- mapFolding/oeis.py +262 -262
- mapFolding/reference/flattened.py +294 -293
- mapFolding/reference/hunterNumba.py +126 -126
- mapFolding/reference/irvineJavaPort.py +99 -99
- mapFolding/reference/jax.py +153 -153
- mapFolding/reference/lunnan.py +148 -148
- mapFolding/reference/lunnanNumpy.py +115 -115
- mapFolding/reference/lunnanWhile.py +114 -114
- mapFolding/reference/rotatedEntryPoint.py +183 -183
- mapFolding/reference/total_countPlus1vsPlusN.py +203 -203
- mapFolding/someAssemblyRequired/__init__.py +2 -1
- mapFolding/someAssemblyRequired/getLLVMforNoReason.py +12 -12
- mapFolding/someAssemblyRequired/makeJob.py +48 -48
- mapFolding/someAssemblyRequired/synthesizeModuleJAX.py +17 -17
- mapFolding/someAssemblyRequired/synthesizeNumba.py +343 -633
- mapFolding/someAssemblyRequired/synthesizeNumbaGeneralized.py +371 -0
- mapFolding/someAssemblyRequired/synthesizeNumbaJob.py +150 -0
- mapFolding/someAssemblyRequired/synthesizeNumbaModules.py +75 -0
- mapFolding/syntheticModules/__init__.py +0 -0
- mapFolding/syntheticModules/numba_countInitialize.py +3 -3
- mapFolding/syntheticModules/numba_countParallel.py +3 -3
- mapFolding/syntheticModules/numba_countSequential.py +3 -3
- mapFolding/syntheticModules/numba_doTheNeedful.py +6 -6
- mapFolding/theDao.py +165 -165
- mapFolding/theSSOT.py +176 -172
- mapFolding/theSSOTnumba.py +90 -74
- mapFolding-0.4.0.dist-info/METADATA +122 -0
- mapFolding-0.4.0.dist-info/RECORD +41 -0
- tests/conftest.py +238 -128
- tests/test_oeis.py +80 -80
- tests/test_other.py +137 -224
- tests/test_tasks.py +21 -21
- tests/test_types.py +2 -2
- mapFolding/someAssemblyRequired/synthesizeNumbaHardcoding.py +0 -188
- mapFolding-0.3.12.dist-info/METADATA +0 -155
- mapFolding-0.3.12.dist-info/RECORD +0 -40
- tests/conftest_tmpRegistry.py +0 -62
- tests/conftest_uniformTests.py +0 -53
- {mapFolding-0.3.12.dist-info → mapFolding-0.4.0.dist-info}/LICENSE +0 -0
- {mapFolding-0.3.12.dist-info → mapFolding-0.4.0.dist-info}/WHEEL +0 -0
- {mapFolding-0.3.12.dist-info → mapFolding-0.4.0.dist-info}/entry_points.txt +0 -0
- {mapFolding-0.3.12.dist-info → mapFolding-0.4.0.dist-info}/top_level.txt +0 -0
mapFolding/beDRY.py
CHANGED
|
@@ -1,13 +1,13 @@
|
|
|
1
1
|
"""A relatively stable API for oft-needed functionality."""
|
|
2
2
|
from mapFolding import (
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
3
|
+
computationState,
|
|
4
|
+
getPathJobRootDEFAULT,
|
|
5
|
+
hackSSOTdtype,
|
|
6
|
+
indexMy,
|
|
7
|
+
indexTrack,
|
|
8
|
+
setDatatypeElephino,
|
|
9
|
+
setDatatypeFoldsTotal,
|
|
10
|
+
setDatatypeLeavesTotal,
|
|
11
11
|
)
|
|
12
12
|
from numpy import integer
|
|
13
13
|
from numpy.typing import DTypeLike, NDArray
|
|
@@ -20,357 +20,357 @@ import pathlib
|
|
|
20
20
|
import sys
|
|
21
21
|
|
|
22
22
|
def getFilenameFoldsTotal(mapShape: Union[Sequence[int], numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]]]) -> str:
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
23
|
+
"""Make a standardized filename for the computed value `foldsTotal`.
|
|
24
|
+
|
|
25
|
+
The filename takes into account
|
|
26
|
+
- the dimensions of the map, aka `mapShape`, aka `listDimensions`
|
|
27
|
+
- no spaces in the filename
|
|
28
|
+
- safe filesystem characters across platforms
|
|
29
|
+
- unique extension
|
|
30
|
+
- avoiding potential problems when Python is manipulating the filename, including
|
|
31
|
+
- treating the file stem as a valid Python identifier, such as
|
|
32
|
+
- not starting with a number
|
|
33
|
+
- not using reserved words
|
|
34
|
+
- no dashes or other special characters
|
|
35
|
+
- uh, I can't remember, but I found some frustrating edge limitations
|
|
36
|
+
- if 'p' is still the first character, I picked that because it was the original identifier for the map shape in Lunnan's code
|
|
37
|
+
|
|
38
|
+
Parameters:
|
|
39
|
+
mapShape: A sequence of integers representing the dimensions of the map (e.g., [3, 2] for a 3x2 map)
|
|
40
|
+
|
|
41
|
+
Returns:
|
|
42
|
+
filenameFoldsTotal: A filename string in format 'pNxM.foldsTotal' where N,M are sorted dimensions
|
|
43
|
+
"""
|
|
44
|
+
return 'p' + 'x'.join(str(dimension) for dimension in sorted(mapShape)) + '.foldsTotal'
|
|
45
45
|
|
|
46
46
|
def getLeavesTotal(listDimensions: Sequence[int]) -> int:
|
|
47
|
-
|
|
48
|
-
|
|
47
|
+
"""
|
|
48
|
+
How many leaves are in the map.
|
|
49
49
|
|
|
50
|
-
|
|
51
|
-
|
|
50
|
+
Parameters:
|
|
51
|
+
listDimensions: A list of integers representing dimensions.
|
|
52
52
|
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
53
|
+
Returns:
|
|
54
|
+
productDimensions: The product of all positive integer dimensions.
|
|
55
|
+
"""
|
|
56
|
+
listNonNegative = parseDimensions(listDimensions, 'listDimensions')
|
|
57
|
+
listPositive = [dimension for dimension in listNonNegative if dimension > 0]
|
|
58
58
|
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
59
|
+
if not listPositive:
|
|
60
|
+
return 0
|
|
61
|
+
else:
|
|
62
|
+
productDimensions = 1
|
|
63
|
+
for dimension in listPositive:
|
|
64
|
+
if dimension > sys.maxsize // productDimensions:
|
|
65
|
+
raise OverflowError(f"I received {dimension=} in {listDimensions=}, but the product of the dimensions exceeds the maximum size of an integer on this system.")
|
|
66
|
+
productDimensions *= dimension
|
|
67
67
|
|
|
68
|
-
|
|
68
|
+
return productDimensions
|
|
69
69
|
|
|
70
70
|
def getPathFilenameFoldsTotal(mapShape: Union[Sequence[int], numpy.ndarray[Tuple[int], numpy.dtype[integer[Any]]]], pathLikeWriteFoldsTotal: Optional[Union[str, os.PathLike[str]]] = None) -> pathlib.Path:
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
71
|
+
"""Get path for folds total file.
|
|
72
|
+
|
|
73
|
+
This function determines the file path for storing fold totals. If a path is provided,
|
|
74
|
+
it will use that path. If the path is a directory, it will append a default filename.
|
|
75
|
+
The function ensures the parent directory exists by creating it if necessary.
|
|
76
|
+
|
|
77
|
+
Parameters:
|
|
78
|
+
mapShape (Sequence[int]): List of dimensions for the map folding problem.
|
|
79
|
+
pathLikeWriteFoldsTotal (Union[str, os.PathLike[str]], optional): Path where to save
|
|
80
|
+
the folds total. Can be a file path or directory path. If None, uses default path.
|
|
81
|
+
Defaults to None.
|
|
82
|
+
|
|
83
|
+
Returns:
|
|
84
|
+
pathlib.Path: Complete path to the folds total file.
|
|
85
|
+
"""
|
|
86
|
+
pathFilenameFoldsTotal = pathlib.Path(pathLikeWriteFoldsTotal) if pathLikeWriteFoldsTotal is not None else getPathJobRootDEFAULT()
|
|
87
|
+
if pathFilenameFoldsTotal.is_dir():
|
|
88
|
+
filenameFoldsTotalDEFAULT = getFilenameFoldsTotal(mapShape)
|
|
89
|
+
pathFilenameFoldsTotal = pathFilenameFoldsTotal / filenameFoldsTotalDEFAULT
|
|
90
|
+
elif pathlib.Path(pathLikeWriteFoldsTotal).is_absolute(): # type: ignore
|
|
91
|
+
pathFilenameFoldsTotal = pathlib.Path(pathLikeWriteFoldsTotal) # type: ignore
|
|
92
|
+
else:
|
|
93
|
+
pathFilenameFoldsTotal = pathlib.Path(getPathJobRootDEFAULT(), pathLikeWriteFoldsTotal) # type: ignore
|
|
94
|
+
|
|
95
|
+
pathFilenameFoldsTotal.parent.mkdir(parents=True, exist_ok=True)
|
|
96
|
+
return pathFilenameFoldsTotal
|
|
97
97
|
|
|
98
98
|
def getTaskDivisions(computationDivisions: Optional[Union[int, str]], concurrencyLimit: int, CPUlimit: Optional[Union[bool, float, int]], listDimensions: Sequence[int]) -> int:
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
99
|
+
"""
|
|
100
|
+
Determines whether or how to divide the computation into tasks.
|
|
101
|
+
|
|
102
|
+
Parameters
|
|
103
|
+
----------
|
|
104
|
+
computationDivisions (None):
|
|
105
|
+
Specifies how to divide computations:
|
|
106
|
+
- None: no division of the computation into tasks; sets task divisions to 0
|
|
107
|
+
- int: direct set the number of task divisions; cannot exceed the map's total leaves
|
|
108
|
+
- "maximum": divides into `leavesTotal`-many `taskDivisions`
|
|
109
|
+
- "cpu": limits the divisions to the number of available CPUs, i.e. `concurrencyLimit`
|
|
110
|
+
concurrencyLimit:
|
|
111
|
+
Maximum number of concurrent tasks allowed
|
|
112
|
+
CPUlimit: for error reporting
|
|
113
|
+
listDimensions: for error reporting
|
|
114
|
+
|
|
115
|
+
Returns
|
|
116
|
+
-------
|
|
117
|
+
taskDivisions:
|
|
118
|
+
|
|
119
|
+
Raises
|
|
120
|
+
------
|
|
121
|
+
ValueError
|
|
122
|
+
If computationDivisions is an unsupported type or if resulting task divisions exceed total leaves
|
|
123
|
+
|
|
124
|
+
Notes
|
|
125
|
+
-----
|
|
126
|
+
Task divisions cannot exceed total leaves to prevent duplicate counting of folds.
|
|
127
|
+
"""
|
|
128
|
+
taskDivisions = 0
|
|
129
|
+
leavesTotal = getLeavesTotal(listDimensions)
|
|
130
|
+
if not computationDivisions:
|
|
131
|
+
pass
|
|
132
|
+
elif isinstance(computationDivisions, int):
|
|
133
|
+
taskDivisions = computationDivisions
|
|
134
|
+
elif isinstance(computationDivisions, str):
|
|
135
|
+
computationDivisions = computationDivisions.lower()
|
|
136
|
+
if computationDivisions == "maximum":
|
|
137
|
+
taskDivisions = leavesTotal
|
|
138
|
+
elif computationDivisions == "cpu":
|
|
139
|
+
taskDivisions = min(concurrencyLimit, leavesTotal)
|
|
140
|
+
else:
|
|
141
|
+
raise ValueError(f"I received {computationDivisions} for the parameter, `computationDivisions`, but the so-called programmer didn't implement code for that.")
|
|
142
|
+
|
|
143
|
+
if taskDivisions > leavesTotal:
|
|
144
|
+
raise ValueError(f"Problem: `taskDivisions`, ({taskDivisions}), is greater than `leavesTotal`, ({leavesTotal}), which will cause duplicate counting of the folds.\n\nChallenge: you cannot directly set `taskDivisions` or `leavesTotal`. They are derived from parameters that may or may not still be named `computationDivisions`, `CPUlimit` , and `listDimensions` and from dubious-quality Python code.\n\nFor those parameters, I received {computationDivisions=}, {CPUlimit=}, and {listDimensions=}.\n\nPotential solutions: get a different hobby or set `computationDivisions` to a different value.")
|
|
145
|
+
|
|
146
|
+
return taskDivisions
|
|
147
147
|
|
|
148
148
|
def makeConnectionGraph(listDimensions: Sequence[int], **keywordArguments: Optional[Type]) -> numpy.ndarray[Tuple[int, int, int], numpy.dtype[integer[Any]]]:
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
149
|
+
"""
|
|
150
|
+
Constructs a multi-dimensional connection graph representing the connections between the leaves of a map with the given dimensions.
|
|
151
|
+
Also called a Cartesian product decomposition or dimensional product mapping.
|
|
152
|
+
|
|
153
|
+
Parameters
|
|
154
|
+
listDimensions: A sequence of integers representing the dimensions of the map.
|
|
155
|
+
**keywordArguments: Datatype management.
|
|
156
|
+
|
|
157
|
+
Returns
|
|
158
|
+
connectionGraph: A 3D numpy array with shape of (dimensionsTotal, leavesTotal + 1, leavesTotal + 1).
|
|
159
|
+
"""
|
|
160
|
+
if keywordArguments.get('datatype', None):
|
|
161
|
+
setDatatypeLeavesTotal(keywordArguments['datatype']) # type: ignore
|
|
162
|
+
datatype = hackSSOTdtype('connectionGraph')
|
|
163
|
+
mapShape = validateListDimensions(listDimensions)
|
|
164
|
+
leavesTotal = getLeavesTotal(mapShape)
|
|
165
|
+
arrayDimensions = numpy.array(mapShape, dtype=datatype)
|
|
166
|
+
dimensionsTotal = len(arrayDimensions)
|
|
167
|
+
|
|
168
|
+
cumulativeProduct = numpy.multiply.accumulate([1] + mapShape, dtype=datatype)
|
|
169
|
+
coordinateSystem = numpy.zeros((dimensionsTotal, leavesTotal + 1), dtype=datatype)
|
|
170
|
+
for indexDimension in range(dimensionsTotal):
|
|
171
|
+
for leaf1ndex in range(1, leavesTotal + 1):
|
|
172
|
+
coordinateSystem[indexDimension, leaf1ndex] = ( ((leaf1ndex - 1) // cumulativeProduct[indexDimension]) % arrayDimensions[indexDimension] + 1 )
|
|
173
|
+
|
|
174
|
+
connectionGraph = numpy.zeros((dimensionsTotal, leavesTotal + 1, leavesTotal + 1), dtype=datatype)
|
|
175
|
+
for indexDimension in range(dimensionsTotal):
|
|
176
|
+
for activeLeaf1ndex in range(1, leavesTotal + 1):
|
|
177
|
+
for connectee1ndex in range(1, activeLeaf1ndex + 1):
|
|
178
|
+
isFirstCoord = coordinateSystem[indexDimension, connectee1ndex] == 1
|
|
179
|
+
isLastCoord = coordinateSystem[indexDimension, connectee1ndex] == arrayDimensions[indexDimension]
|
|
180
|
+
exceedsActive = connectee1ndex + cumulativeProduct[indexDimension] > activeLeaf1ndex
|
|
181
|
+
isEvenParity = (coordinateSystem[indexDimension, activeLeaf1ndex] & 1) == (coordinateSystem[indexDimension, connectee1ndex] & 1)
|
|
182
|
+
|
|
183
|
+
if (isEvenParity and isFirstCoord) or (not isEvenParity and (isLastCoord or exceedsActive)):
|
|
184
|
+
connectionGraph[indexDimension, activeLeaf1ndex, connectee1ndex] = connectee1ndex
|
|
185
|
+
elif isEvenParity and not isFirstCoord:
|
|
186
|
+
connectionGraph[indexDimension, activeLeaf1ndex, connectee1ndex] = connectee1ndex - cumulativeProduct[indexDimension]
|
|
187
|
+
elif not isEvenParity and not (isLastCoord or exceedsActive):
|
|
188
|
+
connectionGraph[indexDimension, activeLeaf1ndex, connectee1ndex] = connectee1ndex + cumulativeProduct[indexDimension]
|
|
189
|
+
|
|
190
|
+
return connectionGraph
|
|
191
191
|
|
|
192
192
|
def makeDataContainer(shape: Union[int, Tuple[int, ...]], datatype: Optional[DTypeLike] = None) -> NDArray[integer[Any]]:
|
|
193
|
-
|
|
193
|
+
"""Create a zeroed-out `numpy.ndarray` with the given shape and datatype.
|
|
194
194
|
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
195
|
+
Parameters:
|
|
196
|
+
shape (Union[int, Tuple[int, ...]]): The shape of the array. Can be an integer for 1D arrays
|
|
197
|
+
or a tuple of integers for multi-dimensional arrays.
|
|
198
|
+
datatype (Optional[DTypeLike], optional): The desired data type for the array.
|
|
199
|
+
If None, defaults to dtypeLargeDEFAULT. Defaults to None.
|
|
200
200
|
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
201
|
+
Returns:
|
|
202
|
+
numpy.ndarray: A new array of given shape and type, filled with zeros.
|
|
203
|
+
"""
|
|
204
|
+
if datatype is None:
|
|
205
|
+
datatype = hackSSOTdtype('dtypeFoldsTotal')
|
|
206
|
+
return numpy.zeros(shape, dtype=datatype)
|
|
207
207
|
|
|
208
208
|
def outfitCountFolds(listDimensions: Sequence[int]
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
209
|
+
, computationDivisions: Optional[Union[int, str]] = None
|
|
210
|
+
, CPUlimit: Optional[Union[bool, float, int]] = None
|
|
211
|
+
, **keywordArguments: Optional[Union[str, bool]]) -> computationState:
|
|
212
|
+
"""
|
|
213
|
+
Initializes and configures the computation state for map folding computations.
|
|
214
|
+
|
|
215
|
+
Parameters
|
|
216
|
+
----------
|
|
217
|
+
listDimensions:
|
|
218
|
+
The dimensions of the map to be folded
|
|
219
|
+
computationDivisions (None):
|
|
220
|
+
Specifies how to divide computations:
|
|
221
|
+
- None: no division of the computation into tasks; sets task divisions to 0
|
|
222
|
+
- int: direct set the number of task divisions; cannot exceed the map's total leaves
|
|
223
|
+
- "maximum": divides into `leavesTotal`-many `taskDivisions`
|
|
224
|
+
- "cpu": limits the divisions to the number of available CPUs, i.e. `concurrencyLimit`
|
|
225
|
+
CPUlimit (None):
|
|
226
|
+
Whether and how to limit the CPU usage. See notes for details.
|
|
227
|
+
**keywordArguments:
|
|
228
|
+
Datatype management.
|
|
229
|
+
|
|
230
|
+
Returns
|
|
231
|
+
-------
|
|
232
|
+
computationState
|
|
233
|
+
An initialized computation state containing:
|
|
234
|
+
- connectionGraph: Graph representing connections in the map
|
|
235
|
+
- foldsSubTotals: Array tracking total folds
|
|
236
|
+
- mapShape: Validated and sorted dimensions of the map
|
|
237
|
+
- my: Array for internal state tracking
|
|
238
|
+
- gapsWhere: Array tracking gap positions
|
|
239
|
+
- the: Static settings and metadata
|
|
240
|
+
- track: Array for tracking computation progress
|
|
241
|
+
|
|
242
|
+
Limits on CPU usage `CPUlimit`:
|
|
243
|
+
- `False`, `None`, or `0`: No limits on CPU usage; uses all available CPUs. All other values will potentially limit CPU usage.
|
|
244
|
+
- `True`: Yes, limit the CPU usage; limits to 1 CPU.
|
|
245
|
+
- Integer `>= 1`: Limits usage to the specified number of CPUs.
|
|
246
|
+
- Decimal value (`float`) between 0 and 1: Fraction of total CPUs to use.
|
|
247
|
+
- Decimal value (`float`) between -1 and 0: Fraction of CPUs to *not* use.
|
|
248
|
+
- Integer `<= -1`: Subtract the absolute value from total CPUs.
|
|
249
|
+
"""
|
|
250
|
+
kwourGrapes = keywordArguments.get('sourGrapes', False)
|
|
251
|
+
kwatatype = keywordArguments.get('datatypeElephino', None)
|
|
252
|
+
if kwatatype: setDatatypeElephino(kwatatype, sourGrapes=kwourGrapes) # type: ignore
|
|
253
|
+
kwatatype = keywordArguments.get('datatypeFoldsTotal', None)
|
|
254
|
+
if kwatatype: setDatatypeFoldsTotal(kwatatype, sourGrapes=kwourGrapes) # type: ignore
|
|
255
|
+
kwatatype = keywordArguments.get('datatypeLeavesTotal', None)
|
|
256
|
+
if kwatatype: setDatatypeLeavesTotal(kwatatype, sourGrapes=kwourGrapes) # type: ignore
|
|
257
|
+
|
|
258
|
+
my = makeDataContainer(len(indexMy), hackSSOTdtype('my'))
|
|
259
|
+
|
|
260
|
+
mapShape = tuple(sorted(validateListDimensions(listDimensions)))
|
|
261
|
+
concurrencyLimit = setCPUlimit(CPUlimit)
|
|
262
|
+
my[indexMy.taskDivisions] = getTaskDivisions(computationDivisions, concurrencyLimit, CPUlimit, mapShape)
|
|
263
|
+
|
|
264
|
+
foldGroups = makeDataContainer(max(my[indexMy.taskDivisions] + 1, 2), hackSSOTdtype('foldGroups'))
|
|
265
|
+
leavesTotal = getLeavesTotal(mapShape)
|
|
266
|
+
foldGroups[-1] = leavesTotal
|
|
267
|
+
|
|
268
|
+
my[indexMy.dimensionsTotal] = len(mapShape)
|
|
269
|
+
my[indexMy.leaf1ndex] = 1
|
|
270
|
+
stateInitialized = computationState(
|
|
271
|
+
connectionGraph = makeConnectionGraph(mapShape, datatype=hackSSOTdtype('connectionGraph')),
|
|
272
|
+
foldGroups = foldGroups,
|
|
273
|
+
mapShape = numpy.array(mapShape, dtype=hackSSOTdtype('mapShape')),
|
|
274
|
+
my = my,
|
|
275
|
+
gapsWhere = makeDataContainer(int(leavesTotal) * int(leavesTotal) + 1, hackSSOTdtype('gapsWhere')),
|
|
276
|
+
track = makeDataContainer((len(indexTrack), leavesTotal + 1), hackSSOTdtype('track')),
|
|
277
|
+
)
|
|
278
|
+
|
|
279
|
+
return stateInitialized
|
|
280
280
|
|
|
281
281
|
def parseDimensions(dimensions: Sequence[int], parameterName: str = 'listDimensions') -> List[int]:
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
282
|
+
"""
|
|
283
|
+
Parse and validate dimensions are non-negative integers.
|
|
284
|
+
|
|
285
|
+
Parameters:
|
|
286
|
+
dimensions: Sequence of integers representing dimensions
|
|
287
|
+
parameterName ('listDimensions'): Name of the parameter for error messages. Defaults to 'listDimensions'
|
|
288
|
+
Returns:
|
|
289
|
+
listNonNegative: List of validated non-negative integers
|
|
290
|
+
Raises:
|
|
291
|
+
ValueError: If any dimension is negative or if the list is empty
|
|
292
|
+
TypeError: If any element cannot be converted to integer (raised by intInnit)
|
|
293
|
+
"""
|
|
294
|
+
listValidated = intInnit(dimensions, parameterName)
|
|
295
|
+
listNonNegative = []
|
|
296
|
+
for dimension in listValidated:
|
|
297
|
+
if dimension < 0:
|
|
298
|
+
raise ValueError(f"Dimension {dimension} must be non-negative")
|
|
299
|
+
listNonNegative.append(dimension)
|
|
300
|
+
|
|
301
|
+
return listNonNegative
|
|
302
302
|
|
|
303
303
|
def saveFoldsTotal(pathFilename: Union[str, os.PathLike[str]], foldsTotal: int) -> None:
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
|
|
312
|
-
|
|
313
|
-
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
|
|
319
|
-
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
304
|
+
"""
|
|
305
|
+
Save foldsTotal with multiple fallback mechanisms.
|
|
306
|
+
|
|
307
|
+
Parameters:
|
|
308
|
+
pathFilename: Target save location
|
|
309
|
+
foldsTotal: Critical computed value to save
|
|
310
|
+
"""
|
|
311
|
+
try:
|
|
312
|
+
pathFilenameFoldsTotal = pathlib.Path(pathFilename)
|
|
313
|
+
pathFilenameFoldsTotal.parent.mkdir(parents=True, exist_ok=True)
|
|
314
|
+
pathFilenameFoldsTotal.write_text(str(foldsTotal))
|
|
315
|
+
except Exception as ERRORmessage:
|
|
316
|
+
try:
|
|
317
|
+
print(f"\nfoldsTotal foldsTotal foldsTotal foldsTotal foldsTotal\n\n{foldsTotal=}\n\nfoldsTotal foldsTotal foldsTotal foldsTotal foldsTotal\n")
|
|
318
|
+
print(ERRORmessage)
|
|
319
|
+
print(f"\nfoldsTotal foldsTotal foldsTotal foldsTotal foldsTotal\n\n{foldsTotal=}\n\nfoldsTotal foldsTotal foldsTotal foldsTotal foldsTotal\n")
|
|
320
|
+
randomnessPlanB = (int(str(foldsTotal).strip()[-1]) + 1) * ['YO_']
|
|
321
|
+
filenameInfixUnique = ''.join(randomnessPlanB)
|
|
322
|
+
pathFilenamePlanB = os.path.join(os.getcwd(), 'foldsTotal' + filenameInfixUnique + '.txt')
|
|
323
|
+
writeStreamFallback = open(pathFilenamePlanB, 'w')
|
|
324
|
+
writeStreamFallback.write(str(foldsTotal))
|
|
325
|
+
writeStreamFallback.close()
|
|
326
|
+
print(str(pathFilenamePlanB))
|
|
327
|
+
except Exception:
|
|
328
|
+
print(foldsTotal)
|
|
329
329
|
|
|
330
330
|
def setCPUlimit(CPUlimit: Optional[Any]) -> int:
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
|
|
336
|
-
|
|
337
|
-
|
|
338
|
-
|
|
339
|
-
|
|
340
|
-
|
|
341
|
-
|
|
342
|
-
|
|
343
|
-
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
353
|
-
|
|
354
|
-
|
|
331
|
+
"""Sets CPU limit for Numba concurrent operations. Note that it can only affect Numba-jitted functions that have not yet been imported.
|
|
332
|
+
|
|
333
|
+
Parameters:
|
|
334
|
+
CPUlimit: whether and how to limit the CPU usage. See notes for details.
|
|
335
|
+
Returns:
|
|
336
|
+
concurrencyLimit: The actual concurrency limit that was set
|
|
337
|
+
Raises:
|
|
338
|
+
TypeError: If CPUlimit is not of the expected types
|
|
339
|
+
|
|
340
|
+
Limits on CPU usage `CPUlimit`:
|
|
341
|
+
- `False`, `None`, or `0`: No limits on CPU usage; uses all available CPUs. All other values will potentially limit CPU usage.
|
|
342
|
+
- `True`: Yes, limit the CPU usage; limits to 1 CPU.
|
|
343
|
+
- Integer `>= 1`: Limits usage to the specified number of CPUs.
|
|
344
|
+
- Decimal value (`float`) between 0 and 1: Fraction of total CPUs to use.
|
|
345
|
+
- Decimal value (`float`) between -1 and 0: Fraction of CPUs to *not* use.
|
|
346
|
+
- Integer `<= -1`: Subtract the absolute value from total CPUs.
|
|
347
|
+
"""
|
|
348
|
+
if not (CPUlimit is None or isinstance(CPUlimit, (bool, int, float))):
|
|
349
|
+
CPUlimit = oopsieKwargsie(CPUlimit)
|
|
350
|
+
|
|
351
|
+
concurrencyLimit = int(defineConcurrencyLimit(CPUlimit))
|
|
352
|
+
numba.set_num_threads(concurrencyLimit)
|
|
353
|
+
|
|
354
|
+
return concurrencyLimit
|
|
355
355
|
|
|
356
356
|
def validateListDimensions(listDimensions: Sequence[int]) -> List[int]:
|
|
357
|
-
|
|
358
|
-
|
|
359
|
-
|
|
360
|
-
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
357
|
+
"""
|
|
358
|
+
Validates and sorts a sequence of at least two positive dimensions.
|
|
359
|
+
|
|
360
|
+
Parameters:
|
|
361
|
+
listDimensions: A sequence of integer dimensions to be validated.
|
|
362
|
+
|
|
363
|
+
Returns:
|
|
364
|
+
dimensionsValidSorted: A list, with at least two elements, of only positive integers.
|
|
365
|
+
|
|
366
|
+
Raises:
|
|
367
|
+
ValueError: If the input listDimensions is None.
|
|
368
|
+
NotImplementedError: If the resulting list of positive dimensions has fewer than two elements.
|
|
369
|
+
"""
|
|
370
|
+
if not listDimensions:
|
|
371
|
+
raise ValueError("listDimensions is a required parameter.")
|
|
372
|
+
listNonNegative = parseDimensions(listDimensions, 'listDimensions')
|
|
373
|
+
dimensionsValid = [dimension for dimension in listNonNegative if dimension > 0]
|
|
374
|
+
if len(dimensionsValid) < 2:
|
|
375
|
+
raise NotImplementedError(f"This function requires listDimensions, {listDimensions}, to have at least two dimensions greater than 0. You may want to look at https://oeis.org/.")
|
|
376
|
+
return sorted(dimensionsValid)
|