mani-skill-nightly 2025.4.4.36__py3-none-any.whl → 2025.4.4.139__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -195,7 +195,10 @@ class PDJointPosMimicController(PDJointPosController):
195
195
 
196
196
  def _get_joint_limits(self):
197
197
  joint_limits = super()._get_joint_limits()
198
- return joint_limits[self.control_joint_indices]
198
+ joint_limits = joint_limits[self.control_joint_indices]
199
+ if len(joint_limits.shape) == 1:
200
+ joint_limits = joint_limits[None, :]
201
+ return joint_limits
199
202
 
200
203
  def set_action(self, action: Array):
201
204
  action = self._preprocess_action(action)
@@ -44,7 +44,7 @@ def solve(env: PegInsertionSideEnv, seed=None, debug=False, vis=False):
44
44
 
45
45
  obb = get_actor_obb(env.peg)
46
46
  approaching = np.array([0, 0, -1])
47
- target_closing = env.agent.tcp.pose.to_transformation_matrix()[0, :3, 1].numpy()
47
+ target_closing = env.agent.tcp.pose.to_transformation_matrix()[0, :3, 1].cpu().numpy()
48
48
 
49
49
  peg_init_pose = env.peg.pose
50
50
 
@@ -53,7 +53,7 @@ def solve(env: PegInsertionSideEnv, seed=None, debug=False, vis=False):
53
53
  )
54
54
  closing, center = grasp_info["closing"], grasp_info["center"]
55
55
  grasp_pose = env.agent.build_grasp_pose(approaching, closing, center)
56
- offset = sapien.Pose([-max(0.05, env.peg_half_sizes[0, 0] / 2 + 0.01), 0, 0])
56
+ offset = sapien.Pose([-max(0.05, env.peg_half_sizes[0, 0].item() / 2 + 0.01), 0, 0])
57
57
  grasp_pose = grasp_pose * (offset)
58
58
 
59
59
  # -------------------------------------------------------------------------- #
@@ -75,7 +75,7 @@ def solve(env: PegInsertionSideEnv, seed=None, debug=False, vis=False):
75
75
 
76
76
  # align the peg with the hole
77
77
  insert_pose = env.goal_pose * peg_init_pose.inv() * grasp_pose
78
- offset = sapien.Pose([-0.01 - env.peg_half_sizes[0, 0], 0, 0])
78
+ offset = sapien.Pose([-0.01 - env.peg_half_sizes[0, 0].item(), 0, 0])
79
79
  pre_insert_pose = insert_pose * (offset)
80
80
  res = planner.move_to_pose_with_screw(pre_insert_pose)
81
81
  if res == -1: return res
@@ -30,7 +30,7 @@ def solve(env: StackCubeEnv, seed=None, debug=False, vis=False):
30
30
  obb = get_actor_obb(env.cubeA)
31
31
 
32
32
  approaching = np.array([0, 0, -1])
33
- target_closing = env.agent.tcp.pose.to_transformation_matrix()[0, :3, 1].numpy()
33
+ target_closing = env.agent.tcp.pose.to_transformation_matrix()[0, :3, 1].cpu().numpy()
34
34
  grasp_info = compute_grasp_info_by_obb(
35
35
  obb,
36
36
  approaching=approaching,
@@ -76,8 +76,8 @@ def solve(env: StackCubeEnv, seed=None, debug=False, vis=False):
76
76
  # -------------------------------------------------------------------------- #
77
77
  # Stack
78
78
  # -------------------------------------------------------------------------- #
79
- goal_pose = env.cubeB.pose * sapien.Pose([0, 0, env.cube_half_size[2] * 2])
80
- offset = (goal_pose.p - env.cubeA.pose.p).numpy()[0] # remember that all data in ManiSkill is batched and a torch tensor
79
+ goal_pose = env.cubeB.pose * sapien.Pose([0, 0, (env.cube_half_size[2] * 2).item()])
80
+ offset = (goal_pose.p - env.cubeA.pose.p).cpu().numpy()[0] # remember that all data in ManiSkill is batched and a torch tensor
81
81
  align_pose = sapien.Pose(lift_pose.p + offset, lift_pose.q)
82
82
  planner.move_to_pose_with_screw(align_pose)
83
83
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mani-skill-nightly
3
- Version: 2025.4.4.36
3
+ Version: 2025.4.4.139
4
4
  Summary: ManiSkill3: A Unified Benchmark for Generalizable Manipulation Skills
5
5
  Home-page: https://github.com/haosulab/ManiSkill
6
6
  Author: ManiSkill contributors
@@ -9,7 +9,7 @@ mani_skill/agents/controllers/base_controller.py,sha256=gSLIADsehgtscJjQUUla_oQS
9
9
  mani_skill/agents/controllers/passive_controller.py,sha256=R-hZeuxmNKA9TvDZzVKd-YIv45xE4tc6wMHargdrxjY,1264
10
10
  mani_skill/agents/controllers/pd_base_vel.py,sha256=-3ZzLZ9nRDMGHWnFE7c4reEbC3jHtQJCOx3LmArz95g,2868
11
11
  mani_skill/agents/controllers/pd_ee_pose.py,sha256=MkQF1jpNaD5QNsrM7JOiWi_waQSMfz7vw8jXB4WK_Q4,11464
12
- mani_skill/agents/controllers/pd_joint_pos.py,sha256=Zx_R3BBxC1JZKlgptfrKR8ZfpY6QCcoo4_GObsJkDNQ,10462
12
+ mani_skill/agents/controllers/pd_joint_pos.py,sha256=Z2zyzv93w3tAAHa5vQC95y964QMtjqvtZvHf-KlsO_E,10588
13
13
  mani_skill/agents/controllers/pd_joint_pos_vel.py,sha256=G8SBIa8jM939zGCETY17RlmwHoHLS5iCMTZsYZaH1mY,2433
14
14
  mani_skill/agents/controllers/pd_joint_vel.py,sha256=XQK13lsbteeUsztGw0u-DCBgCCv0ChglvncgwxVQCWY,1900
15
15
  mani_skill/agents/controllers/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -567,13 +567,13 @@ mani_skill/examples/motionplanning/panda/solutions/__init__.py,sha256=sXndzXDUyx
567
567
  mani_skill/examples/motionplanning/panda/solutions/draw_svg.py,sha256=MF-THj9aAXefc6wpRJ44nk5Y_sF2P0PdWXKQhlR_pOE,1049
568
568
  mani_skill/examples/motionplanning/panda/solutions/draw_triangle.py,sha256=CeRhTdPep6vgVix6SfOEBx8DRDS9Kmpo3zALEg7sK7Q,1937
569
569
  mani_skill/examples/motionplanning/panda/solutions/lift_peg_upright.py,sha256=-wQ5DpT7dMffOgOkpboUNYg4odq-NuQgGUzJ0LWNIUg,3616
570
- mani_skill/examples/motionplanning/panda/solutions/peg_insertion_side.py,sha256=LWQWc_4Iq06b1OyLPa5XWdWALidv74ZsLmne3N_HljM,3555
570
+ mani_skill/examples/motionplanning/panda/solutions/peg_insertion_side.py,sha256=xjyH1THjtzZrnS6m_zURjKQ9vZgqCWbcKsa7RcbBg8g,3575
571
571
  mani_skill/examples/motionplanning/panda/solutions/pick_cube.py,sha256=STYpml582MlVq52ixxBcMIF6gwyCwSdpGd1SDioOZVQ,2243
572
572
  mani_skill/examples/motionplanning/panda/solutions/plug_charger.py,sha256=-4MoxBRGmWbJqFf1XxWWJ0CZsDxQVaZg6ft7NOLKGWs,3533
573
573
  mani_skill/examples/motionplanning/panda/solutions/pull_cube.py,sha256=rQkvCRYjVejEWC28mo6lbGRqjp9McZGjQEv4Wp1fMWE,1111
574
574
  mani_skill/examples/motionplanning/panda/solutions/pull_cube_tool.py,sha256=g6adx921V2SOVYYFlh_gLwV5I0tnz70qCLm81oA6YhA,3609
575
575
  mani_skill/examples/motionplanning/panda/solutions/push_cube.py,sha256=EynyseBJ_njMP74o9gVxqWOOqoC5j1rBc4XQzFug9EQ,1113
576
- mani_skill/examples/motionplanning/panda/solutions/stack_cube.py,sha256=7Us7e5967J9isf0Idvpl-VUg2myq5YFWS6eFPUgvU4g,3259
576
+ mani_skill/examples/motionplanning/panda/solutions/stack_cube.py,sha256=QIa280jNOJfJqqgbb5WWEBxErFPE7Mv4-_ZL9TCsRos,3280
577
577
  mani_skill/examples/teleoperation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
578
578
  mani_skill/examples/teleoperation/interactive_panda.py,sha256=NsGy_ghtXl3HPbwLjKINkizOXqX_rMr30lUfscmhyQ4,10423
579
579
  mani_skill/render/__init__.py,sha256=Uy6h1bzammUO8QVPVCDcuCuhnuN3e5votaho45drAGw,118
@@ -707,8 +707,8 @@ mani_skill/vector/wrappers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJ
707
707
  mani_skill/vector/wrappers/gymnasium.py,sha256=v1MDPIrVACBKCulrpdXBK2jDZQI7LKYFZgGgaCC5avY,7408
708
708
  mani_skill/vector/wrappers/sb3.py,sha256=SlXdiEPqcNHYMhJCzA29kBU6zK7DKTe1nc0L6Z3QQtY,4722
709
709
  mani_skill/viewer/__init__.py,sha256=srvDBsk4LQU75K2VIttrhiQ68p_ro7PSDqQRls2PY5c,1722
710
- mani_skill_nightly-2025.4.4.36.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
711
- mani_skill_nightly-2025.4.4.36.dist-info/METADATA,sha256=7uRC3TlGmwuS-eMllEsMABSX22CjX_kSOFcNrW3_1MI,9289
712
- mani_skill_nightly-2025.4.4.36.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
713
- mani_skill_nightly-2025.4.4.36.dist-info/top_level.txt,sha256=bkBgOVl_MZMoQx2aRFsSFEYlZLxjWlip5vtJ39FB3jA,11
714
- mani_skill_nightly-2025.4.4.36.dist-info/RECORD,,
710
+ mani_skill_nightly-2025.4.4.139.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
711
+ mani_skill_nightly-2025.4.4.139.dist-info/METADATA,sha256=zR1WnFdxB1nT1Dr8d_sniMYHE808UvFW8KnfPLfOw9c,9290
712
+ mani_skill_nightly-2025.4.4.139.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
713
+ mani_skill_nightly-2025.4.4.139.dist-info/top_level.txt,sha256=bkBgOVl_MZMoQx2aRFsSFEYlZLxjWlip5vtJ39FB3jA,11
714
+ mani_skill_nightly-2025.4.4.139.dist-info/RECORD,,