mapFolding 0.2.2__py3-none-any.whl → 0.2.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mapFolding/__init__.py CHANGED
@@ -1,7 +1,6 @@
1
1
  from .theSSOT import *
2
2
  from Z0Z_tools import defineConcurrencyLimit, intInnit, oopsieKwargsie
3
- from .beDRY import getTaskDivisions, makeConnectionGraph, outfitFoldings, setCPUlimit
4
- from .beDRY import getLeavesTotal, parseDimensions, validateListDimensions
3
+ from .beDRY import getFilenameFoldsTotal, outfitCountFolds
5
4
  from .startHere import countFolds
6
5
  from .oeis import oeisIDfor_n, getOEISids, clearOEIScache
7
6
 
mapFolding/babbage.py CHANGED
@@ -6,7 +6,7 @@ import numba
6
6
  import numpy
7
7
 
8
8
  @numba.jit(cache=True)
9
- def _countFolds(connectionGraph: NDArray[integer[Any]], foldsTotal: NDArray[integer[Any]], mapShape: Tuple[int, ...], my: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]) -> int:
9
+ def _countFolds(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], mapShape: Tuple[int, ...], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
10
10
  """
11
11
  What in tarnation is this stupid module and function?
12
12
 
@@ -27,4 +27,4 @@ def _countFolds(connectionGraph: NDArray[integer[Any]], foldsTotal: NDArray[inte
27
27
  """
28
28
  # TODO learn if I really must change this jitted function to get the super jit to recompile
29
29
  # print('babbage')
30
- return countFoldsCompiled(connectionGraph, foldsTotal, my, gapsWhere, the, track)
30
+ countFoldsCompiled(connectionGraph=connectionGraph, foldsSubTotals=foldsSubTotals, gapsWhere=gapsWhere, my=my, the=the, track=track)
mapFolding/beDRY.py CHANGED
@@ -1,14 +1,16 @@
1
1
  """A relatively stable API for oft-needed functionality."""
2
- from mapFolding import intInnit, defineConcurrencyLimit, oopsieKwargsie
2
+ from mapFolding import dtypeDefault, dtypeLarge
3
3
  from mapFolding import indexMy, indexThe, indexTrack, computationState
4
- from mapFolding import dtypeDefault, dtypeLarge, dtypeSmall
4
+ from mapFolding import intInnit, defineConcurrencyLimit, oopsieKwargsie
5
+ from numpy import integer
6
+ from numpy.typing import NDArray
5
7
  from typing import Any, List, Optional, Sequence, Type, Union
6
- import numpy
7
8
  import numba
8
- from numpy.typing import NDArray
9
- from numpy import integer
9
+ import numpy
10
10
  import sys
11
- import operator
11
+
12
+ def getFilenameFoldsTotal(listDimensions: Sequence[int]) -> str:
13
+ return str(sorted(listDimensions)).replace(' ', '') + '.foldsTotal'
12
14
 
13
15
  def getLeavesTotal(listDimensions: Sequence[int]) -> int:
14
16
  """
@@ -146,7 +148,7 @@ def makeDataContainer(shape, datatype: Optional[Type] = None):
146
148
  datatype = dtypeDefault
147
149
  return numpy.zeros(shape, dtype=datatype)
148
150
 
149
- def outfitFoldings(listDimensions: Sequence[int], computationDivisions: Optional[Union[int, str]] = None, CPUlimit: Optional[Union[bool, float, int]] = None, **keywordArguments: Optional[Type]) -> computationState:
151
+ def outfitCountFolds(listDimensions: Sequence[int], computationDivisions: Optional[Union[int, str]] = None, CPUlimit: Optional[Union[bool, float, int]] = None, **keywordArguments: Optional[Type]) -> computationState:
150
152
  """
151
153
  Initializes and configures the computation state for map folding computations.
152
154
 
@@ -155,21 +157,33 @@ def outfitFoldings(listDimensions: Sequence[int], computationDivisions: Optional
155
157
  listDimensions:
156
158
  The dimensions of the map to be folded
157
159
  computationDivisions (None):
158
- Specifies how to divide the computation tasks
160
+ Specifies how to divide computations:
161
+ - None: no division of the computation into tasks; sets task divisions to 0
162
+ - int: direct set the number of task divisions; cannot exceed the map's total leaves
163
+ - "maximum": divides into `leavesTotal`-many `taskDivisions`
164
+ - "cpu": limits the divisions to the number of available CPUs, i.e. `concurrencyLimit`
159
165
  CPUlimit (None):
160
- Limits the CPU usage for computations
166
+ Whether and how to limit the CPU usage. See notes for details.
161
167
 
162
168
  Returns
163
169
  -------
164
170
  computationState
165
171
  An initialized computation state containing:
166
172
  - connectionGraph: Graph representing connections in the map
167
- - foldsTotal: Array tracking total folds
173
+ - foldsSubTotals: Array tracking total folds
168
174
  - mapShape: Validated and sorted dimensions of the map
169
175
  - my: Array for internal state tracking
170
176
  - gapsWhere: Array tracking gap positions
171
177
  - the: Static settings and metadata
172
178
  - track: Array for tracking computation progress
179
+
180
+ Limits on CPU usage `CPUlimit`:
181
+ - `False`, `None`, or `0`: No limits on CPU usage; uses all available CPUs. All other values will potentially limit CPU usage.
182
+ - `True`: Yes, limit the CPU usage; limits to 1 CPU.
183
+ - Integer `>= 1`: Limits usage to the specified number of CPUs.
184
+ - Decimal value (`float`) between 0 and 1: Fraction of total CPUs to use.
185
+ - Decimal value (`float`) between -1 and 0: Fraction of CPUs to *not* use.
186
+ - Integer `<= -1`: Subtract the absolute value from total CPUs.
173
187
  """
174
188
  datatypeDefault = keywordArguments.get('datatypeDefault', dtypeDefault)
175
189
  datatypeLarge = keywordArguments.get('datatypeLarge', dtypeLarge)
@@ -181,10 +195,10 @@ def outfitFoldings(listDimensions: Sequence[int], computationDivisions: Optional
181
195
  the[indexThe.dimensionsTotal] = len(mapShape)
182
196
  concurrencyLimit = setCPUlimit(CPUlimit)
183
197
  the[indexThe.taskDivisions] = getTaskDivisions(computationDivisions, concurrencyLimit, CPUlimit, listDimensions)
184
-
198
+
185
199
  stateInitialized = computationState(
186
200
  connectionGraph = makeConnectionGraph(mapShape, datatype=datatypeDefault),
187
- foldsTotal = makeDataContainer(the[indexThe.leavesTotal], datatypeLarge),
201
+ foldsSubTotals = makeDataContainer(the[indexThe.leavesTotal], datatypeLarge),
188
202
  mapShape = mapShape,
189
203
  my = makeDataContainer(len(indexMy), datatypeLarge),
190
204
  gapsWhere = makeDataContainer(int(the[indexThe.leavesTotal]) * int(the[indexThe.leavesTotal]) + 1, datatypeDefault),
mapFolding/lovelace.py CHANGED
@@ -1,145 +1,217 @@
1
- """
2
- The algorithm for counting folds.
1
+ from mapFolding import indexMy, indexThe, indexTrack
2
+ from numpy import integer
3
+ from numpy.typing import NDArray
4
+ from typing import Any
5
+ import numba
6
+ import numpy
3
7
 
4
- Starting from established data structures, the algorithm initializes some baseline values. The initialization uses a loop that is not used after the first fold is counted.
8
+ def activeGapIncrement(my: NDArray[integer[Any]]):
9
+ my[indexMy.gap1ndex.value] += 1
5
10
 
6
- After initialization, the folds are either counted sequentially or counted with inefficiently divided parallel tasks.
11
+ def activeLeafGreaterThan0Condition(my: NDArray[integer[Any]]):
12
+ return my[indexMy.leaf1ndex.value] > 0
7
13
 
8
- All three of these actions--initialization, sequential counting, and parallel counting--use nearly identical logic. Without Numba, all of the logic is in one function with exactly one additional
9
- conditional statement for initialization and exactly one additional conditional statement for parallel counting.
14
+ def activeLeafGreaterThanLeavesTotalCondition(my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
15
+ return my[indexMy.leaf1ndex.value] > the[indexThe.leavesTotal.value]
10
16
 
11
- Numba's just-in-time (jit) compiler, especially super jit, is capable of radically increasing throughput and dramatically reducing the size of the compiled code, especially by ejecting unused code.
17
+ def activeLeafIsTheFirstLeafCondition(my: NDArray[integer[Any]]):
18
+ return my[indexMy.leaf1ndex.value] <= 1
12
19
 
13
- The complexity of this module is due to me allegedly applying Numba's features. Allegedly.
20
+ def activeLeafNotEqualToTaskDivisionsCondition(my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
21
+ return my[indexMy.leaf1ndex.value] != the[indexThe.taskDivisions.value]
14
22
 
15
- (The flow starts with the last function.)
16
- """
17
- from mapFolding import indexMy, indexThe, indexTrack
18
- from numpy import integer
19
- from numpy.typing import NDArray
20
- from typing import Any, Tuple, Optional
21
- import numba
22
- import numpy
23
+ def allDimensionsAreUnconstrained(my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
24
+ return my[indexMy.dimensionsUnconstrained.value] == the[indexThe.dimensionsTotal.value]
23
25
 
24
- @numba.jit(parallel=False, _nrt=True, boundscheck=False, error_model='numpy', fastmath=True, forceinline=True, looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nogil=True, nopython=True)
25
- def ifComputationDivisions(my: NDArray[integer[Any]], the: NDArray[integer[Any]]) -> bool:
26
- if the[indexThe.taskDivisions.value] == 0:
27
- return True
28
- return my[indexMy.leaf1ndex.value] != the[indexThe.taskDivisions.value] or \
29
- (my[indexMy.leafConnectee.value] % the[indexThe.taskDivisions.value]) == my[indexMy.taskIndex.value]
26
+ def backtrack(my: NDArray[integer[Any]], track: NDArray[integer[Any]]):
27
+ my[indexMy.leaf1ndex.value] -= 1
28
+ track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]
29
+ track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]
30
30
 
31
- @numba.jit(parallel=False, _nrt=True, boundscheck=False, error_model='numpy', fastmath=True, forceinline=True, looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nogil=True, nopython=True)
32
- def insertUnconstrainedLeaf(my: NDArray[integer[Any]], the: NDArray[integer[Any]], initializeUnconstrainedLeaf: Optional[bool]) -> bool:
33
- if initializeUnconstrainedLeaf:
34
- return my[indexMy.dimensionsUnconstrained.value] == the[indexThe.dimensionsTotal.value]
35
- else:
36
- return False
31
+ def backtrackCondition(my: NDArray[integer[Any]], track: NDArray[integer[Any]]):
32
+ return my[indexMy.leaf1ndex.value] > 0 and my[indexMy.gap1ndex.value] == track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
37
33
 
38
- @numba.jit(parallel=False, _nrt=True, boundscheck=False, error_model='numpy', fastmath=True, forceinline=True, looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nogil=True, nopython=True)
39
- def initializationConditionUnconstrainedLeaf(my: NDArray[integer[Any]], initializeUnconstrainedLeaf: Optional[bool]) -> bool:
40
- if initializeUnconstrainedLeaf is None or initializeUnconstrainedLeaf is False:
41
- return False
42
- else:
34
+ def countGaps(gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], track: NDArray[integer[Any]]):
35
+ gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.leafConnectee.value]
36
+ if track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] == 0:
37
+ gap1ndexCeilingIncrement(my=my)
38
+ track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] += 1
39
+
40
+ def dimension1ndexIncrement(my: NDArray[integer[Any]]):
41
+ my[indexMy.dimension1ndex.value] += 1
42
+
43
+ def dimensionsUnconstrainedCondition(connectionGraph: NDArray[integer[Any]], my: NDArray[integer[Any]]):
44
+ return connectionGraph[my[indexMy.dimension1ndex.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]] == my[indexMy.leaf1ndex.value]
45
+
46
+ def dimensionsUnconstrainedIncrement(my: NDArray[integer[Any]]):
47
+ my[indexMy.dimensionsUnconstrained.value] += 1
48
+
49
+ def filterCommonGaps(gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
50
+ gapsWhere[my[indexMy.gap1ndex.value]] = gapsWhere[my[indexMy.indexMiniGap.value]]
51
+ if track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] == the[indexThe.dimensionsTotal.value] - my[indexMy.dimensionsUnconstrained.value]:
52
+ activeGapIncrement(my=my)
53
+ track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] = 0
54
+
55
+ def findGapsInitializeVariables(my: NDArray[integer[Any]], track: NDArray[integer[Any]]):
56
+ my[indexMy.dimensionsUnconstrained.value] = 0
57
+ my[indexMy.gap1ndexCeiling.value] = track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
58
+ my[indexMy.dimension1ndex.value] = 1
59
+
60
+ def foldsSubTotalIncrement(foldsSubTotals: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
61
+ foldsSubTotals[my[indexMy.taskIndex.value]] += the[indexThe.leavesTotal.value]
62
+
63
+ def gap1ndexCeilingIncrement(my: NDArray[integer[Any]]):
64
+ my[indexMy.gap1ndexCeiling.value] += 1
65
+
66
+ def indexMiniGapIncrement(my: NDArray[integer[Any]]):
67
+ my[indexMy.indexMiniGap.value] += 1
68
+
69
+ def indexMiniGapInitialization(my: NDArray[integer[Any]]):
70
+ my[indexMy.indexMiniGap.value] = my[indexMy.gap1ndex.value]
71
+
72
+ def insertUnconstrainedLeaf(gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]]):
73
+ my[indexMy.indexLeaf.value] = 0
74
+ while my[indexMy.indexLeaf.value] < my[indexMy.leaf1ndex.value]:
75
+ gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.indexLeaf.value]
76
+ my[indexMy.gap1ndexCeiling.value] += 1
77
+ my[indexMy.indexLeaf.value] += 1
78
+
79
+ def leafBelowSentinelIs1Condition(track: NDArray[integer[Any]]):
80
+ return track[indexTrack.leafBelow.value, 0] == 1
81
+
82
+ def leafConnecteeInitialization(connectionGraph: NDArray[integer[Any]], my: NDArray[integer[Any]]):
83
+ my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.dimension1ndex.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]]
84
+
85
+ def leafConnecteeUpdate(connectionGraph: NDArray[integer[Any]], my: NDArray[integer[Any]], track: NDArray[integer[Any]]):
86
+ my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.dimension1ndex.value], my[indexMy.leaf1ndex.value], track[indexTrack.leafBelow.value, my[indexMy.leafConnectee.value]]]
87
+
88
+ def loopingLeavesConnectedToActiveLeaf(my: NDArray[integer[Any]]):
89
+ return my[indexMy.leafConnectee.value] != my[indexMy.leaf1ndex.value]
90
+
91
+ def loopingTheDimensions(my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
92
+ return my[indexMy.dimension1ndex.value] <= the[indexThe.dimensionsTotal.value]
93
+
94
+ def loopingToActiveGapCeiling(my: NDArray[integer[Any]]):
95
+ return my[indexMy.indexMiniGap.value] < my[indexMy.gap1ndexCeiling.value]
96
+
97
+ def placeLeaf(gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], track: NDArray[integer[Any]]):
98
+ my[indexMy.gap1ndex.value] -= 1
99
+ track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]] = gapsWhere[my[indexMy.gap1ndex.value]]
100
+ track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]] = track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]]
101
+ track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
102
+ track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
103
+ track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value]] = my[indexMy.gap1ndex.value]
104
+ my[indexMy.leaf1ndex.value] += 1
105
+
106
+ def placeLeafCondition(my: NDArray[integer[Any]]):
107
+ return my[indexMy.leaf1ndex.value] > 0
108
+
109
+ def taskIndexCondition(my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
110
+ return my[indexMy.leafConnectee.value] % the[indexThe.taskDivisions.value] == my[indexMy.taskIndex.value]
111
+
112
+ def thereAreComputationDivisionsYouMightSkip(my: NDArray[integer[Any]], the: NDArray[integer[Any]]):
113
+ if activeLeafNotEqualToTaskDivisionsCondition(my=my, the=the):
114
+ return True
115
+ if taskIndexCondition(my=my, the=the):
116
+ return True
117
+ return False
118
+
119
+ def initialize(connectionGraph: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
120
+ while activeLeafGreaterThan0Condition(my=my):
121
+ if activeLeafIsTheFirstLeafCondition(my=my) or leafBelowSentinelIs1Condition(track=track):
122
+ findGapsInitializeVariables(my=my, track=track)
123
+ while loopingTheDimensions(my=my, the=the):
124
+ if dimensionsUnconstrainedCondition(connectionGraph=connectionGraph, my=my):
125
+ dimensionsUnconstrainedIncrement(my=my)
126
+ else:
127
+ leafConnecteeInitialization(connectionGraph=connectionGraph, my=my)
128
+ while loopingLeavesConnectedToActiveLeaf(my=my):
129
+ countGaps(gapsWhere=gapsWhere, my=my, track=track)
130
+ leafConnecteeUpdate(connectionGraph=connectionGraph, my=my, track=track)
131
+ dimension1ndexIncrement(my=my)
132
+ if allDimensionsAreUnconstrained(my=my, the=the):
133
+ insertUnconstrainedLeaf(gapsWhere=gapsWhere, my=my)
134
+ indexMiniGapInitialization(my=my)
135
+ while loopingToActiveGapCeiling(my=my):
136
+ filterCommonGaps(gapsWhere=gapsWhere, my=my, the=the, track=track)
137
+ indexMiniGapIncrement(my=my)
138
+ if placeLeafCondition(my=my):
139
+ placeLeaf(gapsWhere=gapsWhere, my=my, track=track)
43
140
  if my[indexMy.gap1ndex.value] > 0:
44
- return True
45
- else:
46
- return False
47
-
48
- @numba.jit(parallel=False, _nrt=True, boundscheck=False, error_model='numpy', fastmath=True, forceinline=True, looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nogil=True, nopython=True)
49
- def doWhile(connectionGraph: NDArray[integer[Any]], foldsTotal: NDArray[integer[Any]], my: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]], initializeUnconstrainedLeaf: Optional[bool]) -> Tuple[NDArray[integer[Any]], NDArray[integer[Any]], NDArray[integer[Any]], NDArray[integer[Any]]]:
50
- while my[indexMy.leaf1ndex.value] > 0:
51
- if my[indexMy.leaf1ndex.value] <= 1 or track[indexTrack.leafBelow.value, 0] == 1:
52
- if my[indexMy.leaf1ndex.value] > the[indexThe.leavesTotal.value]:
53
- foldsTotal[my[indexMy.taskIndex.value]] += the[indexThe.leavesTotal.value]
141
+ break
142
+
143
+ def countParallel(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
144
+ while activeLeafGreaterThan0Condition(my=my):
145
+ if activeLeafIsTheFirstLeafCondition(my=my) or leafBelowSentinelIs1Condition(track=track):
146
+ if activeLeafGreaterThanLeavesTotalCondition(my=my, the=the):
147
+ foldsSubTotalIncrement(foldsSubTotals=foldsSubTotals, my=my, the=the)
54
148
  else:
55
- my[indexMy.dimensionsUnconstrained.value] = 0
56
- my[indexMy.gap1ndexCeiling.value] = track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]
57
- my[indexMy.dimension1ndex.value] = 1
58
- while my[indexMy.dimension1ndex.value] <= the[indexThe.dimensionsTotal.value]:
59
- if connectionGraph[my[indexMy.dimension1ndex.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]] == my[indexMy.leaf1ndex.value]:
60
- my[indexMy.dimensionsUnconstrained.value] += 1
149
+ findGapsInitializeVariables(my=my, track=track)
150
+ while loopingTheDimensions(my=my, the=the):
151
+ if dimensionsUnconstrainedCondition(connectionGraph=connectionGraph, my=my):
152
+ dimensionsUnconstrainedIncrement(my=my)
61
153
  else:
62
- my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.dimension1ndex.value], my[indexMy.leaf1ndex.value], my[indexMy.leaf1ndex.value]]
63
- while my[indexMy.leafConnectee.value] != my[indexMy.leaf1ndex.value]:
64
- # NOTE This conditional check should only be in the parallel counting branch
65
- if ifComputationDivisions(my, the):
66
- gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.leafConnectee.value]
67
- if track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] == 0:
68
- my[indexMy.gap1ndexCeiling.value] += 1
69
- track[indexTrack.countDimensionsGapped.value, my[indexMy.leafConnectee.value]] += 1
70
- my[indexMy.leafConnectee.value] = connectionGraph[my[indexMy.dimension1ndex.value], my[indexMy.leaf1ndex.value], track[indexTrack.leafBelow.value, my[indexMy.leafConnectee.value]]]
71
- my[indexMy.dimension1ndex.value] += 1
72
- # NOTE This `if` statement and `while` loop should be absent from the code that does the counting
73
- if insertUnconstrainedLeaf(my, the, initializeUnconstrainedLeaf):
74
- my[indexMy.indexLeaf.value] = 0
75
- while my[indexMy.indexLeaf.value] < my[indexMy.leaf1ndex.value]:
76
- gapsWhere[my[indexMy.gap1ndexCeiling.value]] = my[indexMy.indexLeaf.value]
77
- my[indexMy.gap1ndexCeiling.value] += 1
78
- my[indexMy.indexLeaf.value] += 1
79
- my[indexMy.indexMiniGap.value] = my[indexMy.gap1ndex.value]
80
- while my[indexMy.indexMiniGap.value] < my[indexMy.gap1ndexCeiling.value]:
81
- gapsWhere[my[indexMy.gap1ndex.value]] = gapsWhere[my[indexMy.indexMiniGap.value]]
82
- if track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] == the[indexThe.dimensionsTotal.value] - my[indexMy.dimensionsUnconstrained.value]:
83
- my[indexMy.gap1ndex.value] += 1
84
- track[indexTrack.countDimensionsGapped.value, gapsWhere[my[indexMy.indexMiniGap.value]]] = 0
85
- my[indexMy.indexMiniGap.value] += 1
86
- while my[indexMy.leaf1ndex.value] > 0 and my[indexMy.gap1ndex.value] == track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value] - 1]:
87
- my[indexMy.leaf1ndex.value] -= 1
88
- track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]
89
- track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]
90
- if my[indexMy.leaf1ndex.value] > 0:
91
- my[indexMy.gap1ndex.value] -= 1
92
- track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]] = gapsWhere[my[indexMy.gap1ndex.value]]
93
- track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]] = track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]]
94
- track[indexTrack.leafBelow.value, track[indexTrack.leafAbove.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
95
- track[indexTrack.leafAbove.value, track[indexTrack.leafBelow.value, my[indexMy.leaf1ndex.value]]] = my[indexMy.leaf1ndex.value]
96
- track[indexTrack.gapRangeStart.value, my[indexMy.leaf1ndex.value]] = my[indexMy.gap1ndex.value]
97
- my[indexMy.leaf1ndex.value] += 1
98
- # NOTE This check and break should be absent from the code that does the counting
99
- if initializationConditionUnconstrainedLeaf(my, initializeUnconstrainedLeaf):
100
- break
101
- return foldsTotal, my, gapsWhere, track
154
+ leafConnecteeInitialization(connectionGraph=connectionGraph, my=my)
155
+ while loopingLeavesConnectedToActiveLeaf(my=my):
156
+ if thereAreComputationDivisionsYouMightSkip(my=my, the=the):
157
+ countGaps(gapsWhere=gapsWhere, my=my, track=track)
158
+ leafConnecteeUpdate(connectionGraph=connectionGraph, my=my, track=track)
159
+ dimension1ndexIncrement(my=my)
160
+ indexMiniGapInitialization(my=my)
161
+ while loopingToActiveGapCeiling(my=my):
162
+ filterCommonGaps(gapsWhere=gapsWhere, my=my, the=the, track=track)
163
+ indexMiniGapIncrement(my=my)
164
+ while backtrackCondition(my=my, track=track):
165
+ backtrack(my=my, track=track)
166
+ if placeLeafCondition(my=my):
167
+ placeLeaf(gapsWhere=gapsWhere, my=my, track=track)
168
+
169
+ def countSequential(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
170
+ while activeLeafGreaterThan0Condition(my=my):
171
+ if activeLeafIsTheFirstLeafCondition(my=my) or leafBelowSentinelIs1Condition(track=track):
172
+ if activeLeafGreaterThanLeavesTotalCondition(my=my, the=the):
173
+ foldsSubTotalIncrement(foldsSubTotals=foldsSubTotals, my=my, the=the)
174
+ else:
175
+ findGapsInitializeVariables(my=my, track=track)
176
+ while loopingTheDimensions(my=my, the=the):
177
+ if dimensionsUnconstrainedCondition(connectionGraph=connectionGraph, my=my):
178
+ dimensionsUnconstrainedIncrement(my=my)
179
+ else:
180
+ leafConnecteeInitialization(connectionGraph=connectionGraph, my=my)
181
+ while loopingLeavesConnectedToActiveLeaf(my=my):
182
+ countGaps(gapsWhere=gapsWhere, my=my, track=track)
183
+ leafConnecteeUpdate(connectionGraph=connectionGraph, my=my, track=track)
184
+ dimension1ndexIncrement(my=my)
185
+ indexMiniGapInitialization(my=my)
186
+ while loopingToActiveGapCeiling(my=my):
187
+ filterCommonGaps(gapsWhere=gapsWhere, my=my, the=the, track=track)
188
+ indexMiniGapIncrement(my=my)
189
+ while backtrackCondition(my=my, track=track):
190
+ backtrack(my=my, track=track)
191
+ if placeLeafCondition(my=my):
192
+ placeLeaf(gapsWhere=gapsWhere, my=my, track=track)
102
193
 
103
194
  @numba.jit(parallel=True, _nrt=True, boundscheck=False, error_model='numpy', fastmath=True, forceinline=True, looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nogil=True, nopython=True)
104
- def doTaskIndices(connectionGraph: NDArray[integer[Any]], foldsTotal: NDArray[integer[Any]], my: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]) -> NDArray[integer[Any]]:
105
- """This is the only function with the `parallel=True` option.
106
- Make a copy of the initialized state because all task divisions can start from this baseline.
107
- Run the counting algorithm but with conditional execution of a few lines of code, so each task has an incomplete count that does not overlap with other tasks."""
108
- stateFoldsSubTotal = foldsTotal.copy()
195
+ def doTaskIndices(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
196
+
197
+ stateGapsWhere = gapsWhere.copy()
109
198
  stateMy = my.copy()
110
- statePotentialGaps = gapsWhere.copy()
111
199
  stateTrack = track.copy()
112
200
 
113
201
  for indexSherpa in numba.prange(the[indexThe.taskDivisions.value]):
114
- my = stateMy.copy()
115
- my[indexMy.taskIndex.value] = indexSherpa
116
- foldsSubTotal, _1, _2, _3 = doWhile(connectionGraph, stateFoldsSubTotal.copy(), my, statePotentialGaps.copy(), the, stateTrack.copy(), initializeUnconstrainedLeaf=False)
202
+ mySherpa = stateMy.copy()
203
+ mySherpa[indexMy.taskIndex.value] = indexSherpa
204
+ countParallel(connectionGraph=connectionGraph, foldsSubTotals=foldsSubTotals, gapsWhere=stateGapsWhere.copy(), my=mySherpa, the=the, track=stateTrack.copy())
117
205
 
118
- foldsTotal[indexSherpa] = foldsSubTotal[indexSherpa]
206
+ return foldsSubTotals
119
207
 
120
- return foldsTotal
208
+ def countFoldsCompiled(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
121
209
 
122
- @numba.jit(parallel=False, _nrt=True, boundscheck=False, error_model='numpy', fastmath=True, forceinline=True, looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nogil=True, nopython=True)
123
- def countFoldsCompileBranch(connectionGraph: NDArray[integer[Any]], foldsTotal: NDArray[integer[Any]], my: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]], obviousFlagForNumba: bool) -> NDArray[integer[Any]]:
124
- """Allegedly, `obviousFlagForNumba` allows Numba to compile two versions: one for parallel execution and one leaner version for sequential execution."""
125
- if obviousFlagForNumba:
126
- foldsTotal, _1, _2, _3 = doWhile(connectionGraph, foldsTotal, my, gapsWhere, the, track, initializeUnconstrainedLeaf=False)
127
- else:
128
- foldsTotal = doTaskIndices(connectionGraph, foldsTotal, my, gapsWhere, the, track)
210
+ initialize(connectionGraph=connectionGraph, gapsWhere=gapsWhere, my=my, the=the, track=track)
129
211
 
130
- return foldsTotal
131
-
132
- @numba.jit(parallel=False, _nrt=True, boundscheck=False, error_model='numpy', fastmath=True, forceinline=True, looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nogil=True, nopython=True)
133
- def countFoldsCompiled(connectionGraph: NDArray[integer[Any]], foldsTotal: NDArray[integer[Any]], my: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]) -> int:
134
- # ^ Receive the data structures.
135
-
136
- # Initialize baseline values primarily to eliminate the need for the logic of `insertUnconstrainedLeaf`
137
- _0, my, gapsWhere, track = doWhile(connectionGraph, foldsTotal, my, gapsWhere, the, track, initializeUnconstrainedLeaf=True)
138
-
139
- obviousFlagForNumba = the[indexThe.taskDivisions.value] == int(False)
140
-
141
- # Call the function that will branch to sequential or parallel counting
142
- foldsTotal = countFoldsCompileBranch(connectionGraph, foldsTotal, my, gapsWhere, the, track, obviousFlagForNumba)
212
+ if the[indexThe.taskDivisions.value] > 0:
213
+ doTaskIndices(connectionGraph=connectionGraph, foldsSubTotals=foldsSubTotals, gapsWhere=gapsWhere, my=my, the=the, track=track)
214
+ else:
215
+ countSequential(connectionGraph=connectionGraph, foldsSubTotals=foldsSubTotals, gapsWhere=gapsWhere, my=my, the=the, track=track)
143
216
 
144
- # Return an `int` integer
145
- return numpy.sum(foldsTotal).item()
217
+ numba.jit_module(parallel=False, _nrt=True, boundscheck=False, error_model='numpy', fastmath=True, forceinline=True, looplift=False, no_cfunc_wrapper=True, no_cpython_wrapper=True, nogil=True, nopython=True)
@@ -0,0 +1,376 @@
1
+ """The algorithm flattened into semantic sections.
2
+ This version is not maintained, so you may see differences from the current version."""
3
+ from numpy import integer
4
+ from numpy.typing import NDArray
5
+ from typing import List, Any, Final, Optional, Union, Sequence, Tuple, Type, TypedDict
6
+ import enum
7
+ import numpy
8
+ import sys
9
+
10
+ def countFolds(listDimensions: Sequence[int], computationDivisions = None, CPUlimit: Optional[Union[int, float, bool]] = None):
11
+ def doWhile():
12
+
13
+ while activeLeafGreaterThan0Condition():
14
+
15
+ if activeLeafIsTheFirstLeafCondition() or leafBelowSentinelIs1Condition():
16
+
17
+ if activeLeafGreaterThanLeavesTotalCondition():
18
+ foldsSubTotalsIncrement()
19
+
20
+ else:
21
+
22
+ findGapsInitializeVariables()
23
+ while loopingTheDimensions():
24
+
25
+ if dimensionsUnconstrainedCondition():
26
+ dimensionsUnconstrainedIncrement()
27
+
28
+ else:
29
+
30
+ leafConnecteeInitialization()
31
+ while loopingLeavesConnectedToActiveLeaf():
32
+ if thereAreComputationDivisionsYouMightSkip():
33
+ countGaps()
34
+ leafConnecteeUpdate()
35
+
36
+ dimension1ndexIncrement()
37
+
38
+ if allDimensionsAreUnconstrained():
39
+ insertUnconstrainedLeaf()
40
+
41
+ indexMiniGapInitialization()
42
+ while loopingToActiveGapCeiling():
43
+ filterCommonGaps()
44
+ indexMiniGapIncrement()
45
+
46
+ while backtrackCondition():
47
+ backtrack()
48
+
49
+ if placeLeafCondition():
50
+ placeLeaf()
51
+
52
+ def activeGapIncrement():
53
+ my[indexMy.gap1ndex] += 1
54
+
55
+ def activeLeafGreaterThan0Condition():
56
+ return my[indexMy.leaf1ndex] > 0
57
+
58
+ def activeLeafGreaterThanLeavesTotalCondition():
59
+ return my[indexMy.leaf1ndex] > the[indexThe.leavesTotal]
60
+
61
+ def activeLeafIsTheFirstLeafCondition():
62
+ return my[indexMy.leaf1ndex] <= 1
63
+
64
+ def activeLeafNotEqualToTaskDivisionsCondition():
65
+ return my[indexMy.leaf1ndex] != the[indexThe.taskDivisions]
66
+
67
+ def allDimensionsAreUnconstrained():
68
+ return my[indexMy.dimensionsUnconstrained] == the[indexThe.dimensionsTotal]
69
+
70
+ def backtrack():
71
+ my[indexMy.leaf1ndex] -= 1
72
+ track[indexTrack.leafBelow, track[indexTrack.leafAbove, my[indexMy.leaf1ndex]]] = track[indexTrack.leafBelow, my[indexMy.leaf1ndex]]
73
+ track[indexTrack.leafAbove, track[indexTrack.leafBelow, my[indexMy.leaf1ndex]]] = track[indexTrack.leafAbove, my[indexMy.leaf1ndex]]
74
+
75
+ def backtrackCondition():
76
+ return my[indexMy.leaf1ndex] > 0 and my[indexMy.gap1ndex] == track[indexTrack.gapRangeStart, my[indexMy.leaf1ndex] - 1]
77
+
78
+ def computationDivisionsCondition():
79
+ return the[indexThe.taskDivisions] == int(False)
80
+
81
+ def countGaps():
82
+ gapsWhere[my[indexMy.gap1ndexCeiling]] = my[indexMy.leafConnectee]
83
+ if track[indexTrack.countDimensionsGapped, my[indexMy.leafConnectee]] == 0:
84
+ gap1ndexCeilingIncrement()
85
+ track[indexTrack.countDimensionsGapped, my[indexMy.leafConnectee]] += 1
86
+
87
+ def dimension1ndexIncrement():
88
+ my[indexMy.dimension1ndex] += 1
89
+
90
+ def dimensionsUnconstrainedCondition():
91
+ return connectionGraph[my[indexMy.dimension1ndex], my[indexMy.leaf1ndex], my[indexMy.leaf1ndex]] == my[indexMy.leaf1ndex]
92
+
93
+ def dimensionsUnconstrainedIncrement():
94
+ my[indexMy.dimensionsUnconstrained] += 1
95
+
96
+ def filterCommonGaps():
97
+ gapsWhere[my[indexMy.gap1ndex]] = gapsWhere[my[indexMy.indexMiniGap]]
98
+ if track[indexTrack.countDimensionsGapped, gapsWhere[my[indexMy.indexMiniGap]]] == the[indexThe.dimensionsTotal] - my[indexMy.dimensionsUnconstrained]:
99
+ activeGapIncrement()
100
+ track[indexTrack.countDimensionsGapped, gapsWhere[my[indexMy.indexMiniGap]]] = 0
101
+
102
+ def findGapsInitializeVariables():
103
+ my[indexMy.dimensionsUnconstrained] = 0
104
+ my[indexMy.gap1ndexCeiling] = track[indexTrack.gapRangeStart, my[indexMy.leaf1ndex] - 1]
105
+ my[indexMy.dimension1ndex] = 1
106
+
107
+ def foldsSubTotalsIncrement():
108
+ foldsSubTotals[my[indexMy.taskIndex]] += the[indexThe.leavesTotal]
109
+
110
+ def gap1ndexCeilingIncrement():
111
+ my[indexMy.gap1ndexCeiling] += 1
112
+
113
+ def indexMiniGapIncrement():
114
+ my[indexMy.indexMiniGap] += 1
115
+
116
+ def indexMiniGapInitialization():
117
+ my[indexMy.indexMiniGap] = my[indexMy.gap1ndex]
118
+
119
+ def insertUnconstrainedLeaf():
120
+ my[indexMy.indexLeaf] = 0
121
+ while my[indexMy.indexLeaf] < my[indexMy.leaf1ndex]:
122
+ gapsWhere[my[indexMy.gap1ndexCeiling]] = my[indexMy.indexLeaf]
123
+ my[indexMy.gap1ndexCeiling] += 1
124
+ my[indexMy.indexLeaf] += 1
125
+
126
+ def leafBelowSentinelIs1Condition():
127
+ return track[indexTrack.leafBelow, 0] == 1
128
+
129
+ def leafConnecteeInitialization():
130
+ my[indexMy.leafConnectee] = connectionGraph[my[indexMy.dimension1ndex], my[indexMy.leaf1ndex], my[indexMy.leaf1ndex]]
131
+
132
+ def leafConnecteeUpdate():
133
+ my[indexMy.leafConnectee] = connectionGraph[my[indexMy.dimension1ndex], my[indexMy.leaf1ndex], track[indexTrack.leafBelow, my[indexMy.leafConnectee]]]
134
+
135
+ def loopingLeavesConnectedToActiveLeaf():
136
+ return my[indexMy.leafConnectee] != my[indexMy.leaf1ndex]
137
+
138
+ def loopingTheDimensions():
139
+ return my[indexMy.dimension1ndex] <= the[indexThe.dimensionsTotal]
140
+
141
+ def loopingToActiveGapCeiling():
142
+ return my[indexMy.indexMiniGap] < my[indexMy.gap1ndexCeiling]
143
+
144
+ def placeLeaf():
145
+ my[indexMy.gap1ndex] -= 1
146
+ track[indexTrack.leafAbove, my[indexMy.leaf1ndex]] = gapsWhere[my[indexMy.gap1ndex]]
147
+ track[indexTrack.leafBelow, my[indexMy.leaf1ndex]] = track[indexTrack.leafBelow, track[indexTrack.leafAbove, my[indexMy.leaf1ndex]]]
148
+ track[indexTrack.leafBelow, track[indexTrack.leafAbove, my[indexMy.leaf1ndex]]] = my[indexMy.leaf1ndex]
149
+ track[indexTrack.leafAbove, track[indexTrack.leafBelow, my[indexMy.leaf1ndex]]] = my[indexMy.leaf1ndex]
150
+ track[indexTrack.gapRangeStart, my[indexMy.leaf1ndex]] = my[indexMy.gap1ndex]
151
+ my[indexMy.leaf1ndex] += 1
152
+
153
+ def placeLeafCondition():
154
+ return my[indexMy.leaf1ndex] > 0
155
+
156
+ def taskIndexCondition():
157
+ return my[indexMy.leafConnectee] % the[indexThe.taskDivisions] == my[indexMy.taskIndex]
158
+
159
+ def thereAreComputationDivisionsYouMightSkip():
160
+ if computationDivisionsCondition():
161
+ return True
162
+ if activeLeafNotEqualToTaskDivisionsCondition():
163
+ return True
164
+ if taskIndexCondition():
165
+ return True
166
+ return False
167
+
168
+ stateUniversal = outfitFoldings(listDimensions, computationDivisions=computationDivisions, CPUlimit=CPUlimit)
169
+ connectionGraph: Final[numpy.ndarray] = stateUniversal['connectionGraph']
170
+ foldsSubTotals = stateUniversal['foldsSubTotals']
171
+ gapsWhere = stateUniversal['gapsWhere']
172
+ my = stateUniversal['my']
173
+ the: Final[numpy.ndarray] = stateUniversal['the']
174
+ track = stateUniversal['track']
175
+
176
+ if the[indexThe.taskDivisions] == int(False):
177
+ doWhile()
178
+ else:
179
+ stateUniversal['my'] = my.copy()
180
+ stateUniversal['gapsWhere'] = gapsWhere.copy()
181
+ stateUniversal['track'] = track.copy()
182
+ for indexSherpa in range(the[indexThe.taskDivisions]):
183
+ my = stateUniversal['my'].copy()
184
+ my[indexMy.taskIndex] = indexSherpa
185
+ gapsWhere = stateUniversal['gapsWhere'].copy()
186
+ track = stateUniversal['track'].copy()
187
+ doWhile()
188
+
189
+ return numpy.sum(foldsSubTotals).item()
190
+
191
+ @enum.verify(enum.CONTINUOUS, enum.UNIQUE) if sys.version_info >= (3, 11) else lambda x: x
192
+ class EnumIndices(enum.IntEnum):
193
+ """Base class for index enums."""
194
+ @staticmethod
195
+ def _generate_next_value_(name, start, count, last_values):
196
+ """0-indexed."""
197
+ return count
198
+
199
+ def __index__(self) -> int:
200
+ """Adapt enum to the ultra-rare event of indexing a NumPy 'ndarray', which is not the
201
+ same as `array.array`. See NumPy.org; I think it will be very popular someday."""
202
+ return self
203
+
204
+ class indexMy(EnumIndices):
205
+ """Indices for dynamic values."""
206
+ dimension1ndex = enum.auto()
207
+ dimensionsUnconstrained = enum.auto()
208
+ gap1ndex = enum.auto()
209
+ gap1ndexCeiling = enum.auto()
210
+ indexLeaf = enum.auto()
211
+ indexMiniGap = enum.auto()
212
+ leaf1ndex = enum.auto()
213
+ leafConnectee = enum.auto()
214
+ taskIndex = enum.auto()
215
+
216
+ class indexThe(EnumIndices):
217
+ """Indices for static values."""
218
+ dimensionsTotal = enum.auto()
219
+ leavesTotal = enum.auto()
220
+ taskDivisions = enum.auto()
221
+
222
+ class indexTrack(EnumIndices):
223
+ """Indices for state tracking array."""
224
+ leafAbove = enum.auto()
225
+ leafBelow = enum.auto()
226
+ countDimensionsGapped = enum.auto()
227
+ gapRangeStart = enum.auto()
228
+
229
+ class computationState(TypedDict):
230
+ connectionGraph: NDArray[integer[Any]]
231
+ foldsSubTotals: NDArray[integer[Any]]
232
+ mapShape: Tuple[int, ...]
233
+ my: NDArray[integer[Any]]
234
+ gapsWhere: NDArray[integer[Any]]
235
+ the: NDArray[integer[Any]]
236
+ track: NDArray[integer[Any]]
237
+
238
+ dtypeLarge = numpy.int64
239
+ dtypeDefault = dtypeLarge
240
+
241
+ def getLeavesTotal(listDimensions: Sequence[int]) -> int:
242
+ """
243
+ How many leaves are in the map.
244
+
245
+ Parameters:
246
+ listDimensions: A list of integers representing dimensions.
247
+
248
+ Returns:
249
+ productDimensions: The product of all positive integer dimensions.
250
+ """
251
+ listNonNegative = parseDimensions(listDimensions, 'listDimensions')
252
+ listPositive = [dimension for dimension in listNonNegative if dimension > 0]
253
+
254
+ if not listPositive:
255
+ return 0
256
+ else:
257
+ productDimensions = 1
258
+ for dimension in listPositive:
259
+ if dimension > sys.maxsize // productDimensions:
260
+ raise OverflowError(f"I received {dimension=} in {listDimensions=}, but the product of the dimensions exceeds the maximum size of an integer on this system.")
261
+ productDimensions *= dimension
262
+
263
+ return productDimensions
264
+
265
+ def getTaskDivisions(computationDivisions: Optional[Union[int, str]], concurrencyLimit: int, CPUlimit: Optional[Union[bool, float, int]], listDimensions: Sequence[int]):
266
+ if not computationDivisions:
267
+ return 0
268
+ else:
269
+ leavesTotal = getLeavesTotal(listDimensions)
270
+ if isinstance(computationDivisions, int):
271
+ taskDivisions = computationDivisions
272
+ elif isinstance(computationDivisions, str):
273
+ computationDivisions = computationDivisions.lower()
274
+ if computationDivisions == "maximum":
275
+ taskDivisions = leavesTotal
276
+ elif computationDivisions == "cpu":
277
+ taskDivisions = min(concurrencyLimit, leavesTotal)
278
+ else:
279
+ raise ValueError("Not my problem.")
280
+
281
+ if taskDivisions > leavesTotal:
282
+ raise ValueError("What are you doing?")
283
+
284
+ return taskDivisions
285
+
286
+ def makeConnectionGraph(listDimensions: Sequence[int], **keywordArguments: Optional[Type]) -> NDArray[integer[Any]]:
287
+ datatype = keywordArguments.get('datatype', dtypeDefault)
288
+ mapShape = validateListDimensions(listDimensions)
289
+ leavesTotal = getLeavesTotal(mapShape)
290
+ arrayDimensions = numpy.array(mapShape, dtype=datatype)
291
+ dimensionsTotal = len(arrayDimensions)
292
+
293
+ cumulativeProduct = numpy.multiply.accumulate([1] + mapShape, dtype=datatype)
294
+ coordinateSystem = numpy.zeros((dimensionsTotal + 1, leavesTotal + 1), dtype=datatype)
295
+ for dimension1ndex in range(1, dimensionsTotal + 1):
296
+ for leaf1ndex in range(1, leavesTotal + 1):
297
+ coordinateSystem[dimension1ndex, leaf1ndex] = ( ((leaf1ndex - 1) // cumulativeProduct[dimension1ndex - 1]) % arrayDimensions[dimension1ndex - 1] + 1 )
298
+
299
+ connectionGraph = numpy.zeros((dimensionsTotal + 1, leavesTotal + 1, leavesTotal + 1), dtype=datatype)
300
+ for dimension1ndex in range(1, dimensionsTotal + 1):
301
+ for activeLeaf1ndex in range(1, leavesTotal + 1):
302
+ for connectee1ndex in range(1, activeLeaf1ndex + 1):
303
+ isFirstCoord = coordinateSystem[dimension1ndex, connectee1ndex] == 1
304
+ isLastCoord = coordinateSystem[dimension1ndex, connectee1ndex] == arrayDimensions[dimension1ndex - 1]
305
+ exceedsActive = connectee1ndex + cumulativeProduct[dimension1ndex - 1] > activeLeaf1ndex
306
+ isEvenParity = (coordinateSystem[dimension1ndex, activeLeaf1ndex] & 1) == (coordinateSystem[dimension1ndex, connectee1ndex] & 1)
307
+
308
+ if (isEvenParity and isFirstCoord) or (not isEvenParity and (isLastCoord or exceedsActive)):
309
+ connectionGraph[dimension1ndex, activeLeaf1ndex, connectee1ndex] = connectee1ndex
310
+ elif isEvenParity and not isFirstCoord:
311
+ connectionGraph[dimension1ndex, activeLeaf1ndex, connectee1ndex] = connectee1ndex - cumulativeProduct[dimension1ndex - 1]
312
+ elif not isEvenParity and not (isLastCoord or exceedsActive):
313
+ connectionGraph[dimension1ndex, activeLeaf1ndex, connectee1ndex] = connectee1ndex + cumulativeProduct[dimension1ndex - 1]
314
+ else:
315
+ connectionGraph[dimension1ndex, activeLeaf1ndex, connectee1ndex] = connectee1ndex
316
+ return connectionGraph
317
+
318
+ def makeDataContainer(shape, datatype: Optional[Type] = None):
319
+ if datatype is None:
320
+ datatype = dtypeDefault
321
+ return numpy.zeros(shape, dtype=datatype)
322
+
323
+ def outfitFoldings(listDimensions: Sequence[int], computationDivisions: Optional[Union[int, str]] = None, CPUlimit: Optional[Union[bool, float, int]] = None, **keywordArguments: Optional[Type]) -> computationState:
324
+ datatypeDefault = keywordArguments.get('datatypeDefault', dtypeDefault)
325
+ datatypeLarge = keywordArguments.get('datatypeLarge', dtypeLarge)
326
+
327
+ the = makeDataContainer(len(indexThe), datatypeDefault)
328
+
329
+ mapShape = tuple(sorted(validateListDimensions(listDimensions)))
330
+ the[indexThe.leavesTotal] = getLeavesTotal(mapShape)
331
+ the[indexThe.dimensionsTotal] = len(mapShape)
332
+ concurrencyLimit = setCPUlimit(CPUlimit)
333
+ the[indexThe.taskDivisions] = getTaskDivisions(computationDivisions, concurrencyLimit, CPUlimit, listDimensions)
334
+
335
+ stateInitialized = computationState(
336
+ connectionGraph = makeConnectionGraph(mapShape, datatype=datatypeDefault),
337
+ foldsSubTotals = makeDataContainer(the[indexThe.leavesTotal], datatypeLarge),
338
+ mapShape = mapShape,
339
+ my = makeDataContainer(len(indexMy), datatypeLarge),
340
+ gapsWhere = makeDataContainer(int(the[indexThe.leavesTotal]) * int(the[indexThe.leavesTotal]) + 1, datatypeDefault),
341
+ the = the,
342
+ track = makeDataContainer((len(indexTrack), the[indexThe.leavesTotal] + 1), datatypeLarge)
343
+ )
344
+
345
+ stateInitialized['my'][indexMy.leaf1ndex] = 1
346
+ return stateInitialized
347
+
348
+ def parseDimensions(dimensions: Sequence[int], parameterName: str = 'unnamed parameter') -> List[int]:
349
+ # listValidated = intInnit(dimensions, parameterName)
350
+ listNOTValidated = dimensions if isinstance(dimensions, (list, tuple)) else list(dimensions)
351
+ listNonNegative = []
352
+ for dimension in listNOTValidated:
353
+ if dimension < 0:
354
+ raise ValueError(f"Dimension {dimension} must be non-negative")
355
+ listNonNegative.append(dimension)
356
+ if not listNonNegative:
357
+ raise ValueError("At least one dimension must be non-negative")
358
+ return listNonNegative
359
+
360
+ def setCPUlimit(CPUlimit: Union[bool, float, int, None]) -> int:
361
+ # if not (CPUlimit is None or isinstance(CPUlimit, (bool, int, float))):
362
+ # CPUlimit = oopsieKwargsie(CPUlimit)
363
+ # concurrencyLimit = defineConcurrencyLimit(CPUlimit)
364
+ # numba.set_num_threads(concurrencyLimit)
365
+ concurrencyLimitHARDCODED = 1
366
+ concurrencyLimit = concurrencyLimitHARDCODED
367
+ return concurrencyLimit
368
+
369
+ def validateListDimensions(listDimensions: Sequence[int]) -> List[int]:
370
+ if not listDimensions:
371
+ raise ValueError(f"listDimensions is a required parameter.")
372
+ listNonNegative = parseDimensions(listDimensions, 'listDimensions')
373
+ dimensionsValid = [dimension for dimension in listNonNegative if dimension > 0]
374
+ if len(dimensionsValid) < 2:
375
+ raise NotImplementedError(f"This function requires listDimensions, {listDimensions}, to have at least two dimensions greater than 0. You may want to look at https://oeis.org/.")
376
+ return sorted(dimensionsValid)
mapFolding/startHere.py CHANGED
@@ -1,4 +1,4 @@
1
- from mapFolding import outfitFoldings
1
+ from mapFolding import outfitCountFolds, getFilenameFoldsTotal
2
2
  from typing import Optional, Sequence, Type, Union
3
3
  import os
4
4
  import pathlib
@@ -15,7 +15,7 @@ def countFolds(listDimensions: Sequence[int], writeFoldsTotal: Optional[Union[st
15
15
  CPUlimit (None): This is only relevant if there are `computationDivisions`: whether and how to limit the CPU usage. See notes for details.
16
16
  **keywordArguments: Additional arguments including `dtypeDefault` and `dtypeLarge` for data type specifications.
17
17
  Returns:
18
- foldsTotal: Total number of distinct ways to fold a map of the given dimensions.
18
+ foldsSubTotals: Total number of distinct ways to fold a map of the given dimensions.
19
19
 
20
20
  Computation divisions:
21
21
  - None: no division of the computation into tasks; sets task divisions to 0
@@ -34,20 +34,22 @@ def countFolds(listDimensions: Sequence[int], writeFoldsTotal: Optional[Union[st
34
34
  N.B.: You probably don't want to divide the computation into tasks.
35
35
  If you want to compute a large `foldsTotal`, dividing the computation into tasks is usually a bad idea. Dividing the algorithm into tasks is inherently inefficient: efficient division into tasks means there would be no overlap in the work performed by each task. When dividing this algorithm, the amount of overlap is between 50% and 90% by all tasks: at least 50% of the work done by every task must be done by _all_ tasks. If you improve the computation time, it will only change by -10 to -50% depending on (at the very least) the ratio of the map dimensions and the number of leaves. If an undivided computation would take 10 hours on your computer, for example, the computation will still take at least 5 hours but you might reduce the time to 9 hours. Most of the time, however, you will increase the computation time. If logicalCores >= leavesTotal, it will probably be faster. If logicalCores <= 2 * leavesTotal, it will almost certainly be slower for all map dimensions.
36
36
  """
37
- stateUniversal = outfitFoldings(listDimensions, computationDivisions=computationDivisions, CPUlimit=CPUlimit, **keywordArguments)
37
+ stateUniversal = outfitCountFolds(listDimensions, computationDivisions=computationDivisions, CPUlimit=CPUlimit, **keywordArguments)
38
38
 
39
39
  pathFilenameFoldsTotal = None
40
40
  if writeFoldsTotal is not None:
41
41
  pathFilenameFoldsTotal = pathlib.Path(writeFoldsTotal)
42
42
  if pathFilenameFoldsTotal.is_dir():
43
- filenameFoldsTotalDEFAULT = str(sorted(stateUniversal['mapShape'])).replace(' ', '') + '.foldsTotal'
43
+ filenameFoldsTotalDEFAULT = getFilenameFoldsTotal(stateUniversal['mapShape'])
44
44
  pathFilenameFoldsTotal = pathFilenameFoldsTotal / filenameFoldsTotalDEFAULT
45
45
  pathFilenameFoldsTotal.parent.mkdir(parents=True, exist_ok=True)
46
46
 
47
47
  # NOTE Don't import a module with a numba.jit function until you want the function to compile and to freeze all settings for that function.
48
48
  from mapFolding.babbage import _countFolds
49
- foldsTotal = _countFolds(**stateUniversal)
50
- # foldsTotal = benchmarkSherpa(**stateUniversal)
49
+ _countFolds(**stateUniversal)
50
+ # foldsSubTotals = benchmarkSherpa(**stateUniversal)
51
+
52
+ foldsTotal = stateUniversal['foldsSubTotals'].sum().item()
51
53
 
52
54
  if pathFilenameFoldsTotal is not None:
53
55
  try:
@@ -63,6 +65,6 @@ def countFolds(listDimensions: Sequence[int], writeFoldsTotal: Optional[Union[st
63
65
  # from typing import Any, Tuple
64
66
  # from mapFolding.benchmarks.benchmarking import recordBenchmarks
65
67
  # @recordBenchmarks()
66
- # def benchmarkSherpa(connectionGraph: NDArray[integer[Any]], foldsTotal: NDArray[integer[Any]], mapShape: Tuple[int, ...], my: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
68
+ # def benchmarkSherpa(connectionGraph: NDArray[integer[Any]], foldsSubTotals: NDArray[integer[Any]], gapsWhere: NDArray[integer[Any]], mapShape: Tuple[int, ...], my: NDArray[integer[Any]], the: NDArray[integer[Any]], track: NDArray[integer[Any]]):
67
69
  # from mapFolding.babbage import _countFolds
68
- # return _countFolds(connectionGraph, foldsTotal, mapShape, my, gapsWhere, the, track)
70
+ # return _countFolds(connectionGraph, foldsSubTotals, gapsWhere, mapShape, my, the, track)
mapFolding/theSSOT.py CHANGED
@@ -15,7 +15,7 @@ except NameError:
15
15
  _pathModule = pathlib.Path.cwd()
16
16
 
17
17
  pathJobDEFAULT = _pathModule / "jobs"
18
- """filenameFoldsTotal = str(sorted(mapShape)).replace(' ', '') + '.foldsTotal'"""
18
+
19
19
  if 'google.colab' in sys.modules:
20
20
  pathJobDEFAULT = pathlib.Path("/content/drive/MyDrive") / "jobs"
21
21
 
@@ -59,7 +59,7 @@ class indexTrack(EnumIndices):
59
59
 
60
60
  class computationState(TypedDict):
61
61
  connectionGraph: numpy.typing.NDArray[numpy.integer[Any]]
62
- foldsTotal: numpy.ndarray[numpy.int64, numpy.dtype[numpy.int64]]
62
+ foldsSubTotals: numpy.ndarray[numpy.int64, numpy.dtype[numpy.int64]]
63
63
  mapShape: Tuple[int, ...]
64
64
  my: numpy.typing.NDArray[numpy.integer[Any]]
65
65
  gapsWhere: numpy.typing.NDArray[numpy.integer[Any]]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mapFolding
3
- Version: 0.2.2
3
+ Version: 0.2.3
4
4
  Summary: Algorithm(s) for counting distinct ways to fold a map (or a strip of stamps)
5
5
  Author-email: Hunter Hogan <HunterHogan@pm.me>
6
6
  Project-URL: homepage, https://github.com/hunterhogan/mapFolding
@@ -25,7 +25,7 @@ Requires-Dist: pytest-xdist; extra == "testing"
25
25
 
26
26
  # Algorithm(s) for counting distinct ways to fold a map (or a strip of stamps)
27
27
 
28
- `mapFolding.countFolds()` will accept arbitrary values for the map's dimensions.
28
+ The function `mapFolding.countFolds()` counts distinct ways to fold maps and strips of stamps. The function accepts two or more dimensions:
29
29
 
30
30
  ```python
31
31
  from mapFolding import countFolds
@@ -34,12 +34,12 @@ foldsTotal = countFolds( [2,10] )
34
34
 
35
35
  The directory [mapFolding/reference](https://github.com/hunterhogan/mapFolding/blob/main/mapFolding/reference) has
36
36
 
37
- - a verbatim transcription of the "procedure" published in _The Computer Journal_,
37
+ - a verbatim transcription of Lunnon's "procedure" published in 1971 by _The Computer Journal_,
38
38
  - multiple referential versions of the procedure with explanatory comments including
39
39
  - [hunterNumba.py](https://github.com/hunterhogan/mapFolding/blob/main/mapFolding/reference), a one-size-fits-all, self-contained, reasonably fast, contemporary algorithm that is nevertheless infected by _noobaceae ignorancium_, and
40
40
  - miscellaneous notes.
41
41
 
42
- [![Python Tests](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml/badge.svg)](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml)
42
+ [![Python Tests](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml/badge.svg)](https://github.com/hunterhogan/mapFolding/actions/workflows/unittests.yml) [![pip install mapFolding](https://img.shields.io/badge/pip%20install-mapFolding-gray.svg?colorB=3b434b)](https://pypi.org/project/mapFolding/) ![Static Badge](https://img.shields.io/badge/stinkin'%20badges-don't%20need-b98e5e) ![PyPI - Downloads](https://img.shields.io/pypi/dd/mapFolding) ![Static Badge](https://img.shields.io/badge/issues-I%20have%20them-brightgreen) ![GitHub repo size](https://img.shields.io/github/repo-size/hunterhogan/mapFolding)
43
43
 
44
44
  ## Simple, easy usage based on OEIS IDs
45
45
 
@@ -1,14 +1,15 @@
1
- mapFolding/__init__.py,sha256=POxXTSE6Qu1G8k-YlSXHzbe-_JGuHk-L9p5SLRng4vA,439
2
- mapFolding/babbage.py,sha256=3D1qcntoiJm2tqgbiCAMc7GpGA0SZTdGORNEnensyxk,1882
3
- mapFolding/beDRY.py,sha256=ZrUXCNqnumTQ1XX8RT5gGdRr-a-o8QxEiGrerUxKtYg,12784
4
- mapFolding/lovelace.py,sha256=qcyGpVEPP3n0r-RNrSUgPRP3yZJfBEfmok7jYMm1OI0,11473
1
+ mapFolding/__init__.py,sha256=wnf2EzHR2unVha6-Y0gRoSPaE4PDdT4VngINa_dfT2E,337
2
+ mapFolding/babbage.py,sha256=LCtyapF8SKsECqBifqbLm7bR_i4n8VJ647w_TQxnQvE,1930
3
+ mapFolding/beDRY.py,sha256=UE4IRrb5lXN4nTuUghHfieNm2FBHgz7oBj_EqUgkadI,13800
4
+ mapFolding/lovelace.py,sha256=r4dkTGh_AgaVsWOsdPRdpPWVx3TjVjbWfPCVu3UTm6U,13495
5
5
  mapFolding/oeis.py,sha256=_-fLGc1ybZ2eFxoiBrSmojMexeg6ROxtrLaBF2BzMn4,12144
6
- mapFolding/startHere.py,sha256=RGdFoJJdrJ_0tmLIKZn1WnHP0NCZwvQG7C2p4EUHOe4,5034
7
- mapFolding/theSSOT.py,sha256=yRW6aHyJxheL-Znk537LQA6xUPHz6FfoXY-0Ayh3Lsg,2178
6
+ mapFolding/startHere.py,sha256=glGxmefrWpxyuqrzXrbCvIo84yvPnv8l8l7Rmff2sAo,5105
7
+ mapFolding/theSSOT.py,sha256=rAyx034y33QC7IiRKaW89CMGGvqe2p-QBc3_fO-zEGM,2101
8
8
  mapFolding/JAX/lunnanJAX.py,sha256=xMZloN47q-MVfjdYOM1hi9qR4OnLq7qALmGLMraevQs,14819
9
9
  mapFolding/JAX/taskJAX.py,sha256=yJNeH0rL6EhJ6ppnATHF0Zf81CDMC10bnPnimVxE1hc,20037
10
10
  mapFolding/benchmarks/benchmarking.py,sha256=kv85F6V9pGhZvTOImArOuxyg5rywA_T6JLH_qFXM8BM,3018
11
11
  mapFolding/benchmarks/test_benchmarks.py,sha256=c4ANeR3jgqpKXFoxDeZkmAHxSuenMwsjmrhKJ1_XPqY,3659
12
+ mapFolding/reference/flattened.py,sha256=X9nvRzg7YDcpCtSDTL4YiidjshlX9rg2e6JVCY6i2u0,16547
12
13
  mapFolding/reference/hunterNumba.py,sha256=0giUyqAFzP-XKcq3Kz8wIWCK0BVFhjABVJ1s-w4Jhu0,7109
13
14
  mapFolding/reference/irvineJavaPort.py,sha256=Sj-63Z-OsGuDoEBXuxyjRrNmmyl0d7Yz_XuY7I47Oyg,4250
14
15
  mapFolding/reference/lunnan.py,sha256=XEcql_gxvCCghb6Or3qwmPbn4IZUbZTaSmw_fUjRxZE,5037
@@ -16,13 +17,14 @@ mapFolding/reference/lunnanNumpy.py,sha256=HqDgSwTOZA-G0oophOEfc4zs25Mv4yw2aoF1v
16
17
  mapFolding/reference/lunnanWhile.py,sha256=7NY2IKO5XBgol0aWWF_Fi-7oTL9pvu_z6lB0TF1uVHk,4063
17
18
  mapFolding/reference/rotatedEntryPoint.py,sha256=z0QyDQtnMvXNj5ntWzzJUQUMFm1-xHGLVhtYzwmczUI,11530
18
19
  mapFolding/reference/total_countPlus1vsPlusN.py,sha256=usenM8Yn_G1dqlPl7NKKkcnbohBZVZBXTQRm2S3_EDA,8106
19
- tests/__init__.py,sha256=PGYVr7r23gATgcvZ3Sfph9D_g1MVvhgzMNWXBs_9tmY,52
20
- tests/conftest.py,sha256=VFYSd7-tHWd-LUKnTY24PIJhq9quP9S3sK2SYusNNog,12875
20
+ tests/__init__.py,sha256=eg9smg-6VblOr0kisM40CpGnuDtU2JgEEWGDTFVOlW8,57
21
+ tests/conftest.py,sha256=WE3DETPaQ4zuUiw8pweTry4rp1PxvUPgeb8CN8eh5JI,13574
22
+ tests/pythons_idiotic_namespace.py,sha256=oOLDBergQqqhGuRpsXUnFD-R_6AlJipNKYHw-kk_OKw,33
21
23
  tests/test_oeis.py,sha256=vxnwO-cSR68htkyMh9QMVv-lvxBo6qlwPg1Rbx4JylY,7963
22
- tests/test_other.py,sha256=cf8DbkZxm_DHNq9lkMe7auXye_XspruU9qiNZATkxr4,6930
24
+ tests/test_other.py,sha256=5DwOZsjezBHZzr4-9qEnybBYJEGsozBm2n9p0KYvs9E,10664
23
25
  tests/test_tasks.py,sha256=Nwe4iuSjwGZvsw5CXCcic7tkBxgM5JX9mrGZMDYhAwE,1785
24
- mapFolding-0.2.2.dist-info/METADATA,sha256=BSCXcKZDhAtOWr8A5pZMG8bZnm5YBLf-6uMN9qs8JDk,5914
25
- mapFolding-0.2.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
26
- mapFolding-0.2.2.dist-info/entry_points.txt,sha256=F3OUeZR1XDTpoH7k3wXuRb3KF_kXTTeYhu5AGK1SiOQ,146
27
- mapFolding-0.2.2.dist-info/top_level.txt,sha256=1gP2vFaqPwHujGwb3UjtMlLEGN-943VSYFR7V4gDqW8,17
28
- mapFolding-0.2.2.dist-info/RECORD,,
26
+ mapFolding-0.2.3.dist-info/METADATA,sha256=nEQXgDmmuu2NJko4R4gPUdjIrm1upUGwMIOn0s0JOOc,6442
27
+ mapFolding-0.2.3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
28
+ mapFolding-0.2.3.dist-info/entry_points.txt,sha256=F3OUeZR1XDTpoH7k3wXuRb3KF_kXTTeYhu5AGK1SiOQ,146
29
+ mapFolding-0.2.3.dist-info/top_level.txt,sha256=1gP2vFaqPwHujGwb3UjtMlLEGN-943VSYFR7V4gDqW8,17
30
+ mapFolding-0.2.3.dist-info/RECORD,,
tests/__init__.py CHANGED
@@ -1 +1 @@
1
- from .conftest import makeDictionaryFoldsTotalKnown
1
+ from tests.conftest import makeDictionaryFoldsTotalKnown
tests/conftest.py CHANGED
@@ -14,10 +14,10 @@ from Z0Z_tools.pytest_parseParameters import makeTestSuiteConcurrencyLimit
14
14
  from Z0Z_tools.pytest_parseParameters import makeTestSuiteIntInnit
15
15
  from Z0Z_tools.pytest_parseParameters import makeTestSuiteOopsieKwargsie
16
16
  from mapFolding import countFolds, pathJobDEFAULT, indexMy, indexThe, indexTrack
17
- from mapFolding import defineConcurrencyLimit, intInnit, oopsieKwargsie
18
- from mapFolding import getLeavesTotal, parseDimensions, validateListDimensions
19
- from mapFolding import getTaskDivisions, makeConnectionGraph, outfitFoldings, setCPUlimit
20
- from mapFolding import oeisIDfor_n, getOEISids, clearOEIScache
17
+ from mapFolding import defineConcurrencyLimit, intInnit, oopsieKwargsie, outfitCountFolds
18
+ from mapFolding import oeisIDfor_n, getOEISids, clearOEIScache, getFilenameFoldsTotal
19
+ from mapFolding.beDRY import getLeavesTotal, parseDimensions, validateListDimensions
20
+ from mapFolding.beDRY import getTaskDivisions, makeConnectionGraph, setCPUlimit
21
21
  from mapFolding.beDRY import makeDataContainer
22
22
  from mapFolding.oeis import OEIS_for_n
23
23
  from mapFolding.oeis import _getFilenameOEISbFile
@@ -26,6 +26,7 @@ from mapFolding.oeis import _parseBFileOEIS
26
26
  from mapFolding.oeis import _validateOEISid
27
27
  from mapFolding.oeis import oeisIDsImplemented
28
28
  from mapFolding.oeis import settingsOEIS
29
+ from mapFolding import *
29
30
 
30
31
  __all__ = [
31
32
  'OEIS_for_n',
@@ -37,10 +38,11 @@ __all__ = [
37
38
  'countFolds',
38
39
  'defineConcurrencyLimit',
39
40
  'expectSystemExit',
41
+ 'getFilenameFoldsTotal',
40
42
  'getLeavesTotal',
41
43
  'getOEISids',
42
- 'indexThe',
43
44
  'getTaskDivisions',
45
+ 'indexThe',
44
46
  'intInnit',
45
47
  'makeConnectionGraph',
46
48
  'makeDataContainer',
@@ -50,7 +52,7 @@ __all__ = [
50
52
  'oeisIDfor_n',
51
53
  'oeisIDsImplemented',
52
54
  'oopsieKwargsie',
53
- 'outfitFoldings',
55
+ 'outfitCountFolds',
54
56
  'parseDimensions',
55
57
  'setCPUlimit',
56
58
  'settingsOEIS',
@@ -227,6 +229,22 @@ def oeisID_1random() -> str:
227
229
  """Return one random valid OEIS ID."""
228
230
  return random.choice(oeisIDsImplemented)
229
231
 
232
+ @pytest.fixture
233
+ def mockFoldingFunction():
234
+ """Creates a mock function that simulates _countFolds behavior."""
235
+ def make_mock(foldsValue: int, listDimensions: List[int]):
236
+ arraySize = getLeavesTotal(listDimensions)
237
+ # The array needs to sum to our target value
238
+ mock_array = makeDataContainer(arraySize)
239
+ mock_array[arraySize - 1] = foldsValue # Put entire value in last position
240
+
241
+ def mock_countfolds(**keywordArguments):
242
+ keywordArguments['foldsSubTotals'][:] = mock_array
243
+ return None
244
+
245
+ return mock_countfolds
246
+ return make_mock
247
+
230
248
  """
231
249
  Section: Standardized test structures"""
232
250
 
@@ -0,0 +1 @@
1
+ from mapFolding.theSSOT import *
tests/test_other.py CHANGED
@@ -1,14 +1,13 @@
1
1
  from pathlib import Path
2
- from typing import List
3
- from .conftest import *
2
+ from typing import List, Optional, Dict, Any, Union
3
+ from tests.conftest import *
4
+ from tests.pythons_idiotic_namespace import *
4
5
  import pytest
5
6
  import sys
6
7
  import unittest.mock
7
8
  import numpy
8
9
  import numba
9
10
 
10
- # TODO test `outfitFoldings`; no negative values in arrays; compare datatypes to the typeddict; commpare the connection graph to making a graPH
11
-
12
11
  @pytest.mark.parametrize("listDimensions,expected_intInnit,expected_parseListDimensions,expected_validateListDimensions,expected_getLeavesTotal", [
13
12
  (None, ValueError, ValueError, ValueError, ValueError), # None instead of list
14
13
  (['a'], ValueError, ValueError, ValueError, ValueError), # string
@@ -59,18 +58,34 @@ def test_getLeavesTotal_edge_cases() -> None:
59
58
  standardComparison(6, getLeavesTotal, listOriginal)
60
59
  standardComparison([2, 3], lambda x: x, listOriginal) # Check that the list wasn't modified
61
60
 
62
- def test_countFolds_writeFoldsTotal_file(listDimensionsTestFunctionality: List[int], pathFilenameFoldsTotalTesting: Path) -> None:
63
- with unittest.mock.patch("mapFolding.babbage._countFolds", return_value=12345):
64
- standardComparison(12345, countFolds, listDimensionsTestFunctionality, pathFilenameFoldsTotalTesting)
65
- standardComparison("12345", lambda: pathFilenameFoldsTotalTesting.read_text())
61
+ @pytest.mark.parametrize("foldsValue,writeFoldsTarget", [
62
+ (756839, "foldsTotalTest.txt"), # Direct file
63
+ (2640919, "foldsTotalTest.txt"), # Direct file
64
+ (7715177, None), # Directory, will use default filename
65
+ ])
66
+ def test_countFolds_writeFoldsTotal(
67
+ listDimensionsTestFunctionality: List[int],
68
+ pathTempTesting: Path,
69
+ mockFoldingFunction,
70
+ foldsValue: int,
71
+ writeFoldsTarget: Optional[str]
72
+ ) -> None:
73
+ """Test writing folds total to either a file or directory."""
74
+ # For directory case, use the directory path directly
75
+ if writeFoldsTarget is None:
76
+ pathWriteTarget = pathTempTesting
77
+ filenameFoldsTotalExpected = getFilenameFoldsTotal(listDimensionsTestFunctionality)
78
+ else:
79
+ pathWriteTarget = pathTempTesting / writeFoldsTarget
80
+ filenameFoldsTotalExpected = writeFoldsTarget
81
+
82
+ mock_countFolds = mockFoldingFunction(foldsValue, listDimensionsTestFunctionality)
83
+
84
+ with unittest.mock.patch("mapFolding.babbage._countFolds", side_effect=mock_countFolds):
85
+ returned = countFolds(listDimensionsTestFunctionality, writeFoldsTotal=pathWriteTarget)
66
86
 
67
- def test_countFolds_writeFoldsTotal_directory(listDimensionsTestFunctionality: List[int], pathTempTesting: Path) -> None:
68
- with unittest.mock.patch("mapFolding.babbage._countFolds", return_value=67890):
69
- returned = countFolds(listDimensionsTestFunctionality, writeFoldsTotal=pathTempTesting)
70
- standardComparison(67890, lambda: returned)
71
- # Construct expected filename from sorted dimensions
72
- expectedName = str(sorted(listDimensionsTestFunctionality)).replace(' ', '') + '.foldsTotal'
73
- standardComparison("67890", lambda: (pathTempTesting / expectedName).read_text())
87
+ standardComparison(foldsValue, lambda: returned) # Check return value
88
+ standardComparison(str(foldsValue), lambda: (pathTempTesting / filenameFoldsTotalExpected).read_text()) # Check file content
74
89
 
75
90
  def test_intInnit() -> None:
76
91
  """Test integer parsing using the test suite generator."""
@@ -103,3 +118,81 @@ def test_makeConnectionGraph_nonNegative(listDimensionsTestFunctionality: List[i
103
118
  def test_makeConnectionGraph_datatype(listDimensionsTestFunctionality: List[int], datatype) -> None:
104
119
  connectionGraph = makeConnectionGraph(listDimensionsTestFunctionality, datatype=datatype)
105
120
  assert connectionGraph.dtype == datatype, f"Expected datatype {datatype}, but got {connectionGraph.dtype}."
121
+
122
+ # @pytest.mark.parametrize("computationDivisions,CPUlimit,datatypeOverrides", [
123
+ # (None, None, {}), # Basic case
124
+ # ("maximum", True, {"datatypeDefault": numpy.int32}), # Max divisions, min CPU, custom dtype
125
+ # ("cpu", 4, {"datatypeLarge": numpy.int64}), # CPU-based divisions, fixed CPU limit
126
+ # (3, 0.5, {}), # Fixed divisions, fractional CPU
127
+ # ])
128
+ # def test_outfitCountFolds(
129
+ # listDimensionsTestFunctionality: List[int],
130
+ # computationDivisions: Optional[Union[int, str]],
131
+ # CPUlimit: Optional[Union[bool, float, int]],
132
+ # datatypeOverrides: Dict[str, Any]
133
+ # ) -> None:
134
+ # """Test outfitCountFolds as a nexus of configuration and initialization.
135
+
136
+ # Strategy:
137
+ # 1. Validate structure against computationState TypedDict
138
+ # 2. Compare with direct function calls
139
+ # 3. Verify enum-based indexing
140
+ # 4. Check datatypes and shapes
141
+ # """
142
+ # # Get initialized state
143
+ # stateInitialized = outfitCountFolds(
144
+ # listDimensionsTestFunctionality,
145
+ # computationDivisions=computationDivisions,
146
+ # CPUlimit=CPUlimit,
147
+ # **datatypeOverrides
148
+ # )
149
+
150
+ # # 1. TypedDict structure validation
151
+ # for keyRequired in computationState.__annotations__:
152
+ # assert keyRequired in stateInitialized, f"Missing required key: {keyRequired}"
153
+ # assert stateInitialized[keyRequired] is not None, f"Key has None value: {keyRequired}"
154
+
155
+ # # Type checking
156
+ # expectedType = computationState.__annotations__[keyRequired]
157
+ # assert isinstance(stateInitialized[keyRequired], expectedType), \
158
+ # f"Type mismatch for {keyRequired}: expected {expectedType}, got {type(stateInitialized[keyRequired])}"
159
+
160
+ # # 2. Compare with direct function calls
161
+ # directMapShape = tuple(sorted(validateListDimensions(listDimensionsTestFunctionality)))
162
+ # assert stateInitialized['mapShape'] == directMapShape
163
+
164
+ # directConnectionGraph = makeConnectionGraph(
165
+ # directMapShape,
166
+ # datatype=datatypeOverrides.get('datatypeDefault', dtypeDefault)
167
+ # )
168
+ # assert numpy.array_equal(stateInitialized['connectionGraph'], directConnectionGraph)
169
+
170
+ # # 3. Enum-based indexing validation
171
+ # for arrayName, indexEnum in [
172
+ # ('my', indexMy),
173
+ # ('the', indexThe),
174
+ # ('track', indexTrack)
175
+ # ]:
176
+ # array = stateInitialized[arrayName]
177
+ # assert array.shape[0] >= len(indexEnum), \
178
+ # f"Array {arrayName} too small for enum {indexEnum.__name__}"
179
+
180
+ # # Test each enum index
181
+ # for enumMember in indexEnum:
182
+ # assert array[enumMember.value] >= 0, \
183
+ # f"Negative value at {arrayName}[{enumMember.name}]"
184
+
185
+ # # 4. Special value checks
186
+ # assert stateInitialized['my'][indexMy.leaf1ndex.value] == 1, \
187
+ # "Initial leaf index should be 1"
188
+
189
+ # # 5. Shape consistency
190
+ # leavesTotal = getLeavesTotal(listDimensionsTestFunctionality)
191
+ # assert stateInitialized['foldsSubTotals'].shape == (leavesTotal,), \
192
+ # "foldsSubTotals shape mismatch"
193
+ # assert stateInitialized['gapsWhere'].shape == (leavesTotal * leavesTotal + 1,), \
194
+ # "gapsWhere shape mismatch"
195
+ # assert stateInitialized['track'].shape == (len(indexTrack), leavesTotal + 1), \
196
+ # "track shape mismatch"
197
+
198
+ # TODO test `outfitCountFolds`; no negative values in arrays; compare datatypes to the typeddict; compare the connection graph to making a graph