maite-datasets 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- maite_datasets/__init__.py +1 -0
- maite_datasets/_base.py +254 -0
- maite_datasets/_fileio.py +174 -0
- maite_datasets/_mixin/__init__.py +0 -0
- maite_datasets/_mixin/_numpy.py +28 -0
- maite_datasets/_mixin/_torch.py +28 -0
- maite_datasets/_protocols.py +224 -0
- maite_datasets/_types.py +54 -0
- maite_datasets/image_classification/__init__.py +11 -0
- maite_datasets/image_classification/_cifar10.py +233 -0
- maite_datasets/image_classification/_mnist.py +215 -0
- maite_datasets/image_classification/_ships.py +150 -0
- maite_datasets/object_detection/__init__.py +20 -0
- maite_datasets/object_detection/_antiuav.py +200 -0
- maite_datasets/object_detection/_milco.py +207 -0
- maite_datasets/object_detection/_seadrone.py +551 -0
- maite_datasets/object_detection/_voc.py +510 -0
- maite_datasets/object_detection/_voc_torch.py +65 -0
- maite_datasets/py.typed +0 -0
- maite_datasets-0.0.1.dist-info/METADATA +91 -0
- maite_datasets-0.0.1.dist-info/RECORD +23 -0
- maite_datasets-0.0.1.dist-info/WHEEL +4 -0
- maite_datasets-0.0.1.dist-info/licenses/LICENSE +21 -0
@@ -0,0 +1,215 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
__all__ = []
|
4
|
+
|
5
|
+
from pathlib import Path
|
6
|
+
from typing import Any, Literal, Sequence, TypeVar
|
7
|
+
|
8
|
+
import numpy as np
|
9
|
+
from numpy.typing import NDArray
|
10
|
+
|
11
|
+
from maite_datasets._base import BaseICDataset, DataLocation
|
12
|
+
from maite_datasets._mixin._numpy import BaseDatasetNumpyMixin
|
13
|
+
from maite_datasets._protocols import Transform
|
14
|
+
|
15
|
+
MNISTClassStringMap = Literal[
|
16
|
+
"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"
|
17
|
+
]
|
18
|
+
TMNISTClassMap = TypeVar(
|
19
|
+
"TMNISTClassMap", MNISTClassStringMap, int, list[MNISTClassStringMap], list[int]
|
20
|
+
)
|
21
|
+
CorruptionStringMap = Literal[
|
22
|
+
"identity",
|
23
|
+
"shot_noise",
|
24
|
+
"impulse_noise",
|
25
|
+
"glass_blur",
|
26
|
+
"motion_blur",
|
27
|
+
"shear",
|
28
|
+
"scale",
|
29
|
+
"rotate",
|
30
|
+
"brightness",
|
31
|
+
"translate",
|
32
|
+
"stripe",
|
33
|
+
"fog",
|
34
|
+
"spatter",
|
35
|
+
"dotted_line",
|
36
|
+
"zigzag",
|
37
|
+
"canny_edges",
|
38
|
+
]
|
39
|
+
|
40
|
+
|
41
|
+
class MNIST(BaseICDataset[NDArray[np.number[Any]]], BaseDatasetNumpyMixin):
|
42
|
+
"""`MNIST <https://en.wikipedia.org/wiki/MNIST_database>`_ Dataset and `Corruptions <https://arxiv.org/abs/1906.02337>`_.
|
43
|
+
|
44
|
+
There are 15 different styles of corruptions. This class downloads differently depending on if you
|
45
|
+
need just the original dataset or if you need corruptions. If you need both a corrupt version and the
|
46
|
+
original version then choose `corruption="identity"` as this downloads all of the corrupt datasets and
|
47
|
+
provides the original as `identity`. If you just need the original, then using `corruption=None` will
|
48
|
+
download only the original dataset to save time and space.
|
49
|
+
|
50
|
+
Parameters
|
51
|
+
----------
|
52
|
+
root : str or pathlib.Path
|
53
|
+
Root directory where the data should be downloaded to or the ``minst`` folder of the already downloaded data.
|
54
|
+
image_set : "train", "test" or "base", default "train"
|
55
|
+
If "base", returns all of the data to allow the user to create their own splits.
|
56
|
+
corruption : "identity", "shot_noise", "impulse_noise", "glass_blur", "motion_blur", \
|
57
|
+
"shear", "scale", "rotate", "brightness", "translate", "stripe", "fog", "spatter", \
|
58
|
+
"dotted_line", "zigzag", "canny_edges" or None, default None
|
59
|
+
Corruption to apply to the data.
|
60
|
+
transforms : Transform, Sequence[Transform] or None, default None
|
61
|
+
Transform(s) to apply to the data.
|
62
|
+
download : bool, default False
|
63
|
+
If True, downloads the dataset from the internet and puts it in root directory.
|
64
|
+
Class checks to see if data is already downloaded to ensure it does not create a duplicate download.
|
65
|
+
verbose : bool, default False
|
66
|
+
If True, outputs print statements.
|
67
|
+
|
68
|
+
Attributes
|
69
|
+
----------
|
70
|
+
path : pathlib.Path
|
71
|
+
Location of the folder containing the data.
|
72
|
+
image_set : "train", "test" or "base"
|
73
|
+
The selected image set from the dataset.
|
74
|
+
index2label : dict[int, str]
|
75
|
+
Dictionary which translates from class integers to the associated class strings.
|
76
|
+
label2index : dict[str, int]
|
77
|
+
Dictionary which translates from class strings to the associated class integers.
|
78
|
+
metadata : DatasetMetadata
|
79
|
+
Typed dictionary containing dataset metadata, such as `id` which returns the dataset class name.
|
80
|
+
corruption : str or None
|
81
|
+
Corruption applied to the data.
|
82
|
+
transforms : Sequence[Transform]
|
83
|
+
The transforms to be applied to the data.
|
84
|
+
size : int
|
85
|
+
The size of the dataset.
|
86
|
+
|
87
|
+
Note
|
88
|
+
----
|
89
|
+
Data License: `CC BY 4.0 <https://creativecommons.org/licenses/by/4.0/>`_ for corruption dataset
|
90
|
+
"""
|
91
|
+
|
92
|
+
_resources = [
|
93
|
+
DataLocation(
|
94
|
+
url="https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz",
|
95
|
+
filename="mnist.npz",
|
96
|
+
md5=False,
|
97
|
+
checksum="731c5ac602752760c8e48fbffcf8c3b850d9dc2a2aedcf2cc48468fc17b673d1",
|
98
|
+
),
|
99
|
+
DataLocation(
|
100
|
+
url="https://zenodo.org/record/3239543/files/mnist_c.zip",
|
101
|
+
filename="mnist_c.zip",
|
102
|
+
md5=True,
|
103
|
+
checksum="4b34b33045869ee6d424616cd3a65da3",
|
104
|
+
),
|
105
|
+
]
|
106
|
+
|
107
|
+
index2label: dict[int, str] = {
|
108
|
+
0: "zero",
|
109
|
+
1: "one",
|
110
|
+
2: "two",
|
111
|
+
3: "three",
|
112
|
+
4: "four",
|
113
|
+
5: "five",
|
114
|
+
6: "six",
|
115
|
+
7: "seven",
|
116
|
+
8: "eight",
|
117
|
+
9: "nine",
|
118
|
+
}
|
119
|
+
|
120
|
+
def __init__(
|
121
|
+
self,
|
122
|
+
root: str | Path,
|
123
|
+
image_set: Literal["train", "test", "base"] = "train",
|
124
|
+
corruption: CorruptionStringMap | None = None,
|
125
|
+
transforms: Transform[NDArray[np.number[Any]]]
|
126
|
+
| Sequence[Transform[NDArray[np.number[Any]]]]
|
127
|
+
| None = None,
|
128
|
+
download: bool = False,
|
129
|
+
verbose: bool = False,
|
130
|
+
) -> None:
|
131
|
+
self.corruption = corruption
|
132
|
+
if self.corruption == "identity" and verbose:
|
133
|
+
print("Identity is not a corrupted dataset but the original MNIST dataset.")
|
134
|
+
self._resource_index = 0 if self.corruption is None else 1
|
135
|
+
|
136
|
+
super().__init__(
|
137
|
+
root,
|
138
|
+
image_set,
|
139
|
+
transforms,
|
140
|
+
download,
|
141
|
+
verbose,
|
142
|
+
)
|
143
|
+
|
144
|
+
def _load_data_inner(self) -> tuple[list[str], list[int], dict[str, Any]]:
|
145
|
+
"""Function to load in the file paths for the data and labels from the correct data format"""
|
146
|
+
if self.corruption is None:
|
147
|
+
try:
|
148
|
+
file_path = self.path / self._resource.filename
|
149
|
+
self._loaded_data, labels = self._grab_data(file_path)
|
150
|
+
except FileNotFoundError:
|
151
|
+
self._loaded_data, labels = self._load_corruption()
|
152
|
+
else:
|
153
|
+
self._loaded_data, labels = self._load_corruption()
|
154
|
+
|
155
|
+
index_strings = np.arange(self._loaded_data.shape[0]).astype(str).tolist()
|
156
|
+
return index_strings, labels.tolist(), {}
|
157
|
+
|
158
|
+
def _load_corruption(self) -> tuple[NDArray[np.number[Any]], NDArray[np.uintp]]:
|
159
|
+
"""Function to load in the file paths for the data and labels for the different corrupt data formats"""
|
160
|
+
corruption = self.corruption if self.corruption is not None else "identity"
|
161
|
+
base_path = self.path / "mnist_c" / corruption
|
162
|
+
if self.image_set == "base":
|
163
|
+
raw_data = []
|
164
|
+
raw_labels = []
|
165
|
+
for group in ["train", "test"]:
|
166
|
+
file_path = base_path / f"{group}_images.npy"
|
167
|
+
raw_data.append(self._grab_corruption_data(file_path))
|
168
|
+
|
169
|
+
label_path = base_path / f"{group}_labels.npy"
|
170
|
+
raw_labels.append(self._grab_corruption_data(label_path))
|
171
|
+
|
172
|
+
data = np.concatenate(raw_data, axis=0).transpose(0, 3, 1, 2)
|
173
|
+
labels = np.concatenate(raw_labels).astype(np.uintp)
|
174
|
+
else:
|
175
|
+
file_path = base_path / f"{self.image_set}_images.npy"
|
176
|
+
data = self._grab_corruption_data(file_path)
|
177
|
+
data = data.astype(np.float64).transpose(0, 3, 1, 2)
|
178
|
+
|
179
|
+
label_path = base_path / f"{self.image_set}_labels.npy"
|
180
|
+
labels = self._grab_corruption_data(label_path)
|
181
|
+
labels = labels.astype(np.uintp)
|
182
|
+
|
183
|
+
return data, labels
|
184
|
+
|
185
|
+
def _grab_data(
|
186
|
+
self, path: Path
|
187
|
+
) -> tuple[NDArray[np.number[Any]], NDArray[np.uintp]]:
|
188
|
+
"""Function to load in the data numpy array"""
|
189
|
+
with np.load(path, allow_pickle=True) as data_array:
|
190
|
+
if self.image_set == "base":
|
191
|
+
data = np.concatenate(
|
192
|
+
[data_array["x_train"], data_array["x_test"]], axis=0
|
193
|
+
)
|
194
|
+
labels = np.concatenate(
|
195
|
+
[data_array["y_train"], data_array["y_test"]], axis=0
|
196
|
+
).astype(np.uintp)
|
197
|
+
else:
|
198
|
+
data, labels = (
|
199
|
+
data_array[f"x_{self.image_set}"],
|
200
|
+
data_array[f"y_{self.image_set}"].astype(np.uintp),
|
201
|
+
)
|
202
|
+
data = np.expand_dims(data, axis=1)
|
203
|
+
return data, labels
|
204
|
+
|
205
|
+
def _grab_corruption_data(self, path: Path) -> NDArray[np.number[Any]]:
|
206
|
+
"""Function to load in the data numpy array for the previously chosen corrupt format"""
|
207
|
+
return np.load(path, allow_pickle=False)
|
208
|
+
|
209
|
+
def _read_file(self, path: str) -> NDArray[np.number[Any]]:
|
210
|
+
"""
|
211
|
+
Function to grab the correct image from the loaded data.
|
212
|
+
Overwrite of the base `_read_file` because data is an all or nothing load.
|
213
|
+
"""
|
214
|
+
index = int(path)
|
215
|
+
return self._loaded_data[index]
|
@@ -0,0 +1,150 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
__all__ = []
|
4
|
+
|
5
|
+
from pathlib import Path
|
6
|
+
from typing import Any, Sequence
|
7
|
+
|
8
|
+
import numpy as np
|
9
|
+
from numpy.typing import NDArray
|
10
|
+
|
11
|
+
from maite_datasets._base import BaseICDataset, DataLocation
|
12
|
+
from maite_datasets._mixin._numpy import BaseDatasetNumpyMixin
|
13
|
+
from maite_datasets._protocols import Transform
|
14
|
+
|
15
|
+
|
16
|
+
class Ships(BaseICDataset[NDArray[np.number[Any]]], BaseDatasetNumpyMixin):
|
17
|
+
"""
|
18
|
+
A dataset that focuses on identifying ships from satellite images.
|
19
|
+
|
20
|
+
The dataset comes from kaggle,
|
21
|
+
`Ships in Satellite Imagery <https://www.kaggle.com/datasets/rhammell/ships-in-satellite-imagery>`_.
|
22
|
+
The images come from Planet satellite imagery when they gave
|
23
|
+
`open-access to a portion of their data <https://www.planet.com/pulse/open-california-rapideye-data/>`_.
|
24
|
+
|
25
|
+
There are 4000 80x80x3 (HWC) images of ships, sea, and land.
|
26
|
+
There are also 8 larger scene images similar to what would be operationally provided.
|
27
|
+
|
28
|
+
Parameters
|
29
|
+
----------
|
30
|
+
root : str or pathlib.Path
|
31
|
+
Root directory where the data should be downloaded to or the ``ships`` folder of the already downloaded data.
|
32
|
+
transforms : Transform, Sequence[Transform] or None, default None
|
33
|
+
Transform(s) to apply to the data.
|
34
|
+
download : bool, default False
|
35
|
+
If True, downloads the dataset from the internet and puts it in root directory.
|
36
|
+
Class checks to see if data is already downloaded to ensure it does not create a duplicate download.
|
37
|
+
verbose : bool, default False
|
38
|
+
If True, outputs print statements.
|
39
|
+
|
40
|
+
Attributes
|
41
|
+
----------
|
42
|
+
path : pathlib.Path
|
43
|
+
Location of the folder containing the data.
|
44
|
+
image_set : "base"
|
45
|
+
The base image set is the only available image set for the Ships dataset.
|
46
|
+
index2label : dict[int, str]
|
47
|
+
Dictionary which translates from class integers to the associated class strings.
|
48
|
+
label2index : dict[str, int]
|
49
|
+
Dictionary which translates from class strings to the associated class integers.
|
50
|
+
metadata : DatasetMetadata
|
51
|
+
Typed dictionary containing dataset metadata, such as `id` which returns the dataset class name.
|
52
|
+
transforms : Sequence[Transform]
|
53
|
+
The transforms to be applied to the data.
|
54
|
+
size : int
|
55
|
+
The size of the dataset.
|
56
|
+
|
57
|
+
Note
|
58
|
+
----
|
59
|
+
Data License: `CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0/>`_
|
60
|
+
"""
|
61
|
+
|
62
|
+
_resources = [
|
63
|
+
DataLocation(
|
64
|
+
url="https://zenodo.org/record/3611230/files/ships-in-satellite-imagery.zip",
|
65
|
+
filename="ships-in-satellite-imagery.zip",
|
66
|
+
md5=True,
|
67
|
+
checksum="b2e8a41ed029592b373bd72ee4b89f32",
|
68
|
+
),
|
69
|
+
]
|
70
|
+
|
71
|
+
index2label: dict[int, str] = {
|
72
|
+
0: "no ship",
|
73
|
+
1: "ship",
|
74
|
+
}
|
75
|
+
|
76
|
+
def __init__(
|
77
|
+
self,
|
78
|
+
root: str | Path,
|
79
|
+
transforms: Transform[NDArray[np.number[Any]]]
|
80
|
+
| Sequence[Transform[NDArray[np.number[Any]]]]
|
81
|
+
| None = None,
|
82
|
+
download: bool = False,
|
83
|
+
verbose: bool = False,
|
84
|
+
) -> None:
|
85
|
+
super().__init__(
|
86
|
+
root,
|
87
|
+
"base",
|
88
|
+
transforms,
|
89
|
+
download,
|
90
|
+
verbose,
|
91
|
+
)
|
92
|
+
self._scenes: list[str] = self._load_scenes()
|
93
|
+
self._remove_extraneous_json_file()
|
94
|
+
|
95
|
+
def _remove_extraneous_json_file(self) -> None:
|
96
|
+
json_path = self.path / "shipsnet.json"
|
97
|
+
if json_path.exists():
|
98
|
+
json_path.unlink()
|
99
|
+
|
100
|
+
def _load_data_inner(self) -> tuple[list[str], list[int], dict[str, Any]]:
|
101
|
+
"""Function to load in the file paths for the data and labels"""
|
102
|
+
file_data = {
|
103
|
+
"label": [],
|
104
|
+
"scene_id": [],
|
105
|
+
"longitude": [],
|
106
|
+
"latitude": [],
|
107
|
+
"path": [],
|
108
|
+
}
|
109
|
+
data_folder = sorted((self.path / "shipsnet").glob("*.png"))
|
110
|
+
if not data_folder:
|
111
|
+
raise FileNotFoundError
|
112
|
+
|
113
|
+
for entry in data_folder:
|
114
|
+
# Remove file extension and split by "_"
|
115
|
+
parts = entry.stem.split("__")
|
116
|
+
file_data["label"].append(int(parts[0]))
|
117
|
+
file_data["scene_id"].append(parts[1])
|
118
|
+
lat_lon = parts[2].split("_")
|
119
|
+
file_data["longitude"].append(float(lat_lon[0]))
|
120
|
+
file_data["latitude"].append(float(lat_lon[1]))
|
121
|
+
file_data["path"].append(entry)
|
122
|
+
data = file_data.pop("path")
|
123
|
+
labels = file_data.pop("label")
|
124
|
+
return data, labels, file_data
|
125
|
+
|
126
|
+
def _load_scenes(self) -> list[str]:
|
127
|
+
"""Function to load in the file paths for the scene images"""
|
128
|
+
return sorted(str(entry) for entry in (self.path / "scenes").glob("*.png"))
|
129
|
+
|
130
|
+
def get_scene(self, index: int) -> NDArray[np.number[Any]]:
|
131
|
+
"""
|
132
|
+
Get the desired satellite image (scene) by passing in the index of the desired file.
|
133
|
+
|
134
|
+
Args
|
135
|
+
----
|
136
|
+
index : int
|
137
|
+
Value of the desired data point
|
138
|
+
|
139
|
+
Returns
|
140
|
+
-------
|
141
|
+
NDArray[np.number]
|
142
|
+
Scene image
|
143
|
+
|
144
|
+
Note
|
145
|
+
----
|
146
|
+
The scene will be returned with the channel axis first.
|
147
|
+
"""
|
148
|
+
scene = self._read_file(self._scenes[index])
|
149
|
+
np.moveaxis(scene, -1, 0)
|
150
|
+
return scene
|
@@ -0,0 +1,20 @@
|
|
1
|
+
"""Module for MAITE compliant Object Detection datasets."""
|
2
|
+
|
3
|
+
from maite_datasets.object_detection._antiuav import AntiUAVDetection
|
4
|
+
from maite_datasets.object_detection._milco import MILCO
|
5
|
+
from maite_datasets.object_detection._seadrone import SeaDrone
|
6
|
+
from maite_datasets.object_detection._voc import VOCDetection
|
7
|
+
|
8
|
+
__all__ = [
|
9
|
+
"AntiUAVDetection",
|
10
|
+
"MILCO",
|
11
|
+
"SeaDrone",
|
12
|
+
"VOCDetection",
|
13
|
+
]
|
14
|
+
|
15
|
+
import importlib.util
|
16
|
+
|
17
|
+
if importlib.util.find_spec("torch") is not None:
|
18
|
+
from maite_datasets.object_detection._voc_torch import VOCDetectionTorch
|
19
|
+
|
20
|
+
__all__ += ["VOCDetectionTorch"]
|
@@ -0,0 +1,200 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
__all__ = []
|
4
|
+
|
5
|
+
from pathlib import Path
|
6
|
+
from typing import Any, Literal, Sequence
|
7
|
+
|
8
|
+
import numpy as np
|
9
|
+
from defusedxml.ElementTree import parse
|
10
|
+
from numpy.typing import NDArray
|
11
|
+
|
12
|
+
from maite_datasets._base import BaseODDataset, DataLocation
|
13
|
+
from maite_datasets._mixin._numpy import BaseDatasetNumpyMixin
|
14
|
+
from maite_datasets._protocols import Transform
|
15
|
+
|
16
|
+
|
17
|
+
class AntiUAVDetection(
|
18
|
+
BaseODDataset[NDArray[np.number[Any]], list[str], str], BaseDatasetNumpyMixin
|
19
|
+
):
|
20
|
+
"""
|
21
|
+
A UAV detection dataset focused on detecting UAVs in natural images against large variation in backgrounds.
|
22
|
+
|
23
|
+
The dataset comes from the paper
|
24
|
+
`Vision-based Anti-UAV Detection and Tracking <https://ieeexplore.ieee.org/document/9785379>`_
|
25
|
+
by Jie Zhao et. al. (2022).
|
26
|
+
|
27
|
+
The dataset is approximately 1.3 GB and can be found `here <https://github.com/wangdongdut/DUT-Anti-UAV>`_.
|
28
|
+
Images are collected against a variety of different backgrounds with a variety in the number and type of UAV.
|
29
|
+
Ground truth labels are provided for the train, validation and test set.
|
30
|
+
There are 35 different types of drones along with a variety in lighting conditions and weather conditions.
|
31
|
+
|
32
|
+
There are 10,000 images: 5200 images in the training set, 2200 images in the validation set,
|
33
|
+
and 2600 images in the test set.
|
34
|
+
The dataset only has a single UAV class with the focus being on identifying object location in the image.
|
35
|
+
Ground-truth bounding boxes are provided in (x0, y0, x1, y1) format.
|
36
|
+
The images come in a variety of sizes from 3744 x 5616 to 160 x 240.
|
37
|
+
|
38
|
+
Parameters
|
39
|
+
----------
|
40
|
+
root : str or pathlib.Path
|
41
|
+
Root directory where the data should be downloaded to or
|
42
|
+
the ``antiuavdetection`` folder of the already downloaded data.
|
43
|
+
image_set: "train", "val", "test", or "base", default "train"
|
44
|
+
If "base", then the full dataset is selected (train, val and test).
|
45
|
+
transforms : Transform, Sequence[Transform] or None, default None
|
46
|
+
Transform(s) to apply to the data.
|
47
|
+
download : bool, default False
|
48
|
+
If True, downloads the dataset from the internet and puts it in root directory.
|
49
|
+
Class checks to see if data is already downloaded to ensure it does not create a duplicate download.
|
50
|
+
verbose : bool, default False
|
51
|
+
If True, outputs print statements.
|
52
|
+
|
53
|
+
Attributes
|
54
|
+
----------
|
55
|
+
path : pathlib.Path
|
56
|
+
Location of the folder containing the data.
|
57
|
+
image_set : "train", "val", "test", or "base"
|
58
|
+
The selected image set from the dataset.
|
59
|
+
index2label : dict[int, str]
|
60
|
+
Dictionary which translates from class integers to the associated class strings.
|
61
|
+
label2index : dict[str, int]
|
62
|
+
Dictionary which translates from class strings to the associated class integers.
|
63
|
+
metadata : DatasetMetadata
|
64
|
+
Typed dictionary containing dataset metadata, such as `id` which returns the dataset class name.
|
65
|
+
transforms : Sequence[Transform]
|
66
|
+
The transforms to be applied to the data.
|
67
|
+
size : int
|
68
|
+
The size of the dataset.
|
69
|
+
|
70
|
+
Note
|
71
|
+
----
|
72
|
+
Data License: `Apache 2.0 <https://www.apache.org/licenses/LICENSE-2.0.txt>`_
|
73
|
+
"""
|
74
|
+
|
75
|
+
# Need to run the sha256 on the files and then store that
|
76
|
+
_resources = [
|
77
|
+
DataLocation(
|
78
|
+
url="https://drive.usercontent.google.com/download?id=1RVsSGPUKTdmoyoPTBTWwroyulLek1eTj&export=download&authuser=0&confirm=t&uuid=6bca4f94-a242-4bc2-9663-fb03cd94ef2c&at=APcmpox0--NroQ_3bqeTFaJxP7Pw%3A1746552902927",
|
79
|
+
filename="train.zip",
|
80
|
+
md5=False,
|
81
|
+
checksum="14f927290556df60e23cedfa80dffc10dc21e4a3b6843e150cfc49644376eece",
|
82
|
+
),
|
83
|
+
DataLocation(
|
84
|
+
url="https://drive.usercontent.google.com/download?id=1333uEQfGuqTKslRkkeLSCxylh6AQ0X6n&export=download&authuser=0&confirm=t&uuid=c2ad2f01-aca8-4a85-96bb-b8ef6e40feea&at=APcmpozY-8bhk3nZSFaYbE8rq1Fi%3A1746551543297",
|
85
|
+
filename="val.zip",
|
86
|
+
md5=False,
|
87
|
+
checksum="238be0ceb3e7c5be6711ee3247e49df2750d52f91f54f5366c68bebac112ebf8",
|
88
|
+
),
|
89
|
+
DataLocation(
|
90
|
+
url="https://drive.usercontent.google.com/download?id=1L1zeW1EMDLlXHClSDcCjl3rs_A6sVai0&export=download&authuser=0&confirm=t&uuid=5a1d7650-d8cd-4461-8354-7daf7292f06c&at=APcmpozLQC1CuP-n5_UX2JnP53Zo%3A1746551676177",
|
91
|
+
filename="test.zip",
|
92
|
+
md5=False,
|
93
|
+
checksum="a671989a01cff98c684aeb084e59b86f4152c50499d86152eb970a9fc7fb1cbe",
|
94
|
+
),
|
95
|
+
]
|
96
|
+
|
97
|
+
index2label: dict[int, str] = {
|
98
|
+
0: "unknown",
|
99
|
+
1: "UAV",
|
100
|
+
}
|
101
|
+
|
102
|
+
def __init__(
|
103
|
+
self,
|
104
|
+
root: str | Path,
|
105
|
+
image_set: Literal["train", "val", "test", "base"] = "train",
|
106
|
+
transforms: Transform[NDArray[np.number[Any]]]
|
107
|
+
| Sequence[Transform[NDArray[np.number[Any]]]]
|
108
|
+
| None = None,
|
109
|
+
download: bool = False,
|
110
|
+
verbose: bool = False,
|
111
|
+
) -> None:
|
112
|
+
super().__init__(
|
113
|
+
root,
|
114
|
+
image_set,
|
115
|
+
transforms,
|
116
|
+
download,
|
117
|
+
verbose,
|
118
|
+
)
|
119
|
+
|
120
|
+
def _load_data(self) -> tuple[list[str], list[str], dict[str, list[Any]]]:
|
121
|
+
filepaths: list[str] = []
|
122
|
+
targets: list[str] = []
|
123
|
+
datum_metadata: dict[str, list[Any]] = {}
|
124
|
+
|
125
|
+
# If base, load all resources
|
126
|
+
if self.image_set == "base":
|
127
|
+
metadata_list: list[dict[str, Any]] = []
|
128
|
+
|
129
|
+
for resource in self._resources:
|
130
|
+
self._resource = resource
|
131
|
+
resource_filepaths, resource_targets, resource_metadata = (
|
132
|
+
super()._load_data()
|
133
|
+
)
|
134
|
+
filepaths.extend(resource_filepaths)
|
135
|
+
targets.extend(resource_targets)
|
136
|
+
metadata_list.append(resource_metadata)
|
137
|
+
|
138
|
+
# Combine metadata
|
139
|
+
for data_dict in metadata_list:
|
140
|
+
for key, val in data_dict.items():
|
141
|
+
str_key = str(key) # Ensure key is string
|
142
|
+
if str_key not in datum_metadata:
|
143
|
+
datum_metadata[str_key] = []
|
144
|
+
datum_metadata[str_key].extend(val)
|
145
|
+
|
146
|
+
else:
|
147
|
+
# Grab only the desired data
|
148
|
+
for resource in self._resources:
|
149
|
+
if self.image_set in resource.filename:
|
150
|
+
self._resource = resource
|
151
|
+
resource_filepaths, resource_targets, resource_metadata = (
|
152
|
+
super()._load_data()
|
153
|
+
)
|
154
|
+
filepaths.extend(resource_filepaths)
|
155
|
+
targets.extend(resource_targets)
|
156
|
+
datum_metadata.update(resource_metadata)
|
157
|
+
|
158
|
+
return filepaths, targets, datum_metadata
|
159
|
+
|
160
|
+
def _load_data_inner(self) -> tuple[list[str], list[str], dict[str, Any]]:
|
161
|
+
resource_name = self._resource.filename[:-4]
|
162
|
+
base_dir = self.path / resource_name
|
163
|
+
data_folder = sorted((base_dir / "img").glob("*.jpg"))
|
164
|
+
if not data_folder:
|
165
|
+
raise FileNotFoundError
|
166
|
+
|
167
|
+
file_data = {
|
168
|
+
"image_id": [f"{resource_name}_{entry.name}" for entry in data_folder]
|
169
|
+
}
|
170
|
+
data = [str(entry) for entry in data_folder]
|
171
|
+
annotations = sorted(str(entry) for entry in (base_dir / "xml").glob("*.xml"))
|
172
|
+
|
173
|
+
return data, annotations, file_data
|
174
|
+
|
175
|
+
def _read_annotations(
|
176
|
+
self, annotation: str
|
177
|
+
) -> tuple[list[list[float]], list[int], dict[str, Any]]:
|
178
|
+
"""Function for extracting the info for the label and boxes"""
|
179
|
+
boxes: list[list[float]] = []
|
180
|
+
labels = []
|
181
|
+
root = parse(annotation).getroot()
|
182
|
+
if root is None:
|
183
|
+
raise ValueError(f"Unable to parse {annotation}")
|
184
|
+
additional_meta: dict[str, Any] = {
|
185
|
+
"image_width": int(root.findtext("size/width", default="-1")),
|
186
|
+
"image_height": int(root.findtext("size/height", default="-1")),
|
187
|
+
"image_depth": int(root.findtext("size/depth", default="-1")),
|
188
|
+
}
|
189
|
+
for obj in root.findall("object"):
|
190
|
+
labels.append(1 if obj.findtext("name", default="") == "UAV" else 0)
|
191
|
+
boxes.append(
|
192
|
+
[
|
193
|
+
float(obj.findtext("bndbox/xmin", default="0")),
|
194
|
+
float(obj.findtext("bndbox/ymin", default="0")),
|
195
|
+
float(obj.findtext("bndbox/xmax", default="0")),
|
196
|
+
float(obj.findtext("bndbox/ymax", default="0")),
|
197
|
+
]
|
198
|
+
)
|
199
|
+
|
200
|
+
return boxes, labels, additional_meta
|